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Introduction: Intercellular adhesion molecule 1 (ICAM-1) is a critical molecule
responsible for interactions between cells. Previous studies have suggested that
ICAM-1 triggers cell-to-cell transmission of HIV-1 or HTLV-1, that SARS-CoV-
2 shares several features with these viruses via interactions between cells, and that
SARS-CoV-2 cell-to-cell transmission is associated with COVID-19 severity. From
these previous arguments, it is assumed that ICAM-1 can be related to SARS-CoV-
2 cell-to-cell transmission in COVID-19 patients. Indeed, the time-dependent
change of the ICAM-1 expression level has been detected in COVID-19 patients.
However, signaling pathways that consist of ICAM-1 and other molecules
interacting with ICAM-1 are not identified in COVID-19. For example, the
current COVID-19 Disease Map has no entry for those pathways. Therefore,
discovering unknown ICAM1-associated pathways will be indispensable for
clarifying the mechanism of COVID-19.

Materials and methods: This study builds ICAM1-associated pathways by gene
network inference from single-cell omics data and multiple knowledge bases.
First, single-cell omics data analysis extracts coexpressed genes with significant
differences in expression levels with spurious correlations removed. Second,
knowledge bases validate the models. Finally, mapping the models onto
existing pathways identifies new ICAM1-associated pathways.

Results: Comparison of the obtained pathways between different cell types and
time points reproduces the known pathways and indicates the following two
unknown pathways: (1) upstream pathway that includes proteins in the non-
canonical NF-κB pathway and (2) downstream pathway that contains integrins and
cytoskeleton or motor proteins for cell transformation.

Discussion: In this way, data-driven and knowledge-based approaches are
integrated into gene network inference for ICAM1-associated pathway
construction. The results can contribute to repairing and completing the
COVID-19 Disease Map, thereby improving our understanding of the
mechanism of COVID-19.
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1 Introduction

Elucidating the underlying mechanisms of coronavirus disease
2019 (COVID-19) still remains a global issue. Uncovering the
mechanism requires fully understanding the COVID-19-specific
interactome, a complex network of interactions among different
components. In previous studies on COVID-19, attempts to provide
insights into interactions within cells have been made. In contrast,
interactions between cells have not been closely examined.

One noteworthy molecule responsible for the interactions between
cells is intercellular adhesion molecule 1 (ICAM-1; also known as
CD54), encoded by ICAM1. ICAM-1 is a transmembrane glycoprotein
expressed on leukocytes, vascular endothelial cells, and respiratory
epithelial cells. Its differential expression is critical for
proinflammatory immune responses and viral infection.
Additionally, ICAM-1 enables interactions between cells by
controlling leukocyte migration, homing, and adhesion from outside
to inside the cell (outside-in) and regulation from inside to outside the
cell (inside-out) (Luo et al., 2007). These functionalities make ICAM-1
an attractive drug target and a clinically essential molecule (Wilson
et al., 1993). Another premise regarding ICAM-1 as an essential
molecule in this study is grounded by a hypothesis on the
interaction between cells, called cell-to-cell transmission. Cell-to-cell
transmission is a direct viral transfer from one cell to another cell
(Igakura et al., 2003). The previous model-driven study suggested that
compared to the other viral transfer manner called cell-free
transmission, cell-to-cell transmission would be more associated with
COVID-19 severity (Odaka and Inoue, 2021). In fact, cell-to-cell
transmission is observed in in vitro experiments involving COVID-
19’s pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (Zeng et al., 2021). Moreover, cell-to-cell transmission is
observed in other retroviruses, such as human immunodeficiency
virus type 1 (HIV-1) and human T-cell leukemia virus type 1
(HTLV-1), whose functionalization is similar to that of SARS-CoV-2
(Walls et al., 2020). Specifically, both these retroviruses and SARS-CoV-
2 have a structurally homologous spike glycoprotein on the surface of
the viral envelope that binds to a surface protein on the recipient cell
during cell adhesion (Weissenhorn et al., 1999). In HIV-1 or HTLV-1,
the cell-to-cell transmission occurs after ICAM-1 triggers the peculiar
pathways for cell adhesion (Bracq et al., 2018) and induces the
formation of the microtubule-organizing center (MTOC) and
virological synapse (VS) (Nejmeddine et al., 2009). The
aforementioned arguments provide a rationale for focusing on
ICAM-1 in this study and for hypothesizing the in vivo existence of
ICAM-1 and the interactions between cells featured with ICAM-1
involved in cell-to-cell transmission in COVID-19.

Indeed, there have been different in vitro experimental results on
the expression level of ICAM-1 in SARS-CoV-2-infected cells. One
study shows the time-dependent ICAM-1 expression level changes
in COVID-19 patients (Smith-Norowitz et al., 2021). Another study
also shows that the ICAM-1 level increases in the severe phase and
decreases in the convalescent phase of COVID-19 (Tong et al.,
2020). Another study shows the opposite result on the decrease of
ICAM-1 after immune cell infiltration in COVID-19 while leaving
room for controversy regarding the reasons for downregulation
(Won et al., 2022).

Nevertheless, the interactions arising from ICAM-1 are not
explicitly recognized as indispensable in the case of COVID-19.

In particular, there is little insight into the signaling pathways
surrounding ICAM-1, that is, the upstream and downstream
signaling cascades that occur upon the functional activation of
ICAM-1 and its specific signaling molecules interacting with
ICAM-1 (i.e., ICAM1-associated pathways for short).
Consequently, it is significant to uncover the ICAM1-associated
pathways to better understand the interactions between cells in the
context of COVID-19.

Another substantial consequence of revealing ICAM1-
associated pathways contributes to completing the COVID-19
Disease Map. The COVID-19 Disease Map is a graphical
knowledge repository based on pathway enrichment analysis or
manual curation from external knowledge bases, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
(Ostaszewski et al., 2019). The COVID-19 Disease Map increases
the pathway volume; however, it is indicated that the map lacks
genes without pathway annotations (Reimand et al., 2019).
Moreover, the initial version of the COVID-19 Disease Map was
built on the fly (Ostaszewski et al., 2020), so it has inherently been
incomplete and in progress. As for ICAM-1, the pathways and even
ICAM-1 are absent in the current COVID-19 Disease Map
(Ostaszewski et al., 2021). Thus, this study regards it challenging
to find unknown ICAM1-associated pathways, expecting these
pathways to include the molecules driving cell-to-cell transmission.

Given the aforementioned observations, this study constructs
the ICAM1-associated pathways based on gene networks. For
inferring gene networks, we harness data and domain knowledge
by extracting relationships between gene pairs from data while
rectifying them with multiple knowledge bases. Such integration
of data-driven and knowledge-based approaches allows us to avoid
biologically meaningless interpretations based only on data
characteristics. Identifying the unknown pathways with
biologically meaningful interpretation will lead to a deeper
understanding of the mechanisms of COVID-19.

2 Materials and methods

2.1 Overview

Figure 1 illustrates the framework of this study. This framework
constructs the disease-specific pathways from single-cell omics data
and domain knowledge via gene network inference. The framework
consists of the following five steps:

1. Single-cell omics data analysis
2. Undirected graphical model construction
3. Model corroboration and validation
4. Gene-to-protein conversion
5. Pathway mapping and unification

Steps 1 and 2 are dedicated to gene network inference purely
from data, and Step 3 validates the data-driven gene network with
domain knowledge. In this study, we call the rectification of data-
driven objects with knowledge a data-driven and knowledge-based
(DD-KB) approach. Step 1 involves obtaining the COVID-19-
specific differentially expressed genes (DEGs) and a network of
differentially coexpressed genes (DCGs) via single-cell omics data
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analysis. Here, DEGs are the genes whose expression levels differ
significantly in COVID-19-positive patients and -negative controls,
and DCGs are coexpressed DEGs. Step 2 removes spurious edges
from the correlation networks, thereby building de novo undirected
graphical models. In corroboration (Step 3), undirected graphical
models are edited as dependency graphs with validated
relationships.

Steps 4 and 5 are pathway construction steps. In Step 4, a
functional annotation tool is used to convert genes into encoded
proteins. Pathway mapping and unification (Step 5) refine the
results as the final outputs, the ICAM1-associated pathways.
Through the framework, single-cell omics data and multiple
knowledge bases are integrated, which allows the inference of
gene networks containing the components absent from the
current COVID-19 Disease Map.

2.2 Gene network inference and pathway
construction

In this subsection, explanations for each step of the framework
are provided.

2.2.1 Step 1: Single-cell omics data analysis
Single-cell omics data analysis adopts a combination of the

standard methods defined as three subroutines,
i.e., dimensionality reduction, clustering, and Wilcoxon rank-sum
test, for each gene pair and each cell pair (Li et al., 2017). This step
can extract COVID-19-specific DEGs and ICAM1-associated DCGs
from the omics data.

2.2.1.1 Dimensionality reduction
Dimensionality reduction is executed after the imputation of

zeros representing either technically missing data or biologically
absent genes within a matrix of single-cell omics data (Hicks et al.,
2018). To reduce dimensionality, we employ two methods: principal
component analysis (PCA) and uniform manifold approximation
and projection (UMAP). These methods detect possible batch effects
and embed the matrix in the latent space. By computing 50 PCA
coordinates on the sparse matrix for mean centering (Pedregosa
et al., 2011), eigenvalues, and eigenvectors with the singular value
decomposition solver ARPACK (ARnoldi PACKage) (Lehoucq
et al., 1998), PCA reduces the dimension to 100 by a Gaussian
kernel. Given the 50 decomposed coordinates, the connectivities
(weighted adjacency matrix) of the k-nearest neighborhood graph

FIGURE 1
Schematic representation of the framework. Step 1: single-cell omics data analysis. Step 2: undirected graphical model construction. Step 3: model
corroboration and validation. Step 4: gene-to-protein conversion. Step 5: pathway mapping and unification. The circuits are subpathways transmitting a
signal from input receptor nodes to output effector nodes, where the nodes mostly represent proteins such as metabolic enzymes. QC: quality control;
DR: dimensionality reduction; CL: clustering; WX: Wilcoxon rank-sum test; DEGs: differentially expressed genes; DCGs: differentially coexpressed
genes. See also DOI: 10.6084/m9.figshare.18095717.
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are computed and thresholded at the closest neighbors defined for
data points of the manifold in Euclidean space. Following PCA,
UMAP (McInnes and Healy, 2018) projects the data points onto the
two-dimensional latent space.

2.2.1.2 Clustering
Afterward, clustering is enforced to classify data points in the

latent space into subgroups by similarity measurements and filtering
out the genes unassociated with the gene of interest. The Louvain
algorithm, a greedy optimization of local modularity to detect the
groups (Blondel et al., 2008), is applied for clustering. Clustering
allows obtaining the data points of subgroups with similar gene
expression profiles.

2.2.1.3 Wilcoxon rank-sum test
The Wilcoxon rank-sum test is conducted to sort the data

points and select the top 200 data points within a cluster. This test
compares the signal values between each subgroup and the
combination of the other subgroups using the
Benjamini–Hochberg method for adjusting the false discovery
rate and correcting the p-value (Benjamini and Hochberg, 1995).
The comparison allows us to detect significant differences in
expression levels between COVID-19-positive and COVID-19-
negative patients and rank the genes characteristic of each
subgroup.

The aforementioned analysis, including dimensionality
reduction, clustering, and Wilcoxon rank-sum test, is conducted
for each gene pair and each cell pair. Genewise analysis filters the
DEGs to distinguish those whose gene expression levels are
correlated. Here, given that functionally related genes are
coexpressed in the same clusters, the identified gene clusters can
be considered to include the genes with significant differences in
expression levels from the negative control, and the genes within the
same cluster share a common differential expression pattern (Eisen
et al., 1999). Likewise, cellwise analysis filters the DCGs to classify all
the cells into cell clusters based on the correlation coefficients as
similarity measurements for embedding, whichmeans that the genes
within the same cell cluster are more strongly correlated with each
other than with the genes in other clusters. Constraining the DCGs
with the gene of interest, ICAM1, provides a subset of DCGs
correlated with ICAM1.

2.2.2 Step 2: Undirected graphical model
construction

Next, we infer gene networks from ICAM1’s DCGs obtained by
the single-cell omics data analysis. The gene networks are inferred as
undirected graphical models with a partial correlation method,
displaying de novo-produced direct linear associations (de la
Fuente et al., 2004). Considering that correlated gene pairs are
coexpressed with similar functions, designating any gene pair as
nodes and the correlation coefficient of gene expression levels as
edges forms the simple correlation networks of ICAM1’s DCGs.
Calculating the second-order partial correlation coefficients between
all gene pairs and removing the edges of the gene pairs with zero
partial correlation coefficients for any combination yield undirected
graphical models without spurious correlations (Zuo et al., 2014).

The equations for the zero-order, first-order, and second-order
partial correlations are shown in Eqs 1, 2, 3, respectively.

Zero–order correlation: rxy � cov xy( )�����������
var x( )var y( )√ , (1)

First–order partial correlation: rxy,z � rxy − rxzryz���������������
1 − r2xz( ) 1 − r2yz( )√ , (2)

Second–order partial correlation: rxy,zq � rxy,z − rxq,zryq,z�����������������
1 − r2xq,z( ) 1 − r2yq,z( )√ .

(3)

The random variables denoted by x, y, z, and q represent the gene
names. rxy is Pearson’s correlation coefficient between the gene
expression-level vector running over all the cells of any gene x and
that of any gene y. The simple correlation network starts by
connecting x and y if and only if rxy ≠ 0. Undirected graphical
modeling removes the linear effect of all the second-order partial
correlation coefficients rxy,zq between two variables (x, y) conditional
on all other variables. The edge is weighted as (0.5 + 0.5 · rx,y)12 to
follow the scale-free law, which typically holds for a weighted gene
coexpression network (WGCN) (Langfelder and Horvath, 2008).

2.2.3 Step 3: Model corroboration and validation
Until the previous data analysis, gene networks consisting of the

ICAM1 gene of interest are inferred without guaranteeing the
validity of each edge. Namely, possible errors within data, such
as noise, could result in nodes or edges with no biological meaning.
Hence, the models require corroboration and validation with
heuristics based on domain knowledge. To corroborate and
validate each relationship of gene networks, we query multiple
knowledge bases, including Pathway Commons Web Service 12
(Rodchenkov et al., 2020), BioGRID REST Web Service (Stark et al.,
2006), and STRING version 11.5 (Szklarczyk et al., 2019). Pathway
Commons’ application programming interface (API) provides
access to the significant pathway databases Reactome,
PANTHER, HumanCyc, BIND, and MSigDB. BioGRID is used
as a complementary source of the latest knowledge since Pathway
Commons is not up-to-date (Wadi et al., 2016). HumanCyc is used
because it has richer information on biochemical reactions and
regulatory relationships than the KEGG pathways alone (Altman
et al., 2013) and enables the obtained model to include more
information than a subset of the KEGG pathways. STRING is
used for annotations of functional or physical interactions
between the queried proteins. Fetching relations between gene
pairs in the simple interaction format (SIF) through these
knowledge bases enables us to convert a subset of undirected
edges to directed edges, thereby editing undirected graphical
models as dependency graphs.

The subsequent two steps are dedicated to the pathway
construction by overlaying the inferred DD-KB gene networks
onto the KEGG pathways.

2.2.4 Step 4: Gene-to-protein conversion
There exists a gap between the gene network and the KEGG

pathways because the nodes of the DD-KB gene networks are DCGs
(genes), while the nodes of the KEGG pathways are primarily
proteins. Therefore, this gap needs to be filled before overlaying
the DD-KB gene networks onto the KEGG pathways. The DAVID
functional annotation tool 6.8 (Huang et al., 2009b; Huang et al.,
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2009a) allows us to fill the gap by converting gene symbols into
Entrez IDs. We apply the DAVID tools to the node lists of the DD-
KB gene networks to give the corresponding protein attributes for
each DCG.

2.2.5 Step 5: Pathway mapping and unification
In order to examine what types of pathways are activated, we

conduct pathway enrichment analysis by mapping the protein node
lists and edge lists of the DD-KB gene networks onto the KEGG
pathways. In particular, the DD-KB gene networks and the KEGG
pathways in the KEGG Markup Language (KGML) format are
unified using Cytoscape 3.9.0 (Shannon et al., 2003), resulting in
the final COVID-19-specific ICAM1-associated pathways, visualized
in yFiles Hierarchical Layout.

2.3 Application

We applied the aforementioned framework to the two COVID-
19 datasets for comparing the ICAM1-associated pathways between
different locations where ICAM1 is expressed (case study 1) and
between different time points starting from hospitalization (case
study 2).

2.3.1 Case study 1: Comparison of ICAM1-
associated pathways between different cell types

Inputting the search term [(COVID-19 OR SARS-CoV-2) AND
gse(entry type)] AND “Homo sapiens” AND h5ad to the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) dataset (Barrett et al., 2013) provided the data.
In case study 1, the data included the gene expression profiles of
bronchoalveolar lavage fluid samples isolated from 10 patients with
severe COVID-19 and two negative controls via high-throughput

single-cell RNA sequencing (Grant et al., 2021). Especially, we used
the data of messenger ribonucleic acid (mRNA) expression levels
from four antigen-presenting cell types in which virus particles were
detectable. The single-cell omics data analysis in the original paper
had already annotated the cell types, cell subpopulation partitioning
the cell heterogeneity into non-overlapping classes, for clusters
according to the reference biomarkers present in the cluster (Duò
et al., 2018). The cell types included infected alveolar type 1 and
2 cells (infected AT1 and AT2), migratory dendritic cells (migratory
DCs), tissue-resident alveolar macrophage type 2 (TRAM2), and
monocyte-derived alveolar macrophage type 2 (MoAM2), as well as
the summation of these four cell types at the level of full single-cell
resolution (Figure 2).

2.3.2 Case study 2: Comparison of ICAM1-
associated pathways between different time points

Likewise, GSE180578, another transcriptome omics dataset, was
(Cillo et al., 2021) fetched from the NCBI GEO dataset. The omics
data contained 86 samples obtained by single-cell RNA sequencing,
including peripheral blood from COVID-19 patients or negative
control at the intensive care unit (ICU) of the University of
Pittsburgh Medical Center. These samples included three time
points (days 1, 5, and 10 post-enrollment in the ICU). The cell
counts and gene counts were (34970, 2000), (23616, 2000), and
(32105, 2000).

2.3.3 Additional case studies
Not limited to ICAM1, our framework would be reusable in

another context for mixing quantitative data and domain knowledge
into building models capturing pathways. To allege the generality of
the framework, in case study 2, we also applied the framework to
other genes related to the interaction between cells, including ACTB
and C15orf48. Here, in this main manuscript, we focus only on

FIGURE 2
The cell types for which data were collected. Pulmonary tissue illustrations: created with BioRender.com. See also DOI: 10.6084/m9.figshare.
18095714.
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providing the results of ICAM1-associated pathways considering the
purpose of this study. The results of other genes can be referred to in
the Supplementary Material.

2.4 Quality control

Before proceeding to the further steps, the single-cell omics
data underwent quality control. Quality control included
filtering, scaling, and normalization by Scanpy version 1.8.2
(Wolf et al., 2018). Given the cell quality, we regarded the
cells with overexpressed mitochondrial RNA per data count
tagged by a unique molecular identifier (UMI) (Kivioja et al.,
2012) as dead or broken cells. Similarly, cells with many genes per
data count tagged by UMI were identified as doublets.
Subsequently, the genes detected in fewer than three cells were
filtered out to ensure gene quality. The count data were scaled
with regression on total UMI counts and normalization per
feature based on standard deviation. Normalization of the
gene expression data was adjusted for the RNA composition
bias and allowed a comparison of the values among the cells.
Finally, log-transformation prepared the data for calculating the
log-fold changes reflecting the gene expression difference.

The framework was applied concerning the two datasets. The
machine configuration was as follows: Python 3.7, GPU Tesla V100-
SXM2-16GB, and 51.01 GB of RAM.

3 Results

3.1 Case study 1: ICAM1-associated
pathways at different locations (cell types)

3.1.1 Quality control
The data initially contained 77,650 cells × 24,714 genes.

Removing the cells with a high proportion of mitochondrial
RNA resulted in 15,220 cells. After filtering, the whole dataset
contained 68,734 cells × 24,001 genes. Among this dataset, we
used the data of four cell types, 21,819 genes in the SARS-CoV-2-
infected 15,481 cells (cells with SARS-CoV-2 transcripts
detected). The doublet discrimination provided 14,723 cells.
The filtering processes excluded 8,916 cells with more than
5,000 expressed genes, 700 genes detected in fewer than three
cells, mitochondrially encoded genes, and cells with a low
percentage (< 10%) of mitochondrial genes, leaving
17,644 genes. Cells with less than one gene count were filtered
out, leaving 9,050 cells. The quality control ultimately yielded
log-transformed normalized gene expression data for 9,050 cells
× 17,644 genes.

3.1.2 Single-cell omics data analysis
The genewise analysis extracted the 18 gene clusters with

differential expression patterns specific to COVID-19. Excluding
the duplicated genes extracted 1,434 DEGs in 9,050 single cells. The
results of genewise clustering, heatmap of DEGs, and rank-sum test
are shown in Supplementary Figures S1–S3, respectively. The
cellwise analysis yielded 11 clusters based on the correlations
between gene pairs in the embedded space and distinguished the

DEGs whose gene expression levels were correlated. One of the
11 clusters included ICAM1, and this cluster was made of
178 ICAM1’s DCGs. The results of cellwise clustering, heatmap
of DCGs, and rank-sum test are shown in Supplementary Figures
S4–S6, respectively. The entire list of DEGs and DCGs can be found
in Supplementary Tables S1, S2, respectively. Supplementary Table
S1 is a hash table of DEGs, including the cluster number, gene name
string, log fold change, and p-values, while Supplementary Table S2
is a hash table of DCGs, including gene expression levels for each
single cell. The p-values of ICAM1 expression variation and the
computation times (sec.) for each cell type are as follows: p = 0.250,
time = 51.6 (infected AT1 and AT2); p = 2.50E-4, time = 26.1
(migratory DC); p = 2.57E-12, time = 46.6 (TRAM2); p = 7.55E-2,
time = 109.0 (MoAM2); and p = 0.241, time = 178.9 (summation).

3.1.3 Undirected graphical model construction
Removal of spurious correlations yielded undirected graphical

models (Table 1). The finally obtained undirected graphical models
are shown in Supplementary Figure S7.

3.1.4 Model corroboration and validation
Dependency graphs are shown in Supplementary Figure S8. The

entire list of relationships of dependency graphs with knowledge
bases used for model validation can be found in Supplementary
Table S3.

3.1.5 Gene-to-protein conversion
The nodes in the dependency graphs were annotated with

protein names, which helped us map the nodes onto the KEGG
pathways in the next step.

3.1.6 Pathway mapping and unification
Pathway mapping discovered which subpathways within

existing signaling pathways reflect the activity of a group of
varying genes and coexpressed in a disease-specific manner in
the observed gene expression data. Table 2 shows the typical
pathways selected from the mapping results. A complete list of
mapping results is shown in Supplementary Figure S9.

The final COVID-19-specific ICAM1-associated pathways for
each cell type are shown in Figure 3. Although pathway mapping
was performed by converting gene symbols to protein IDs before
mapping, the nodes of pathways in the figure are assigned only
gene symbol names for space limitation. For the ICAM1-
associated pathway for infected AT1 and AT2 (Figure 3A),
there are no hits among the KEGG pathways, which is
attributed to only one pair of validated ICAM1-associated
DCGs that remained.

The characteristics common to the obtained pathways and the
characteristics of those pathways for each cell type are as follows: one
common feature of the pathways for all other cell types except
Figure 3A is the presence of some integrins, such as ITGAL (gene
encoding CD11a; also known as LFA1A) (Figures 3B–E), ITGAX
(gene encoding CD11c) (Figure 3D), ITGB2 (gene encoding CD18)
(Figure 3D), and ITGA4 (gene encoding CD49d) (Figure 3E). Some
integrins are downstream, such as ACTB (gene encoding β-actin) in
the pathway for migratory DCs (Figure 3B) and DCTN1 (gene
encoding dynactin subunit 1) in the pathway for MoAM2
(Figure 3D). Integrins are molecules interacting with ICAM-1 to
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stabilize cell adhesion. Especially, dynactin recruits and tethers
dynein to microtubules.

Another common feature of the pathways for all other cell
types except Figure 3A is the presence of the molecules
responsible for NF-κB pathways, such as NFKB1 (gene
encoding NF-κB p105 subunit 1), NFKB2 (gene encoding NF-
κB p105 subunit 2), RELA (gene encoding NF-κB p65 subunit),
JUN (Jun proto-oncogene; also known as AP-1 transcription
factor subunit), and CHUK (gene encoding inhibitor of nuclear
factor κ-B kinase subunit α; also known as IKK-α) (Figures
3B–E). These molecules are not DCGs but nodes in the KEGG
pathway, but they are located upstream of ICAM1 and flanked
by DCGs.

As the specific features of some pathways, the pathway for
migratory DCs (Figure 3B) and summation (Figure 3E) includes
RELB (gene encoding transcription factor RelB). In general,
NFKB2 and RELB lie in the non-canonical NF-κB pathway,
which is an upstream pathway of ICAM1 (Liu et al., 2019). The
pathway for migratory DCs (Figure 3B) also includes TNFRSF11A
(gene encoding receptor activator of NF-κB; also known as RANK)
and MAP3K14 (gene encoding NF-κB-inducing kinase; also known
as NIK). These molecules are known as triggers of the non-canonical
NF-κB pathway (Malinin et al., 1997).

The pathway for summation (Figure 3E) has some
commonalities with other pathways, such as integrins and
molecules related to the NF-κB pathway, but it also has some
differences. SOD2 (gene encoding superoxide dismutase 2), for
example, is a gene that is not found in the other pathways and
could not be found without taking summation. SOD2 is known as a
gene whose expression variation has been confirmed accompanied
with ICAM1 in COVID-19 (Zheng et al., 2021).

3.2 Case study 2: ICAM1-associated
pathways at different time points

Like case study 1, the original dataset underwent single-cell
omics data analysis, and ICAM1 and its DCGs were extracted. The
p-values of ICAM1 expression variation and the computation times
(sec.) for each time point were as follows: p = 1.50E-05, time = 77.9
(day 1); p = 3.09E-2, time = 55.4 (day 5); and p = 3.04E-06, time =
56.3 (day 10). This manuscript does not explain the other detailed
results of the single-cell omics data analysis because the procedures
were the same as that in case study 1. These other results can be
found at 10.6084/m9.figshare.23590755. As for the remaining steps,
we explain the results of spurious correlation removal and pathway
construction.

3.2.1 Undirected graphical model construction
Table 3 depicts how spurious correlated edges were removed for

each of the three time points. Of the number of edges in the simple
correlation network (full model), more than 84% of the edges were
deleted by calculating the second-order partial correlation
coefficients.

3.2.2 Pathway mapping and unification
The pathways resulting from combining the KEGG pathways

with the partial correlation networks of ICAM1-associated DCGs
extracted from the omics data are shown in Figure 4.

The common characteristics and the unique attributes of the
found pathways for each time point are as follows: one common
feature is the presence of molecules responsible for the immune
response included across the three time points. The immunoreactive
molecules include the chemokine ligand (CXCL1, 2, 3) induced by

TABLE 1 Spurious correlation removal in case study 1.

Cell types Nodes Edges (full) Edges (excluded) Edges (output)

Infected AT1 and AT2 116 6670 (100%) 6296 (94%) 374 (6%)

Migratory DCs 248 30628 (100%) 28695 (94%) 1933 (6%)

TRAM2 150 11175 (100%) 8690 (78%) 2485 (22%)

MoAM2 152 11476 (100%) 7819 (68%) 3657 (32%)

Summation 179 15931 (100%) 12529 (79%) 3402 (21%)

The table depicts the number of nodes, the number of edges in the simple correlation network (full model), the number of spurious edges removed by calculating the second-order partial

correlation coefficients, and the number of ultimately left edges.

TABLE 2 Mapping results of the dependency graphs for each cell type onto the KEGG pathways.

Cell types Scores Matched KEGG pathways

Infected AT1 and AT2 0 genes (no match)

Migratory DCs 40 genes (63.5% match) NF-κB signaling pathway (hsa04064) (12) and HTLV-1 infection (hsa05166) (9)

TRAM2 23 genes (65.7% match) Influenza A (hsa05164) (13) and HTLV-1 infection (hsa05166) (5)

MoAM2 31 genes (54.4% match) NF-κB signaling pathway (hsa04064) (3)

Summation 18 genes (64.3% match) TNF signaling pathway (hsa04668) (3) and NF-κB signaling pathway (hsa04064) (3)

Scores count the “matched” genes on the dependency graphs, whose encoding proteins are found on any of the KEGG pathways and their proportion to total gene counts. Matched KEGG

pathways exemplify howmanymatched genes are included in a specific pathway. For example, if gene x’s encoded proteinX is on KEGG pathways A and B, one is added to the score, and both A

and B are represented.

Frontiers in Genetics frontiersin.org07

Odaka et al. 10.3389/fgene.2023.1250545

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250545


interleukin-1 (IL1B) or TNF-α-induced protein 6 (TNFAIP6). These
molecules are along the green-colored molecules, such as the NF-κB
p105 subunit (NFKB1) and NLRP3 inflammasome (NLRP3,
PYCARD, and CASP1), which are related to proinflammatory
effects and activation of the NF-κB pathway or the MAPK
pathway (Bouwmeester et al., 2004). Other common molecules

include the modulator of cytochrome C oxidase during
inflammation (C15orf48), chemokine ligands acting as
macrophage inflammatory protein (CCL3 and CCL3L1),
transmembrane protein (TMEM176A/B), nuclear factor erythroid
(NFE2), peptidyl arginine deiminase 4 (PADI4), RAS oncogene
(RAB20), and proto-oncogene (ETS2). These are also related to

FIGURE 3
ICAM1-associated pathways at different locations (cell types). (A): No pathway available (infected alveolar type 1 and 2 cells); (B): NF-κB/non-
canonical NF-κB/integrin pathway putative (migratory dendritic cells); (C): NF-κB/integrin pathway putative (tissue-resident alveolar macrophages); (D):
NF-κB/integrin pathway putative (monocyte-derived alveolar macrophages); (E): TNF/NF-κB/non-canonical NF-κB/integrin pathway putative
(summation). The rectangular nodes colored blue, yellow, and lime green reflect the proteins only on the dependency graphs, the proteins common
to both the dependency graphs and the KEGG pathways, and the proteins only on the KEGG pathways, respectively. Gray lines are the directed or
undirected edges only on the dependency graphs. Orange lines represent the directed or undirected edges between yellow nodes on the dependency
graphs. Green lines are the directed edges only on the KEGG pathways. Orange edges do not have direction if the KEGG pathways indirectly connect its
yellow node pair. See also DOI: 10.6084/m9.figshare.17261540.

TABLE 3 Spurious correlation removal in case study 2.

Day Nodes Edges (full) Edges (excluded) Edges (output)

1 121 7,503 (100%) 6,309 (84%) 1,194 (16%)

5 198 20,706 (100%) 18,914 (91%) 1,792 (9%)

10 126 8,001 (100%) 6,748 (84%) 1,253 (16%)
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inflammation, immune response, or membrane fusion (Pylayeva-
Gupta et al., 2011; Gold et al., 2012; Tanikawa et al., 2012; Lee et al.,
2021).

As the specific features of two pathways, the pathways at days
1 and 5 include pleckstrin homology-like domain family A member
2 (PHLDA2) and chemokine ligand (CXCL5) (Figures 4A, B). The
pathways at days 5 and 10 include chemokine ligands acting as
macrophage inflammatory protein (CCL4L2) (Figures 4B, C). The
pathways at days 1 and 10 include folate receptor (FOLR3),
haptoglobin (HP), and chemokine ligand (CXCL16) (Figures
4A–C). These are related to acute inflammatory response,
immunity, or membrane attachment (Palomino and Marti, 2015;
Cohen et al., 2020; Duan et al., 2022).

The obtained pathways do not contain the molecules in the NF-
κB pathway (NFKB1, NFKBIA, and CHUK) or the MAPK pathway
(HRAS, RAF1, and MAP2K7). The absence of these molecules may
be due to insufficient gene coverage in the original omics data.

4 Discussion

4.1 ICAM1-associated pathways from case
studies

The comparison between the obtained ICAM1-associated pathways
in case study 1 with the COVID-19 Disease Map reveals existing and
unknown nodes. For example, MAP2K3, MAPK14, JUN, FOS, ITGA2,

ITGB1, RSAD2, OAS, and STAT2 have already been mapped onto the
COVID-19 Disease Map, while RELB, ITGAL, CDC42, ACTB, CD40,
DCTN1, BCL3, and CD83 in the obtained pathways are still absent in
the current COVID-19 Disease Map.

Likewise, we can identify the difference between the obtained
ICAM1-associated pathways and the current COVID-19 Disease
Map from the results of case study 2. For instance, IL1B, NFKB1,
NLRP3, PYCARD, and CASP1 are listed in the COVID-19 Disease
Map, while there are molecules absent from it, including CCL3, 3L1,
4L2, CXCL1, 2, 3, 5, 16, TNFAIP6, C15orf48, TMEM176A/B, NFE2,
PADI4, RAB20, ETS2, PHLDA2, FOLR3, and HP.

The results from both case studies indicated that the NF-κB
pathway would likely be activated, which reflects that our framework
can reproduce the already-known fact that the NF-κB pathway is
activated in COVID-19, as seen in the KEGG’s COVID-19 pathway
(hsa05171). As a new insight into the unknown pathways is missing
from the current COVID-19 Disease Map, the results imply that
COVID-19 involves the following two up/downstream pathways:

• Upstream pathway with proteins on the non-canonical NF-κB
pathway

• Downstream pathway with integrins and cytoskeletal elements
associated with actin and the motor protein dynein for cell
transformation

The non-canonical NF-κB pathway is reasonable because it is
relevant to the proinflammatory response in viral infections such

FIGURE 4
ICAM1-associated pathways at different time points. (A)NF-κB/MAPK pathway putative (day 1). (B)NF-κB/MAPK pathway putative (day 5). (C)NF-κB/
MAPK pathway putative (day 10). The light yellow, green, and orange nodes represent data-driven DCGs, the genes listed only in the KEGG pathways, and
the genes derived from both data and the KEGG pathways, respectively. The directed edges are the edges whose directions are given in the KEGG
pathways. See this figure for a larger view in figshare: 10.6084/m9.figshare.23576226.

Frontiers in Genetics frontiersin.org09

Odaka et al. 10.3389/fgene.2023.1250545

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250545


as COVID-19. It is also creditable that TNFRSF11A is found only
in the pathway of DCs (Figure 3B) since TNFRSF11A is known to
be expressed on DCs and T cells to facilitate their interaction with
each other (Anderson et al., 1997). The involvement of
downstream pathways leading to the cytoskeleton (the internal
filaments of eukaryotic cells), including actin filaments and
microtubules, in COVID-19 is also plausible. After the
interaction between ICAM-1 and integrin regulates cell
adhesion, the motor protein myosin would move on actin
filaments, inducing cell transformation and movement. The
motor protein dynein would move on microtubules
transporting molecules in the cytoplasm to the MTOC. Given
the argument mentioned in the Introduction that MTOC or VS
spawned by ICAM-1 causes cell-to-cell transmission in HIV-1 or
HTLV-1, the existence of these downstream molecules of
ICAM1-associated pathways raises the possibility of pathways
involved in the formation of MTOC or VS in SARS-CoV-2. In
this study, the Ras-Raf-MEK-ERK pathway for MTOC or VS in
HTLV-1 was inactive. Meanwhile, RAC1 and CDC42 were
conserved. Ras-related C3 botulinus toxin substrate 1 (Rac1,
encoded by RAC1) and cell division control protein
42 homolog (Cdc42, encoded by CDC42) are essential for VS
formation in HTLV-1 cells (Gross and Thoma-Kress, 2016).
Although it is unclear whether SARS-CoV-2 has a VS
formation mechanism analogous to that of HIV-1 or HTLV-1,
we cannot rule out the possibility that MTOC formation and VS
formation never occur. To verify these inferred phenomena,
observing MTOC and VS formation through infection
experiments or molecular dynamics tracking using high-end
live-cell imaging techniques (Real et al., 2018) would be desirable.

4.2 Related work

The need to identify unknown pathways has accelerated the
work related to gene network inference in COVID-19. For
example, Hasankhani et al. (2021) obtained signaling pathways
associated with the main hallmarks of COVID-19 by differential
coexpression network analysis. Tanaka et al. (2021) revealed host
cellular gene networks by using the Bayesian network. Generally,
several methods for gene network inference from single-cell
omics data exist, which can be classified into data-driven and
knowledge-based methods. Data-driven gene network inference
methods include statistical approaches such as regression,
mutual information, correlation, and a combination of
different techniques (Marbach et al., 2012; Mochida et al.,
2018). Alternatively, knowledge-based gene network inference
uses prior knowledge for information retrieval or logic
programming. Fabris et al. quantified the influence by creating
interpretable KEGG feature types for the hierarchical
classification of aging-related protein functions (Fabris and
Freitas, 2016). Chen et al. provided the biological relevance by
analyzing the Gene Ontology terms and KEGG pathways of each
drug category enriched in the literature and clinical trials for
predicting the drug–target interaction (Chen et al., 2015). There
also exist hybrid methods incorporating data-driven and
knowledge-based methods. Soh et al. enumerated the minimal
network components by adopting a Boolean satisfiability

problem (SAT) solver for KEGG pathways (Soh et al., 2012).
Zuo et al. integrated information at gene expression and network
topology levels by differentially weighted graphical LASSO (Zuo
et al., 2017). However, full-scale integration of data-driven and
knowledge-based methods is still under development for gene
network inference. Our method favors this development by
extending the correlation network by integrating data and
knowledge. Especially, two-step extraction of DCGs in Step 1,
narrowing down DCGs after filtering DEGs, is a mixture of
detecting the significant differences in the gene expression
levels and checking the pairwise correlation between gene
pairs. This extraction is substitutive to other methods for
extracting DCGs, such as WGCNA or gene set net correlation
analysis (GSNCA) (Rahmatallah et al., 2014).

4.3 Concluding remarks

As a summary of contributions, this study discovered novel
ICAM1-associated pathways currently absent from the COVID-19
Disease Map. While previous analysis or curation work found the
canonical NF-κB pathway (Fujisawa et al., 2021), the non-canonical
pathways were not known to be involved in the COVID-19 Disease
Map. The discovered pathways suggested the existence of unknown
pathways in the map, an upstream non-canonical NF-κB pathway,
and a downstream pathway that may lead to MTOC formation
subject to observation.

In addition to the scientific findings, our framework, which
integrates single-cell omics data analysis and model validation using
multiple knowledge bases, is also original and versatile. Especially
single-cell omics data analysis in Step 1 and model validation by
multiple knowledge bases in Step 3 are realized to construct
pathways in different cases (See also Supplementary Material).
For these reasons, our work would contribute to a remarkable
development in the DD-KB gene network inference methods.

The existence of undirected edges within the final pathways would
be a limitation of our framework. These edges without direction arise
from correlation networks that find direct and indirect relationships but
do not distinguish between causality and correlation (Opgen-Rhein and
Strimmer, 2007). Ourmethodology requires its extension to infer causal
directions of the edges.

Consequently, future work will include the following two tasks:
one is to infer causal networks based on data and knowledge via
Bayesian networks or other observational causal discovery
techniques (Pearl, 2000). The other is to analyze the obtained
pathways for verifying or modifying them in terms of dynamics.
For example, modeling and simulation of differential equations
based on state transitions would help us comprehend the
dynamics (Odaka and Inoue, 2020). Otherwise, the perturbation
experiments can simulate the intervention effects on dynamics by
explicitly using direct transcription factor knockout or
overexpression (Loucera et al., 2020). Indeed, such a study has
significantly improved prediction accuracy for downstream targets
(Noh et al., 2018).

Overall, the ICAM1-associated pathways constructed from the
data and knowledge in this study will expedite the repair and
completion of the COVID-19 Disease Map for a deeper
understanding of SARS-CoV-2 pathogenesis.
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