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Introduction: The objective of this study is to investigate the interaction between
Candida albicans and human proteins during oral candidiasis, with the aim of
identifying pathways through which the pathogen subverts host cells.

Methods: A comprehensive list of interactions between human proteins and C.
albicanswas obtained from the Human Protein Interaction Database using specific
screening criteria. Then, the genes that exhibit differential expression during oral
candidiasis inC. albicansweremappedwith the list of human–Candida interactions
to identify the correspondinghost proteins. The identifiedhost proteinswere further
compared with proteins specific to the tongue, resulting in a final list of 99 host
proteins implicated in oral candidiasis. The interactions between host proteins and
C. albicans proteins were analyzed using the STRING database, enabling the
construction of protein–protein interaction networks. Similarly, the gene
regulatory network of Candida proteins was reconstructed using data from the
PathoYeastract and STRING databases. Core module proteins within the targeted
host protein–protein interaction network were identified using ModuLand, a
Cytoscape plugin. The expression levels of the core module proteins under
diseased conditions were assessed using data from the GSE169278 dataset. To
gain insights into the functional characteristics of both host and pathogen proteins,
ontology analysis was conducted using Enrichr and YeastEnrichr, respectively.

Result: The analysis revealed that threeCandida proteins, HHT21, CYP5, and KAR2,
interact with three core host proteins, namely, ING4 (in the DNMT1 module),
SGTA, and TOR1A. These interactions potentially impair the immediate immune
response of the host against the pathogen. Additionally, differential expression
analysis of fungal proteins and their transcription factors in Candida-infected oral
cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate
transcription factors involved in instigating the pathogenesis of oral candidiasis
during host infection.

Conclusion:Our study provides amolecularmap of the host–pathogen interaction
during oral candidiasis, along with potential targets for designing regimens to
overcome oral candidiasis, particularly in immunocompromised individuals.
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GRAPHICAL ABSTRACT

1 Introduction

For decades, the malady of oral candidiasis (OC) or thrush has
been known to occur in people. Up to 95% of cases of OC are caused
by Candida albicans, making it the primary causative agent of the
disease (Vila et al., 2020). Though Candida is readily isolated from
the oral cavity, its simple presence does not predictably result in the
development of an infection as it could remain as a commensal or
transmute into a pathogen. The chance of transition is usually
determined by pre-existing or associated variations in the host
immune system. Candida infections can range from superficial
mucocutaneous illnesses to invasive, disseminated diseases
affecting numerous organs. About 2 million people worldwide
develop oral candidiasis every year (Dufresne et al., 2017).
According to estimates, it affects 88% of AIDS patients
(depending on the immunity status and geographic location) and
nearly 20% of cancer patients (Lalla et al., 2013; Gaitán-Cepeda et al.,
2015). In most cases, it has been observed that intraoral
environmental changes or systemic variables, such as diabetes
mellitus and immunodeficiency, are linked to the organism’s
transition from commensalism to parasitism and ebullient
growth (Patil et al., 2015). These predisposing conditions increase
the infection probability by many folds. Basically, C. albicans is a
dimorphic fungus, i.e., it can exist in both yeast and hyphal forms. In
addition to hyphal form transition, biofilm development is now

believed to play a crucial role in OC (Cho et al., 2021). The hyphal
form predominates in pathogenic conditions associated with
virulence, tissue damage, epithelial infiltration, keratinization, and
biofilm formation (Rollenhagen et al., 2009; Richardson et al., 2018).
Subsequent articles have affirmed that Candida pathogenicity in
mucosal candidiasis depends on biofilm formation, which causes
persistent infection, recurrence, and antifungal resistance compared
to planktonic Candida (Cavalheiro and Teixeira, 2018; Wu et al.,
2020). Since the mortality rate with systemic candidiasis is
considerably higher (Akpan and Morgan, 2002; Pappas et al.,
2018), it has enthralled clinicians to investigate its molecular
mechanism of pathogenicity and to improvise newer therapeutic
regimens based on the updated molecular research. C. albicans has
the potential to thrive in different host niches and is considered one
of the common residents of the epithelial mucosa of the oral cavity,
airways, gastrointestinal tract, and genital tract (Dias, 2020; Liu et al.,
2021; Patel, 2022).

Numerous research studies on oral candidiasis and several
mutational studies on the key molecular players of C. albicans
and its interactions with hosts disclosed unique immunological
pathways effective for pathogen clearance. An in vitro study has
shown that the ERG gene plays a pivotal role in triggering tissue
damage that activates certain kinds of molecules such as c-Fos,
mitogen-activated protein kinase 1 (MAPK1), and activating
protein-1 (AP-1). Subsequently, mutation of the related genes
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Erg3 and Erg11 downregulates Als1, Als3, and Sap6, which
facilitates escaping the macrophages and pathogenesis of C.
albicans in the oral mucosa (Dalle et al., 2010; Hebecker
et al., 2014; Zhou et al., 2018). Similarly, it has been reported
that the mouse model of oropharyngeal candidiasis (OPC) has
significantly reduced infectivity in double homozygous deletion
mutants (tec1Δ/Δ, bcr1Δ/Δ, and rob1Δ/Δ) and one heterozygous
mutant (tec1Δ/TEC1) (Solis et al., 2022). Additionally, the
expression of the secreted aspartyl proteinase (SAP) molecule
varies among different niches and was found to be in higher
concentrations in oral candidiasis or vaginitis of HIV-infected
patients (Bernardis et al., 1996). Moreover, during biofilm
development during OC, the transcription factor Bcr1 plays a
vital role, and adhesin proteins such as Hwp1 serves as an
epithelial cell adhesin through the action of mammalian host
transglutaminase, while Hyr1 is necessary for the switch from a
mucosal surface biofilm to epithelial tissue invasion (Staab et al.,
1999; Luo et al., 2010; Dwivedi et al., 2011).

Despite recent breakthroughs in our understanding, there are still
many unanswered questions about the impact of these reportedCandida
genes on the molecular pathophysiology of the host. Therefore, we
required more extensive research on C. albicans interactome molecules,
which directly interact with the host, to better understand the molecular
specifics of C. albicans-mediated pathophysiology and the altered
route by which they counter host defense. For this purpose, a
C. albicans–human protein–protein interaction (CHPPI) network
could assist us in identifying the key virulence-related factors of C.
albicans. This would help enhance ourmechanistic understanding of the
putative molecular interactions and functions that C. albicansmay have
to subvert the host during its infection. Except for few studies,
host–fungal PPI networks remain virtually unknown. For a fungal
disease, identifying virulence factors via the in vivo method and
thoroughly mapping their host protein interactors take a significant
amount of time and effort. In the milieu of this, in silico tools to identify
possible host targets for fungi are essential. Interolog-based predictions
are one of the many computational techniques used to forecast the
pathogen–host interaction network (Remmele et al., 2015; Balkenhol
et al., 2022; Kataria and Kaundal, 2022).

Here, we elucidated the molecular crosstalk between the host
and pathogen protein during oral candidiasis though an integrated
network-based approach. We identified three key transcription
factors (Rob1p, Tec1p, and Ume6) and their downstream genes
(HHT21, CYP5, and KAR2) of Candida which hijack host immune
response via interaction with crucial module core proteins in a
tongue-specific PPIN (tPPIN). We anticipate that analyzing these
interactions will enrich our knowledge about the etiology of fungal
infections and provide an up-to-date insight into the therapeutic
strategies against oral candidiasis.

2 Materials and methods

2.1 Identification of differentially expressed
genes in C. albicans and humans during oral
candidiasis

Pathogenic genes implicated for oral candidiasis were taken
from three research articles (Supplementary Material) (Park et al.,

2009; Liu et al., 2015; Lemberg et al., 2022) in which C. albicans was
cultivated in three oral cell lines. We retrieved 59, 34, and
873 differentially expressed genes (DEGs) of C. albicans from the
FaDu cell line GSE5340 (Park et al., 2009), OKF6/TRET cell line
GS56093 (Liu et al., 2015), and oral keratinocyte cell line (Lemberg
et al., 2022), respectively. We prepared an exhaustive list of
948 pathogenic genes (Supplementary Table S1). To obtain host
DEGs, we sourced data from two oral squamous cell carcinoma
(OSCC) cell lines, namely, HO-N1-1 and HSC, which had been
infected with C. albicans. These data were extracted from
Supplementary Material of GSE169728 (Vadovics et al., 2022).
We made an exhaustive list of 6,806 significant human DEGs
(Supplementary Table S2).

2.2 Reconstruction of the pathogen
protein–protein interaction network and
gene regulatory network in C. albicans

We used STRING v11.5 (Szklarczyk et al., 2019) to build
protein–protein interaction networks with the 948 DEGs of C.
albicans. These networks contain only physical interactions with a
cut-off of interaction confidence score ≥ 0.4. The pPPIN was observed
to consist of 559 nodes and 4,167 edges (Supplementary Figure S1). We
used Cytoscape 3.9.1 (Shannon et al., 2003) to visualize the networks.
Furthermore, we also utilized PathoYeastract (Monteiro et al., 2020)
databases for predicting TF–target gene (TG) interactions of 559 nodes
of the pPPIN under biofilm-forming environmental conditions. The
PathoYeastract database contains experimentally validated (RNA-
seq—WT vs. TF mutant, microarray WT vs. TF mutant; chip on
chip, ChIP) TF–TG association data (Monteiro et al., 2020). For the
extraction of TF–TF interaction, we also used the PathoYeastract
(Monteiro et al., 2020) database under biofilm-forming conditions.
For TG–TG interaction, we used STRINGv11.5 (Szklarczyk et al., 2020)
with a cut-off of interaction confidence score ≥ 0.4. We obtained a gene
regulatory network (GRN) with 9 TFs and 287 TGs (Supplementary
Figure S2).

2.3 Discerning host–pathogen interaction
based on the interolog approach

For constructing a cross-species interaction network, we extracted
the whole-genome sequence of C. albicans from Ensembl Fungi
(Yates et al., 2021) by choosing the Ensembl Fungi Genes
55 database. Since there is a paucity of confirmed experimental
data on protein–protein interactions between C. albicans and host
proteins in the context of oral candidiasis owing to the time-
consuming and resource-intensive experimental techniques, we
were constrained to utilize a prediction-based technique. Although
many studies employed protein structure-based predictions to infer
host–pathogen protein interactions (Mariano and Wuchty, 2017),
this approach cannot assure the discovery of a significant similarity
between proteins from pathogens and those with known structures.
Thus, to predict through the best possible way, we chose HPIDB 3.0
(Ammari et al., 2016) that aids the annotation, prediction, and
visualization of host–pathogen interactions (HPIs) by retrieving all
experimentally established pathogen–host PPI data (Ammari et al.,
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2016). Moreover, this technique was widely used in various research
articles to envision the host–pathogen interaction, e.g., Leptospira
interrogans and Homo sapiens (Kumar et al., 2019), Burkholderia
pseudomallei and Homo sapiens (Loaiza et al., 2020), and Klebsiella
pneumoniae andHomo sapiens (Saha and Kundu, 2021). We initially
entered the sequences of C. albicans in FASTA format in the HPIDB
3.0. Only those PPIs inferred from experiments such as Y2H, co-
immuno-precipitation, and other experimentally robust protocols
were considered the template for predicting human–C. albicans
PPIs. Since false positive interaction is routinely produced using
interolog PPI prediction algorithms, to decrease the retention of
false positives in our dataset, we applied a two-step procedure.
First, we refine the BLAST alignments and generated random sets
of sequence identity, e-value, and sequence coverage combinations,
i.e., sequence identity (30%, 40%, 50%, and 60%), e-value (1 × 10−4,
1 × 10−5, 1 × 10−10, 1 × 10−20, and 1 × 10−25), and sequence coverage
(40%, 50%, 60%, 80%, and 90%). Next, we chose the combination
with sequence identity ≥ 50%, e-value ≤ 1 × 10−10, and coverage ≥ 90%
for interolog detection as it conferred an optimal number of
interactions. Other combinations provided either profuse or trivial
interactions which were not suitable for our downstream analysis.
Furthermore, we noticed that these screening criteria had also been
utilized as the best reciprocal blast hit criteria for deducing
human–Klebsiella pneumoniae interaction (Saha and Kundu,
2021). Subsequently, considering these stringent criteria, we
retrieved 822 interactions, consisting of 412 C. albicans and
353 human nodes. Second, we used GO functional similarity
enrichment analysis to remove any remaining false positive
interolog pairs between the host and pathogen (Saha and Kundu,
2021). We extracted the GO functional annotation of Homo sapiens
(host) and C. albicans from the Ensembl database(Yates et al., 2021)
and Ensembl Fungi database (Cunningham et al., 2021), respectively.
We classified a pair of homologs to be functionally comparable if they
shared at least one GO term. We performed the GO functional
similarity enrichment analysis using an in-house perl script and
received 119 host proteins interacting with 317 C. albicans
proteins, constituting 432 interactions (Supplementary Table S3).

2.4 Constructing a tongue specific protein-
protein interaction network (tPPIN) in
humans

For the elucidation of the target network of C. albicans, we
extracted 3,888 genes expressed in the adult tongue from Expression
Atlas (Mabbott et al., 2013) with TPM value ≥ 11. Then, we
reconstructed a tPPIN (Supplementary Figure S3) in stringApp
in Cytoscape plugin v3.9.1 (Shannon et al., 2003) by considering
physical interaction and a cut-off score of interaction confidence
score ≥ 0.4.

2.5 Identification of core module genes in
the sub-tPPIN

We executed amodule analysis by usingModuLand (Palotai et al.,
2012), Cytoscape plugin v3.9.1 (Assenov et al., 2008). ModuLand
helps in determining essential network positions (such as module

cores and bridges), physiologically significant groupings, module
cores that aid in the identification of biological functions, and
inter-modular nodes that play an important role in a range of
biological networks (Rodriguez et al., 2020).

2.6 Ontology analysis of inferred networks

We performed GO biological function and KEGG pathway
enrichment analyses of the DEGs pPPIN and GRN of C. albicans
using YeastEnrichr (Kuleshov et al., 2016) (Supplementary Table S4).
GO biological function and Reactome pathway enrichment analyses
for human proteins were performed by using Enrichr (Xie et al., 2021)
(Supplementary Table S5). YeastEnrichr and Enrichr are web-based
enrichment analysis applications that provide a complete range of
functional and pathway annotation tools to assist researchers in
comprehending the biological importance of lengthy gene lists
(Kuleshov et al., 2016; Xie et al., 2021). We considered those GO
biological and pathway enrichment terms having adj. p value < 0.05.

2.7 Graphical plots

The graphical plots were prepared using Cytoscape 3.9.1
(Shannon et al., 2003; Assenov et al., 2008) and R v4.2.2.

3 Results

3.1 Reconstruction of a pathogenic network
of C. albicans during oral candidiasis

In the oral cavity of healthy humans, C. albicans is commonly
established as a normal commensal. The host immune system
continuously tracks the growth rate of opportunistic pathogens.
Under stress conditions, they acclimatize themselves by avoiding
host immunological challenges by forming biofilm layers, changing
their morphology, i.e., yeast to hyphal, which is considered a
pathogenic form as well as rapidly growing filamentous form,
assisting the progression of pathogenesis. To explore the
pathogenesis of C. albicans during oral candidiasis, we extracted
DEGs of C. albicans from three literature supplementary datasets in
which C. albicans has infected the FaDu cell line (GSE5340) (Park
et al., 2009), OKF6/TRET cell line (GSE56093) (Liu et al., 2015), and
oral keratinocyte cell line TR146 (Lemberg et al., 2022).We prepared
an exhaustive list of 948 DEGs by taking adj. p value < 0.05 as a cut-
off (Supplementary Table S1). Furthermore, to deduce the relevance
of the DEGs extracted from oral cell lines in our study, we employed
gene ontology enrichment analysis by YeastEnrichr and found that
“cellular response to oxidative stress” (GO:0034599), “cellular
response to glucose starvation” (GO:0042149), and “glutathione
metabolism”-like functions were enriched (Supplementary Table
S4). It was demonstrated that glucose starvation induces the
expression of pathogenic genes responsible for oral candidiasis to
counter the stress (Solis et al., 2023), and in response to oxidative
stress induced in the host during oral candidiasis infection, C.
albicans utilized the glutathione metabolism pathway (Miramón
et al., 2014; Naglik et al., 2017). Moreover, among these DEGs, SAP4,
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SAP5, and SAP6 are proved to be expressed in the oral epithelia
during C. albicans infection in immunocompromised individuals,
such as HIV-positive patients, and absent in commensal vicinity
(Naglik et al., 2008). Moreover, SAP5 was also proven to help in
colonization, penetration, infection, target E-cadherin (a major
protein in epithelial cell junction), and evasion in host tissues
(Naglik et al., 2008; Meylani et al., 2021). These lines of evidence
dictate the robustness of our dataset for pursuing further
downstream analysis.

Next, we reconstructed a pathogenic pPPIN, consisting of
559 nodes and 4,167 edges using the STRING database v11.5
(Supplementary Figure S1) (Szklarczyk et al., 2020).
Consequently, using YeastEnrichr (Kuleshov et al., 2016), we
performed GO biological function enrichment analysis and
observed that “cellular response to oxidative stress” (GO:
0034599), “regulation of response to endoplasmic reticulum
stress” (GO:1905897), and “response to unfolded protein” (GO:
0006986) were enriched in the pPPIN (Supplementary Table S4). In
response to oral candidiasis infection, antimicrobial peptides
(AMPs) such as LL-37 have been released by the host in the oral
cavity to challenge pathogen infection, which creates stress in the
endoplasmic reticulum, unfolding of proteins, and affects cell
adhesion of C. albicans (Tokajuk et al., 2022). In response to
endoplasmic reticulum stress, C. albicans regulates the cell wall
integrity and endoplasmic reticulum (ER) homeostasis (Hsu et al.,
2021) through the Sfp1p protein and aids in oral candidiasis.
Moreover, we also performed KEGG pathway enrichment
analysis and noticed that “autophagy,” “endocytosis,” “arginine
biosynthesis,” “pyruvate metabolism,” and “peroxisome” were
enriched in the pPPIN interacting proteins (Supplementary Table
S4). Previous reports have indicated that pyruvate metabolism serves
as a virulence factor in C. albicans, contributing to localized tissue
ketosis in the host as well as compromising the typical defensive
action of the host raised via neutrophil activation during OPC
(Saeed, 2000; Huppler et al., 2015; Altmeier et al., 2016), while
arginine biosynthesis is implemented by the pathogen for hyphal
formation to escape host phagocytosis aiding in eliminating C.
albicans in the oropharyngeal cavity (Ghosh et al., 2009; Jiménez-
López et al., 2013;Černáková and Rodrigues, 2020). Thus, it could be
inferred from the functional analyses of the pathogenic protein that
they are solely implicated for infection and withstanding the hostile
environment in the host.

Now, in response to environmental cues, the transcriptional
circuit controls gene expression and its regulation. Therefore, the
TFs that regulate the 559 TGs in the pPPIN might play a crucial role
in their TG expression under stress conditions. Thus, we constructed
the GRN (Supplementary Figure S2), which consists of three types of
interactions: TF–TG, TF–TF, and TG–TG. Since it was evidenced
that biofilm development plays a crucial role in oral candidiasis (Cho
et al., 2021), we searched those TFs which control gene expression
during biofilm-forming conditions using the PathoYeastract
database. Finally, we constructed a GRN with 300 nodes and
1,232 edges in which 9 TFs control the expression of 287 TGs.
Afterward, using YeastEnrichr, we performed GO biological
function enrichment analysis of the GRN. We noticed that
several stress-responsive functions such as “cellular response to
alkaline pH” (GO: 0071469), “cellular response to glucose
starvation” (GO: 0042149), “cellular response to starvation” (GO:

0009267), and “positive regulation of transcription from RNA
polymerase II promoter in response to stress” (GO: 0036003)
were enriched in the GRN (Supplementary Table S4). The
functions revealed in our analysis were also found to be relevant
in establishing oral candidiasis as it was found that a low oxygen
level, decrease in the flow rate of saliva, and pH dysbiosis in the oral
cavity help in the expression of the SAP gene in C. albicans to thrive
in the oral niche and also help in adherence (Schaller et al., 2005;
Vila et al., 2020). Moreover, acidic and alkaline pH decrease the
expression of cell wall polysaccharides and interaction with sIgA,
which aidC. albicans to proliferate and evade host response (Bikandi
et al., 2000). Thus, the pH-sensing pathway Rim101 of C. albicans
plays a pivotal role during oropharyngeal candidiasis, and the
rim101Δ/Δ mutant significantly reduces the virulence activity of
C. albicans in a murine model of oropharyngeal candidiasis (Nobile
et al., 2008; Mayer et al., 2013).

Concurrently, we performed KEGG pathway enrichment
analysis of the GRN and observed that “Glycolysis/
Gluconeogenesis,” “Endocytosis,” “Nitrogen metabolism,” and
“Autophagy” pathways were enriched (Supplementary Table S4).
It was observed in a previous report (Villar and Dongari-Bagtzoglou,
2008) that during oropharyngeal candidiasis, the macrophage helps
identify the mannose ligand of C. albicans through dectin-1.
Endocytosis of the pathogen through the macrophage creates a
nutrient starvation condition, which makes them shift from
glycolysis to gluconeogenesis, and this nutrient flexibility helps
them form hypha and aid in escaping from the macrophage
(Mayer et al., 2013). Thus, these function and pathway
enrichment analyses clearly depict that the proteins involved in
the gene regulatory network of C. albicans play a key role in stress-
induced pathogenesis during oral candidiasis.

3.2 Identification of potential C. albicans
targets in the human proteome

To detect the C. albicans–human cross-species PPI, we created
an in silico methodology. First, we extracted the whole-genome
sequence of C. albicans from EnsemblFungi (Yates et al., 2021), and
afterward, using an interolog approach, we identified the C.
albicans–host protein–protein interaction network (CHPPIN) by
a rigorous homology search against the host proteome by using the
HPIDB 3.0 database (Ammari et al., 2016). We found a putative PPI
between 412 C. albicans proteins and 353 human proteins
constituting 822 PPIs, using a strict reciprocal blast search. Next,
we attempted to demonstrate that the C. albicans proteins involved
in interactions with the human host proteins in the interolog PPI are
true homologs of pathogen proteins to mediate potential
interactions with the host proteins. For this, we used an in silico
GO function similarity analysis of the homologous proteins between
humans and C. albicans, in which we retrieved the functional
annotations from the Ensembl genome browser (Cunningham
et al., 2021) and Ensembl Fungi (Yates et al., 2021) for humans
and C. albicans, respectively. We observed that 317 of 412 proteins
(~77%) from C. albicans share at least one GO function with the
relevant homologs to the human protein. Therefore, it might be
concluded that the 317 C. albicans homologs that make up the
CHPPIN were likely to be enriched in real functional homologs. We
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FIGURE 1
Host–pathogen interaction network. Green ellipsoid nodes represent the GRN, and small yellow ellipsoid and diamond nodes represent pathogenic
and host interolog proteins, respectively. Mapping GRN nodes with pathogenic interolog proteins yields 44 C. albicans proteins and the corresponding
24 interolog host proteins which are shown in large size. The red solid lines represent 62 edges of direct interaction between host and pathogen proteins.

FIGURE 2
C. albicans-targeted protein–protein interaction network (CTPPIN). (A) Yellow round rectangular nodes of pathogenic proteins, which directly
interact with the tPPIN (green round rectangular nodes) and generate the sub-tPPPIN or CTPPIN with 99 nodes and 119 edges. (B) Core modules in the
CTPPIN. Green diamond nodes represent the DNMT1module composed of 72 proteins, green ellipsoid nodes represent the SGTAmodule composed of
17 proteins, and green octagonal nodes represent the TOR1A module composed of 10 proteins.
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mapped 317 C. albicans proteins with a putative PPI to identify the
human counterpart proteins. As a result, we obtained 317C. albicans
homologs interacting with 119 human proteins, constituting
432 PPIs (Supplementary Table S3).

In the next step of the in silico workflow, we attempted to extract
those C. albicans proteins from the interologs which have the
potential to mediate oral candidiasis as previously mentioned. To
pursue this, we mapped 317 C. albicans interologs with 300 proteins
of the GRN implicated in oral candidiasis. We obtained 44 proteins
intersecting between these two pools of proteins. Thus, it could be
stated that these 44 proteins help C. albicans establish a pathogenic
repertoire in the oral cavity of the host. We then mapped these C.
albicans proteins to the interologs to obtain the corresponding
human proteins. Meanwhile, we received 24 human proteins
which directly interact with 44 C. albicans proteins. Thus, it is
fascinating to know and explore the molecular crosstalk between
44 C. albicans proteins interacting with 24 human proteins,
constituting 62 PPIs in the oral mucosa during oral candidiasis
(Figure 1).

3.3 Reconstruction of the C. albicans
potential targeted network in the host

It is well known that oral candidiasis involves C. albicans
infections in the tongue and other oral mucosal regions and is
characterized by fungal overgrowth and penetration of surface
tissues (Singh et al., 2014; Millsop and Fazel, 2016). Thus, all the
24 human proteins previously mentioned might not be involved in
oral candidiasis if they are not expressed in the oral tissues. Thus, we

built a tongue-specific PPI network to obtain candidate human
proteins in oral candidiasis. First, we extracted 3,888 genes of the
tongue with TPM values ≥ 11 (medium expression level) from the
Expression Atlas (Mabbott et al., 2013) and then reconstructed the
tPPIN comprising 2,775 nodes and 24,889 edges using stringApp in
Cytoscape plugin v3.9.1 by considering physical interactors and cut-
off score ≥ 0.4 (Assenov et al., 2008) (Supplementary Figure S4).
Next, to identify or locate the target network of C. albicans, we
mapped 2,775 tPPIN nodes with 24 proteins of the host which
directly interact with 44 C. albicans proteins (Figure 2). We acquired
a C. albicans-targeted PPIN (CTPPIN), which we can contemplate
as a sub-PPI network in the tPPIN, in which we perceived that either
of the interacting nodes interacts with C. albicans proteins. Since the
CTPPIN comprising 99 nodes and 119 edges is tongue specific, it
could be inferred that it might be implicated in oral candidiasis
(Figure 2). To substantiate this, we checked the underlying biological
processes and metabolic pathways of the proteins of the CTPPIN.
We performed GO biological function enrichment analysis using
Enrichr (Xie et al., 2021). Figure 3 depicts that the sub-tPPIN
targeted by Candida is enriched with several crucial
immunological functions and pathways which confer the
potential to the host to resist the pathogen infection.
Interestingly, apart from the immunological functions, host cell
repair functions such as “nucleotide-excision repair DNA damage
recognition” (GO:0000715), “apoptotic process” (GO:0006915),
“cellular response to hypoxia” (GO:0071456), “modulation by the
host of symbiont process” (GO:0051851), “positive regulation of
type I interferon production” (GO:0032481), “DNA Double-Strand
Break Response” (R-has-5693606), “PIP3 Activates AKT Signaling”
(HASHSA-1257604), “Clathrin-mediated Endocytosis” (HASHSA-

FIGURE 3
Enrichment of immunological functions and pathways in the CTPPIN. Circos plots representing (A) the functions or biological processes and (B)
Reactome pathways of the protein sub-tPPIN targeted by Candida. The length of the ribbons represents the number of host targets which mediate the
corresponding function.
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8856828), “Class I MHC-Mediated Antigen Processing And
Presentation” (HASHSA-983169), and “Toll-Like Receptor 3
(TLR3) Cascade” (HASHSA-168164) were enriched in Candida-
targeted proteins (Supplementary Table S5). Villar and Zhao (2010)
demonstrated that during C. albicans infection, apoptosis occurred
for the removal of apoptotic bodies containing pathogens by
secondary phagocytes (Doran et al., 2020). The occurrence of
epithelial damage and the manipulation of macrophage apoptosis
create conditions conducive to fungal colonization and infection
(Camilli et al., 2021), which corroborates our observation on the
involvement of proteins in the candida-targeted sub-tPPIN. Thus, it
could be stated that the proteins engaged in the CTPPIN accomplish
the functions required to combat or provide early symptoms to
detect the pathogenesis stage of C. albicans in humans.

3.4 Explicating the molecular link between
the host and pathogen during oral
candidiasis

Deciphering the molecular link between C. albicans pathogenic
genes and human genes would provide a holistic view to know the
exact scenario during oral candidiasis. To identify the key molecular
players in the CTPPIN, we performed module analysis using
ModuLand (Kovács et al., 2010) in Cytoscape plugin v3.9.1
(Assenov et al., 2008) and obtained three core
modules—DNMT1 (consists of 72 proteins), SGTA (consists of
17 proteins), and TOR1A (consists of 10 proteins) (Figure 2). Next,
using Enrichr (Xie et al., 2021), we shortlisted among these module

core genes which are well-characterized immunological players. We
found that the DNMT1 module significantly enriched (p. adjust <0.
05) with 24 immunological function and 85 immunological pathway
terms (Figure 4; Supplementary Table S5) consists of 46 proteins.
Similarly, the SGTA core module was enriched with 34 immune-
related function and 4 pathway terms (Figure 4; Supplementary
Table S5), encoded by 13 core module proteins, and the TOR1A
module was enriched with seven immunological function and four
pathway terms (Figure 4; Supplementary Table S5), composed of
eight proteins. From the function and pathway enrichment analyses,
we could confer that a considerable fraction of proteins, i.e., 63.8 %
in the DNMT1 module, 76.4% in the SGTA module, and 80% in the
TOR1A module, are implicated for first-line immunological
response against the pathogen (Table 1). Thus, dysregulation in
the expression of three core module nodes could hamper the host
response against C. albicans during oral candidiasis. To know the
expression of core module nodes during a diseased state, we mapped
it with 6,806 DEGs extracted from the oral carcinoma cell lines (HO-
1-N1 and HSC) GSE169278 (Vadovics et al., 2022) infected with C.
albicans (Supplementary Table S2). Subsequently, functional
analyses on the DEGs showed the enrichment of “Regulation of
Epithelial to Mesenchymal Transition (EMT)” (GO:0010717),
“Regulation of Mesenchymal Cell Proliferation” (GO:0010464),
“PI3K/AKT Signaling in Cancer” (HASHSA-2219528), “Signaling
By WNT in Cancer” (HASHSA-4791275), “Signaling By TGF-beta
Receptor Complex In Cancer” (HASHSA-3304351), and
“Constitutive Signaling By AKT1 E17K In Cancer” (HASHSA-
5674400) (Supplementary Table S5). It was previously reported
that infection of C. albicans in the HSC-2 cell line upregulates a

FIGURE 4
Gene Ontology and Reactome pathway analyses of modules. (A) Dot plot of immunological GO biological function and (B) immunological
reactome pathway enrichment of modules (top 10 GO biological functions and pathways by count).

TABLE 1 Core module proteins in the host having immunological function and their expression pattern derived from the GSE169278 dataset in the diseased state.
Proteins in bold represent deregulated proteins in each module.

Modules Immunological function-enriched proteins

DNMT1 ORC3, CDT1, ANAPC7, DCTN2, PPP2CA, CREBBP, RELA, HDAC2, RPS27A, PARP1, TFDP1, EP300, USP7, RBBP4, CCNA2, CBX4,
SIN3B, CDK4, SUMO1, DNMT1, ANAPC16, ATP6V1C1, CDC27, HDAC1, MCM3, RING1, TP53, ASF1A, BRCC3, KITLG, MCM4, RBBP7,

ANAPC1, ANAPC10, COMMD3-BMI1, MCM6, MEAF6, PHC3, ANAPC2, POLE, KAT6A, PTTG1, MCPH1, ING4, KAT7, PIN1

SGTA SGTA, F11R, VAPA, ADIPOQ, VAMP2, STX5, ALDH3A2, SEC61B, SEC61G, UBE2J2, EMD, CYB5A, SERP1

TOR1A COPS4, COPS2, COPS3, COPS5, COPS6, TOR1A, GPS1, COPS8
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set of genes associated with EMT, which in turn help in the
progression of OSCC (Krisanaprakornkit and Iamaroon, 2012;
Jayanthi et al., 2020; Vadovics et al., 2022). Moreover, the PI3K/
AKT pathway, Wnt pathway, and TGF-β pathway play a crucial role
in the EMT process and could be considered indicators of metastasis
(Chen et al., 2008; Krisanaprakornkit and Iamaroon, 2012;
Lakshminarayana et al., 2018; Sasahira and Kirita, 2018). From
the aforementioned ontology analysis of diseased condition DEGs,
we could decipher that they help in the progression of oral cancer
when infected with C. albicans.

Subsequently, after mapping of three core module nodes with
diseased condition DEGs, we observed that 54.3% of nodes (n = 46)
of the DNMT1 module, 69.23% of nodes (n = 13) of the SGTA core
module, and 37.5% of nodes (n = 8) of the TOR1A core module were
up- or downregulated in diseased conditions (Table 1). Thus, it
could be demonstrated that the deregulation of these crucial network
proteins during oral candidiasis facilitates the pathogen to subvert
host defense to establish pathogenesis in oral tissues in diseased
condition. Now, it would be imperative to examine which of these
deregulated nodes of the modules are directly targeted by the
pathogen. From the list of potential interologs, we obtained three
core module proteins, i.e., ING4, SGTA, and TOR1A, which interact
with the HHT21, CYP5, and KAR2 protein of C. albicans,
respectively. Intriguingly, it is also evident from our DEG
analysis (Supplementary Table S1) that these three genes HHT21
(log2FC = 1.80), KAR2 (log2FC = 2.46), and CYP5 (log2FC = 1.37)
of C. albicans are upregulated during oral candidiasis. Searching for
the TFs regulating the expression of these three pathogenic genes
from the GRN (Supplementary Figure S2) revealed that HHT21 is
tuned by Tec1 and Wor1p, CYP5 is regulated by Rob1p, and
KAR2 is controlled by Tye7 and Ume6p. Moreover, we perceived
that some of the TFs of these three C. albicans genes are up/
downregulated during infection (Table 2). Thus, it could be
worthwhile to confer that these module-targeting pathogenic
proteins, along with their regulators, play significant roles in
establishing the infection in the human oral mucosa.

4 Discussion

This research aimed to determine the virulence mechanisms of
C. albicans in the host during oral candidiasis as well as to fill the
dearth of evidence on interactions between the pathogen and the host
proteins during oral candidiasis. To achieve our goal, we first
reconstructed a C. albicans pPPIN, and to collect information about
the regulation of pPPIN nodes under a biofilm-forming condition, we
built a GRNwhich consists of 300 nodes and 1,232 edges and comprises

9 TFs and 287 TGs. Afterward, we built a host (human)–pathogen (C.
albicans) interaction network (HPIN) using the interolog technique
through HPIDB database 3.0 (Ammari et al., 2016), and the inferred
interactions were screened. Since false positive interaction is routinely
produced using the interolog PPI prediction algorithms, to decrease the
retention of false positives in our dataset, we utilized screening criteria,
E-value = 10−10, query coverage = 90%, and sequence identity > 50%
includingGO functional enrichment similarity. Following these criteria,
we received 317 C. albicans proteins which interact with 119 host
proteins. Meanwhile, mapping of 317 C. albicans proteins with
300 nodes of the GRN yielded 44 C. albicans and 24 corresponding
host target genes which directly interacted with each other (Figure 1).
The interolog approach has traditionally been used to predict a
fungus–host PPI (Remmele et al., 2015; Balkenhol et al., 2022). The
HPIDB also uses experimentally verified fungus–host PPI data as a
template to predict the PPIs. The arduous and time-consuming
experimental approaches for inferring PPIs are the reason why there
are few experimentally validated fungus–host PPI data. However, the
HPIDB approach has several drawbacks, including homology
dependence and the inability to forecast protein interactions that are
particular to a given strain or lineage. All the molecular targets inferred
in this work were computationally predicted, although they still need
additional experimental confirmation.

Since oral thrush is produced in themouth or tongue during oral
candidiasis, to understand the impact of candidiasis on the host, it is
crucial to figure out the Candida-targeted genes which are being
expressed in tongue tissue. For this, we mined 3,888 genes of the
tongue from the Expression Atlas (Mabbott et al., 2013) and
constructed a tPPIN, consisting of 2,775 nodes and 24,889 edges
(Supplementary Figure S5). Now, to discern the C. albicans-targeted
nodes in the tPPIN, we mapped 24 host proteins with 2,775 nodes of
the tPPIN. A targeted network (CTPPIN) (Figure 2) of 99 proteins
with 119 interactions was obtained in which at least either of the
interacting nodes is targeted by the pathogen. Functional analysis of
this CTPPIN revealed that it was enriched with crucial stressed-
induced responses and immunological function proteins (Figure 3),
which indicates their involvement in the host defense mechanism;
thus, the targeted network might be subverted by the C. albicans
proteins to encase its pathogenicity. Consequently, to find out the
functional module of the network, we performed a module complex
analysis on the targeted network and obtained three core module
complexes (DNMT1, SGTA, and TOR1A) (Figure 2). Each complex
contained a core protein which could be considered the key protein
of the corresponding module. GO biological function and Reactome
pathway enrichment analyses of three core module complexes
revealed that three modules are engaged in different pathogen
clearance mechanisms.

TABLE 2 Core module proteins and the expression of their interactors, along with TFs of the pathogen during oral candidiasis, retrieved from Supplementary
Material of the study by Lemberg et al. (2022).

Core module
protein

C.
albicans TG

TG expression value
(log2FC)

C.
albicans TF

TF expression value
(log2FC)

Association between TFs
and TGs

DNMT1 (ING4) HHT21 1.80 Tec1p −2.50 -

SGTA CYP5 1.37 Rob1p −2.25 -

TOR1A KAR2 2.46 Tye7p, Ume6 −1.48, 2.09 -,+
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The DNMT1 core module complex consists of 72 proteins, and
63.8% of them are engaged in immunological functions and
signaling pathways. We noticed that the “AKT signaling”
(R-HSA-1257604) pathway is enriched in the DNMT1 core
module, and it is worthwhile to mention that AKT signaling is
crucial for T-cell differentiation and it encourages naive CD4 T cells
to differentiate into Th17 to prevent oral candidiasis (Tasaki et al.,
2018; Abdullah et al., 2021). Moreover, this module was also
observed to be involved in the “Regulation of TP53 Activity”
(R-HSA-5633007) pathway, which regulates the balance between
Treg and Th17 cells. It was previously demonstrated that the
depletion of Treg cells causes synchronous depletion of
Th17 during oral candidiasis (Pandiyan et al., 2011). Therefore,
to inhibit Candida infection in the oropharyngeal region, the
balance between Treg and Th17 is crucial and binding of
TP53 with the Foxp3 promoter helps induce Treg cells (Hua
et al., 2020). From this observation (Figure 4), it could be
inferred that the DNMT1 module is solely engaged in various
T-cell differentiation pathways to raise host immunity against the
fungal pathogen.

In our analysis, we also found that the SGTA core module
complex consists of 17 proteins, and 76.4% proteins of this core
module were significantly enriched with immunological functions
and pathways. We detected that they are enriched with the “ERAD
pathway (GO:0036503)”-related biological function and
“ER–phagosome pathway” (R-HSA-1236974) (Figure 4).
Previously, Joffre et al. (2012) mentioned that the ERAD
pathway might play an important role in antigen export from
endosomes and phagosomes to the cytosol, which could be
considered one of the crucial stages for the clearance of C.
albicans by macrophages in oral candidiasis under an
immunocompromised condition (Goupil et al., 2009;
Domingues et al., 2022). Disruptions in the process of the
ER–Golgi biogenesis and pathway have an impact on antigen
presentation and the effectiveness of immune responses to
tackle oropharyngeal candidiasis infection. Consequently, it is
quite acceptable that the ER is vulnerable to exploitation by
certain pathogens (Roy et al., 2006). Moreover, this module was
found to be enriched with “endoplasmic reticulum organization”
(GO:0007029), “endoplasmic reticulum to cytosol transport” (GO:
1903513), “endoplasmic reticulum to Golgi vesicle-mediated
transport” (GO:0006888), “protein insertion into the ER
membrane” (GO:0051205), and “Class I MHC-Mediated
Antigen Processing and Presentation” (R-HSA-983169)-related
biological function and pathways (Figure 4). A well-known fact
of antigen presentation is that class I-MHC molecules bind
peptides generated by proteasomal proteolysis, and they bind
them in the ER after the peptides are translocated from the
cytosol. Subsequently, during OPC in individuals with
immunocompromised conditions, such as HIV, the buccal
epithelium serves as a place where cytotoxic T-lymphocyte
responses, specifically driven by MHC class I-restricted CD8+

T cells, are initiated. Importantly, these responses occur
independent of assistance from CD4+ cells (Desvignes et al.,
1998). Thus, SGTA core module proteins are exclusively
involved in the “class-I MHC-mediated antigen processing and
presentation” (R-HSA-983169) pathway to elicit host adaptive
immunity against the pathogens.

Meanwhile, the TOR1A core module complex consists of
10 proteins, and 80% of them play immunological roles.
Subsequently, it was traced that they are mostly involved in the
“positive regulation of endocytosis” (GO:0045807) biological
function and “Clathrin-mediated Endocytosis” (R-HSA-8856828)
pathway (Figure 4), which is a prerequisite step for the
internalization and identification of the hyphal form of C.
albicans during oral candidiasis (Swidergall and Filler, 2017), and
in response to that, the host activates the NF-κB, mTOR, and Akt
pathway to prevent cellular damage (Moreno-Ruiz et al., 2009;
Moyes et al., 2015; Netea et al., 2015). Thus, unlike the other two
modules, TOR1A module proteins are basically involved in
pathogen internalization and subsequent excitation of effector
molecules.

When function and pathway enrichment analyses confirmed the
importance of module proteins in host defense, we were curious to
investigate their expression patterns in a diseased state, which could
strengthen our proposition. Since it is known that oropharyngeal
candidiasis is common in cancer patients, we checked the expression
of core module proteins by mapping them with an exhaustive list of
6,806 DEGs, which were extracted from the human oral carcinoma
cell line infected with C. albicans GSE169278 (Vadovics et al., 2022),
and discerned a substantial amount of immunological players from
the three modules which are deregulated during disease states
(Table 1). Deregulation of the nodes in the modules hampers the
active communication with their neighbor nodes, which ultimately
restraint their functionality.

Now, deregulation of these nodes in the pathogen-targeted
network could be succeeded by the direct interaction of the
pathogen or via their interacting nodes which are the targets of
the pathogen. We were interested to find out the deregulated
nodes that are directly targeted by the pathogen and retrieved
three pathogen proteins, i.e., HHT21, CYP5, and KAR2, which
were significantly expressed during oral candidiasis and found to
be directly interacting with core module nodes ING4, SGTA, and
TOR1A, respectively. SGTA and TOR1A are the main key
proteins of their corresponding module with which all other
proteins are connected (Figure 2). Thus, expression
deregulation of these two proteins followed by the pathogen
target could pose a severe threat to the host. Though
DNMT1 is the key protein of the respective module, we did
not find any direct association of this protein with Candida
proteins; rather, we attained a direct interaction with ING4,
which is also a hub protein (n = 10) in the DNMT1 module
(Figure 2). Thus, targeting this protein would inevitably hinder
the functionality of the module.

In subsequent research, these three pathogenic proteins HHT21,
CYP5, and KAR2 were also evidenced to play a vital role in the
pathogenesis of C. albicans during oral candidiasis. In the
chromatin-level biofilm formation gene circuit, it has been
observed that HHT21 acts as a crucial marker for biofilm
formation (Rai et al., 2019). Likewise, CYP5 interacts with
macrophages in response to stress and pathogenic conditions
(Fernández-Arenas et al., 2007; Hirakawa et al., 2015), and in a
previous report, KAR2 has been evidenced to help in the secretory
pathway (translocation of protein into the ER) and play a pivotal
role for C. albicans transition from commensal to a pathogenic
organism (Morrow et al., 2011). Moreover, KAR2 was reported to be
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alleviated during the disruption of retrograde protein trafficking,
biofilm formation, and antifungal drug resistance conditions (Liu
et al., 2014; Li et al., 2015). Biofilm formation is one of the key
attributes to identify the oral candidiasis condition (Dongari-
Bagtzoglou et al., 2009; Furletti et al., 2011; Muadcheingka and
Tantivitayakul, 2015).

Next, in order to find out the regulatory genes of these three
pathogen proteins, we investigated the GRN of C. albicans and
observed that Tec1p and Wor1p act as regulators of HHT21, while
Tye7p and Ume6 control the expression of KAR2 and Rob1p
regulates CYP5. Now, the expression pattern of these TFs and
their corresponding target genes in the pathogen during oral
candidiasis would provide the clue to establish their involvement
in disease pathogenesis. Investigating the DEGs given in
Supplementary Data of the study by Lemberg et al. (2022)
(Supplementary Table S1) provided some intriguing results. The
transcription factor Tye7p is downregulated (log2FC = −1.48) and
Ume6p is upregulated (log2FC = 2.09), while its target gene KAR2 is
upregulated (log2FC = 2.46), which is also affirmed in previous
studies which showed that Tye7p is negatively and Ume6p is
positively associated with the KAR2 protein (Bonhomme et al.,
2011; Martin et al., 2011). On the other hand, Rob1p is
downregulated (log2FC = −2.25), whereas its target gene CYP5 is
upregulated (log2FC = 1.37), and their negative association is also
supported by a previous study (Nobile et al., 2012). Another protein
HHT21 was observed to be upregulated (log2FC = 1.80), while its TF
Tec1p was downregulated (log2FC = −2.50). Although it was
evidenced that HHT21 and Tec1p are positively associated (Lin
et al., 2013), we found a negative association between them. Since
from our analysis, the expression of Rob1p, Tye7p, and Ume6p with
their corresponding target genes is consistent with previous
experimental evidence, they could be considered candidate TFs
for triggering fungal pathogenesis during oral candidiasis.

Furthermore, these three TFs are substantiated to be a regulator
of biofilm formation; e.g., Rob1p is considered a core candidate of
biofilm formation and designated as a master regulator (Nobile et al.,
2012; Glazier et al., 2017; Rodriguez et al., 2020). Furthermore,
Rob1p mutation reduces virulence during oropharyngeal
candidiasis (Solis et al., 2022). Ume6p also plays vital roles in the
development and establishment of biofilms (Park et al., 2021).
Moreover, the role of Tye7p in the pathogenesis of oral
candidiasis is yet to be elucidated experimentally. However, there
is substantial evidence of its role in different mucosal colonization,
i.e., gastrointestinal colonization and hyphal formation, adaptation
to metabolic stress (Cheng et al., 2013; Alonso-Roman et al., 2022),
and hypoxic condition (Bonhomme et al., 2011). Thus, it could be
emphasized that Rob1p, Tye7p, and Ume6p and their downstream
genes CYP5 and KAR2 play a pivotal role in aiding C. albicans to
establish a pathogenic repertoire in the oral cavity to trigger oral
candidiasis.

5 Conclusion

This is the first report on the detailed molecular map of
host–pathogen interaction implicated for oral candidiasis in
humans. It provides several lines of evidence that antifungal
strategies against Candida transcription factors, i.e., Ume6p,

Tye7p, and Rob1p, as well as their corresponding downstream
genes KAR2 and CYP5, could be adopted to challenge
C. albicans infection in human oral tissues. However, there is a
lack of an experimental dataset on Candida infection in oral
carcinoma cells; thus, the molecular targets inferred in our study
by computational prediction need further experimental validation.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

SP conceptualized the study. ARK executed all the experiments.
SP and ARK prepared the original draft. AAC and MOA reviewed
the work and edited the manuscript. The whole work has been
executed under SP’s supervision.

Acknowledgments

ARK acknowledges the Swami Vivekananda Merit-cum-Means
Scholarship from Govt.of West Bengal. The work is partially funded
by Indian Council of Medical Research (ICMR, Grant No- 2021-
12937). The authors are thankful to Raiganj University for all
support. The authors also extend their appreciation to the
Deanship of Scientific Research, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Saudi Arabia, for funding this
research work through Grant No. (221412037).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or

Frontiers in Genetics frontiersin.org11

Kabir et al. 10.3389/fgene.2023.1245445

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1245445


claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1245445/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Pathogen protein–protein interaction network. The pPPIN comprises
559 nodes and 4167 edges.

SUPPLEMENTARY FIGURE S2
Gene regulatory network (GRN). The GRN comprises 9 TF nodes and
287 target genes. Green diamond depicts TFs, and ellipsoid green nodes
represent target genes.

SUPPLEMENTARY FIGURE S3
Tongue-specific protein–protein interaction network (tPPIN). The tPPIN
comprises 2,775 nodes and 24,889 edges.
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