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Background: Although rheumatoid arthritis (RA) is a common autoimmune
disease, the precise pathogenesis of the disease remains unclear. Recent
research has unraveled the role of autophagy in the development of RA. This
research aims to explore autophagy-related diagnostic biomarkers in the
peripheral blood of RA patients.

Methods: The gene expression profiles of GSE17755 were retrieved from the gene
expression ontology (GEO) database. Differentially expressed autophagy-related
genes (DE-ARGs) were identified for the subsequent research by inserting
autophagy-related genes and differentially expressed genes (DEGs). Three
machine learning algorithms, including random forest, support vector machine
recursive feature elimination (SVM-RFE), and least absolute shrinkage and
selection operator (LASSO), were employed to identify diagnostic biomarkers.
A nomogram model was constructed to assess the diagnostic value of the
biomarkers. The CIBERSORT algorithm was performed to investigate the
correlation of the diagnostic biomarkers with immune cells and immune
factors. Finally, the diagnostic efficacy and differential expression trend of
diagnostic biomarkers were validated in multiple cohorts containing different
tissues and diseases.

Results: In this study, 25 DE-ARGs were identified between RA and healthy
individuals. In addition to “macroautophagy” and “autophagy-animal,” DE-ARGs
were also associated with several types of programmed cell death and immune-
related pathways according to GO and KEGG analysis. Three diagnostic
biomarkers, EEF2, HSP90AB1 and TNFSF10, were identified by the random
forest, SVM-RFE, and LASSO. The nomogram model demonstrated excellent
diagnostic value in GSE17755 (AUC = 0.995, 95% CI: 0.988–0.999).
Furthermore, immune infiltration analysis showed a remarkable association
between EEF2, HSP90AB1, and TNFSF10 expression with various immune cells
and immune factors. The three diagnostic biomarkers also exhibited good
diagnostic efficacy and demonstrated the same trend of differential expression
in multiple validation cohorts.

Conclusion: This study identified autophagy-related diagnostic biomarkers based
on three machine learning algorithms, providing promising targets for the
diagnosis and treatment of RA.
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1 Introduction

As the most prevalent autoimmune and inflammatory
arthritis, rheumatoid arthritis (RA) is characterized by joint
pain and swelling (Liu et al., 2021), which strongly
compromises the function of limbs and quality of life. The
global incidence of RA was estimated to be between 0.5% and
1% (Catrina et al., 2017). Over the past few years, RA has emerged
as a major cause contributing to disability (Huang et al., 2022).
Although our understanding of the pathogenesis of the disease
has evolved tremendously, patients with RA continue to endure
physical damage and psychological distress. Therefore, it is
essential to determine quantitative and objective biomarkers
of RA.

Autophagy is critical for disassembling dysfunctional and
unnecessary intracellular components as a conserved process of
protein degradation (Baehrecke, 2005). It is directly linked to the
progression of autoimmune diseases (Deretic and Levine, 2018).
As a common form of programmed cell death, autophagy has
been speculated as a candidate innovative therapeutic target for
RA (Zhao et al., 2021). Autophagy may influence the progression
and recovery of RA by affecting bone metabolism disorders in
osteoblasts and osteoclasts (Wang et al., 2020). It has been found
that the knockdown of P2X7R may decrease the expression of
autophagy-related proteins, leading to the suppression of
osteoclast differentiation (Ma et al., 2022). Previous research
also reported that the PI3K/AKT/mTOR pathway inhibition
promotes fibroblast-like synoviocytes (FLSs) autophagy, which
suppresses the invasion of FLSs and exerts anti-arthritic effects
(Yang et al., 2022). Furthermore, autophagy of immune cells in
peripheral blood may be involved in the pathogenesis of RA. It
has been observed that the level of autophagosomes in the
circulating immune cells of RA patients is significantly higher
than that of normal individuals (Chen et al., 2018). Meanwhile,
patients with RA who responded to anti-TNF drugs had
significantly lower LC3-II levels of peripheral monocyte than
non-responders (Vomero et al., 2019). Therefore, autophagy-
related genes in peripheral blood may be diagnostic biomarkers
and promising therapeutic targets for RA.

The study of RA pathology has utilized gene chip technology,
which has led to the discovery of diagnostic biomarkers for RA
through programmed death-related genes (Fan et al., 2023; Jiang
et al., 2023; Li et al., 2023). This study screened DE-ARGs between
normal and RA samples by differential analysis based on abundant
public datasets. Meanwhile, machine learning algorithms, including
random forest, LASSO and SVM-RFE, were carried out to identify
diagnostic biomarkers related to autophagy. The correlation
between diagnostic biomarkers and infiltrating immune cells was
determined in RA samples by the CIBERSORT algorithm. To ensure
the reproducibility and robustness of the results, we evaluated the
diagnostic efficacy of the model in validation cohorts containing RA
and OA samples, and identified the differential expression trend of
the diagnostic biomarkers in validation cohorts containing
peripheral blood and synovium samples. Figure 1 exhibits the
flow chart for the current study.

2 Materials and methods

2.1 Dataset collection

In this study, four cohorts containing peripheral blood samples
(GSE17755, GSE93272, GSE100191 and GSE205962) and four cohorts
containing synovium samples (GSE12021, GSE55235, GSE89408 and
GSE39340) were extracted from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/). GSE17755 was utilized as a training cohort for
screening diagnostic biomarkers, and the rest of the cohorts were
used as the validation cohorts. Details of the eight cohorts are
shown in Table 1. The Perl software (version 5.30) converted probe
names into gene symbols. The average expression value was adopted in
case of multiple identical genes appeared in the same expressionmatrix.
The RNA expression values have been log2 (x+1) transformed and
normalized. The R software (version 4.3.0) was employed for the
subsequent analysis.

2.2 Identification of differentially expressed
autophagy-related genes (DE-ARGs)

Differential expression analysis was performed by the “limma”
package (version 3.56.1) with the following threshold: p_adj < 0.05 and
abs (logFC) > 0.45. Volcano plots and heatmaps of differentially
expressed genes (DEGs) were displayed via “ggplot2” (version 3.4.2)
and “heatmap” (version 1.0.12) packages. A total of 222 autophagy
related-genes were retrieved from the Human Autophagy Database
(HADb, http://www.autophagy.lu/) and intersected with DEGs to
obtain DE-ARGs. The intersections were presented in a Venn plot
drawn by the “VennDiagram” package.

2.3 GO and KEGG analysis of DE-ARGs

The “clusterProfiler” package (version 4.8.1) was used to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment based on the DE-ARGs in the
background of org.Hs.eg.db (version 3.17.0). GO analysis included
cellular components (CC), molecular function (MF) and biological
processes (BP). The GO terms and KEGG pathways with p_adj <
0.05 were judged as statistically significant.

2.4 Identification of diagnostic biomarkers
for RA

Three machine algorithms, including random forest, LASSO, and
SVM-RFE, were performed to investigate the significant diagnostic
biomarkers for RA. Random forest is an ensemble algorithm that
generates multiple decision trees to reach a single decision by
aggregating the results of several classifiers (Lee and Park, 2022). It
was performed via the “randomForest” package (version 4.7-1.1) with
the following parameter: nTree = 500 and the top 10 genes were
identified by mean decrease Gini (MDG). LASSO is considered a non-
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linear variable selection method with the benefit of minimizing the
common sum of squared errors (Tian et al., 2019), and the “glmnet”
package (version 4.1-7) was used to perform the algorithm. SVM-RFE is
generally known for good robustness and stability in determining the

optimal variables by removing eigenvectors produced by the SVM
(Wang et al., 2022). It was carried out with the “e1071” package (version
1.7-13). The mean misjudgment rates for SVM-RFE were compared
with 10-fold cross-validations. Finally, the diagnostic biomarkers were

FIGURE 1
Overview of the research procedure of this study.
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determined by taking the intersection of the genes obtained from the
three algorithms.

2.5 Establishment and evaluation of
nomogram

To evaluate the diagnostic value of diagnostic biomarkers for
RA, we utilized the “pROC” package (version 1.18.0) to generate
ROC curves and calculate the area under the curve (AUC) with
95% confidence intervals (CI). In addition, the nomogram was
generated by the “rms” package. The score corresponding to
each gene expression level was displayed on the plot, and the
total score was used to evaluate the incidence of RA. When the
AUC is above 0.7, the model is considered to have a moderate
diagnostic value, while the AUC above 0.9 indicates a high
diagnostic value. Besides, the decision curve analysis (DCA)

was performed to evaluate the net clinical benefit of the
nomogram, and the calibration curve was plotted to
demonstrate the discriminatory efficacy of the nomogram
for RA.

2.6 Immune infiltration and immune-related
factors

To evaluate the presence of immune cell infiltration in the
microenvironment, we utilized the CIBERSORT algorithm to
quantify the relative proportion of 22 immune cells in each sample,
and levels of immune cells were visualized by the “ggpubr” package. In
addition, Spearman correlation analysis of immune cells with immune
factors was performed for the diagnostic biomarkers. Multiple immune
factors were retrieved from the TISIDB database (http://cis.hku.hk/
TISIDB) (Ru et al., 2019), containing 41 chemokines,

FIGURE 2
Overview of the differentially expressed autophagy genes in patients with RA and controls. (A) Volcano plot of DEGs between RA and controls. Blue
nodes represent downregulation, red nodes represent upregulation, and gray nodes represent no significant difference. (B) Heat map of DEGs. (C) The
intersection of DEGs and autophagy-related genes. (D) Heat map of 25 autophagy-related DEGs.

Frontiers in Genetics frontiersin.org04

Dong et al. 10.3389/fgene.2023.1238407

http://cis.hku.hk/TISIDB
http://cis.hku.hk/TISIDB
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238407


24 immunoinhibtors and 46 immunostimulators (Supplementary
Table S1).

3 Results

3.1 Screening of differentially expressed
autophagy-related genes

Based on the differential analysis, 1,074 DEGs (621 upregulated
genes and 453 downregulated genes) were obtained from the
peripheral blood samples of GSE17755 and presented by the
volcano plot (Figure 2A) and the heatmap (Figure 2B). A total of
25 DE-ARGs (Figure 2C) were obtained by taking the intersection of
DEGs and autophagy-related genes, including 20 downregulated
genes and 5 upregulated genes (Figure 2D).

3.2 GO and KEGG enrichment analysis of
DE-ARGs in RA

According to the results of GO analysis, DE-ARGs participated
in multiple biological processes in addition to “macroautophagy,”

“autophagy-animal” and “autophagosome.” In terms of biological
process (BP), DE-ARGs showed a significant association with the
“regulation of endopeptidase activity,” “regulation of apoptotic
signaling pathway,” and “regulation of necroptotic process”
(Figure 3A). DE-ARGs were also involved in several cellular
components (CC). CC mainly contained “melanosome,” “caspase
complex,” and “focal adhesion” (Figure 3B). Concerning molecular
function (MF), “cadherin binding,” “tumor necrosis factor receptor

FIGURE 3
GO/KEGG enrichment analysis of autophagy-related DEGs. (A) TOP 10 biological processes pathway. (B) TOP 10 cellular component pathway. (C)
TOP 10 molecular function pathway. (D) TOP 10 KEGG pathway.

TABLE 1 The detailed information of the public datasets from GEO.

Dataset Platform Tissue Normal RA OA

GSE17755 GPL1291 Peripheral blood 53 112 0

GSE93272 GPL570 Peripheral blood 43 232 0

GSE100191 GPL13497 Peripheral blood 12 7 0

GSE205962 GPL16043 Peripheral blood 4 16 0

GSE12021 GPL96 Synovium 9 12 10

GSE55235 GPL96 Synovium 10 10 10

GSE89408 GPL11154 Synovium 28 152 0

GSE39340 GPL96 Synovium 0 10 7
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binding,” and “unfolded protein binding” were the main
components (Figure 3C). According to the results of KEGG, DE-
ARGs were mainly enriched in “apoptosis,” “pathogenic Escherichia
coli infection” and “salmonella infection” (Figure 3D).

3.3 Three DE-ARGs served as diagnostic
biomarkers for RA

Three machine learning algorithms were utilized to screen
potential diagnostic biomarkers. Through 10-fold cross-
validation in LASSO logistic regression, the penalty parameter
was adjusted and ultimately led to the selection of 13 DE-ARGs
(Figures 4A, B). The random forest algorithm screened ten genes
with the highest MeanReducedGini (Figures 4C, D). Meanwhile,
to identify the best feature gene combination, the SVM-RFE
algorithm was carried out in screening 12 DE-ARGs (Figures
4E, F). Finally, three autophagy-related diagnostic biomarkers
(EEF2, HSP90AB1 and TNFSF10) were obtained for subsequent
analysis by overlapping genes from LASSO, SVM-RFE and
random forest (Figure 4G).

3.4 The performance of the diagnostic
model

As shown in Figure 5A, the nomogram demonstrated the
diagnostic value of the model constructed with the three
diagnostic biomarkers for RA, and the differential expression

levels of the three genes were exhibited in the heatmap
(Figure 5B). According to the calibration curve (Figure 5C), the
performance of the column line plot closely resembled the ideal
model, suggesting that the model had excellent diagnostic accuracy
for RA. Furthermore, the curve of the model in the DCA analysis
surpassed the two benefit threshold curves, indicating the great
efficacy of the model (Figure 5D). According to the results of the
ROC curves, the AUC values of EEF2 (0.984), HSP90AB1 (0.971),
and TNFSF10 (0.713) were all higher than 0.7 (Figure 5E), and
nomogram (AUC = 0.995, 95% CI: 0.988–0.999) exhibited a higher
AUC value than each gene (Figure 5F), suggesting that nomogram
may possess powerful diagnostic efficacy for RA.

3.5 Immune infiltration analysis

The immune infiltration analysis in this study was carried out
via the CIBERSORT algorithm, and the result was displayed in the
histogram (Figure 6A). The violin plots were utilized to compare the
immune cell infiltration in RA and normal individuals (Figure 6B).
The RA samples exhibited a notable increase in the proportion of
plasma cells, T cells follicular helper, macrophages M0,
macrophages M1, mast cells activated and neutrophils. In
contrast, B cells naive, B cells memory, T cells CD8, T cells
CD4 memory activated, NK cells resting, dendritic cells resting
and eosinophils showed lower proportions in RA samples. Besides,
according to Spearman correlation analysis (Figure 7A),
EEF2 showed a negative correlation with macrophage M1 and
T cell follicular helper and a positive correlation with B cell

FIGURE 4
Diagnostic biomarkers obtained through three machine learning algorithms (A) Partial likelihood deviance of LASSO logistic regression. (B)
Coefficient profiles of LASSO logistic regression for 25 DE-ARGs in the 10-fold cross-validation. (C) Random Forest algorithm selected DE-ARGs with top
10 MeanDecreaseGini score. (D) Relationship between the number of decision trees and the error rate in the Random Forest algorithm. (E) Maximum
error plots of the SVM-RFE algorithm for selecting DE-ARGs with an error of 0.0243 (F) Maximum accuracy plots of the SVM-RFE algorithm for
selecting DE-ARGs with an accuracy of 0.976 (G) Venn plot demonstrating the overlap of DE-AEGs from the three machine learning algorithms.
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memory. HSP90AB1 was positively associated with resting dendritic
cells, eosinophils, and B cell memory. TNFSF10 displayed a positive
correlation with the T cells CD4 memory activated, neutrophils,
eosinophils, and B cells memory, and a negative correlation with
macrophages M0. The heatmaps also displayed a notable association
between the three diagnostic biomarkers and multiple immune
factors, including chemokines (Figure 7B), immunoinhibitors
(Figure 7C), and immunostimulators (Figure 7D).

3.6 Blood and synovial tissue validation of
diagnostic model

To validate the predictive value of the nomogram model, the ROC
curves were further applied to the validation cohorts containing different
tissues. Themodel had solid predictive power in three cohorts containing
peripheral blood samples. The AUC value of the model was 0.888 (95%
CI: 0.831–0.934) in GSE93272 (Figure 8A), 0.845 (95% CI: 0.571–1.000)
in GSE100191 (Figure 8B) and 1.000 (95% CI: 1.000-1.000) in
GSE205962 (Figure 8C), respectively, demonstrating exceptional
discrimination of the model. The model was further validated in
three cohorts containing synovium samples of RA. The AUC value
of the model was 0.972 (95% CI: 0.898–1.000) in GSE12021 (Figure 8D),
1.000 (95%CI: 1.000-1.000) inGSE55235 (Figure 8E) and 0.953 (95%CI:

0.918–0.981) in GSE89408 (Figure 8F). We also utilized three cohorts
containing synovium samples from osteoarthritis (OA) and RA patients
to assess the potential diagnostic value in differentiating RA from OA
individuals. The AUC value of the model was 0.858 (95% CI:
0.667–1.000) in GSE12021 (Figure 8G), 1.000 (95% CI: 1.000-1.000)
in GSE55235 (Figure 8H) and 0.814 (95%CI: 0.557–0.986) in GSE39340
(Figure 8I). The above results showed that the AUC values for the
training and all validation cohorts were higher than 0.7, indicating that
the model had good stability and robustness.

3.7 Differential expression of diagnostic
biomarkers in different RA cohorts

In order to ensure the precision and accuracy of the results, we
verified the expression level of diagnostic biomarkers in the cohorts
containing peripheral blood (GSE17755, GSE93272 and
GSE205962) and synovium samples (GSE55235 and GSE89408).
EEF2 was downregulated in the training cohort (Figure 9A) and
validation cohorts, including GSE93272 (Figure 9D), GSE205962
(Figure 9G), GSE55235 (Figure 9J) and GSE89408 (Figure 9M).
HSP90AB1 was also downregulated in the training cohort
(Figure 9B) and validation cohorts, including GSE93272
(Figure 9E), GSE205962 (Figure 9H) and GSE55235 (Figure 9K).

FIGURE 5
Diagnostic biomarkers efficacy assessment. (A) Nomogram of diagnostic biomarkers. (B) Heat map of diagnostic biomarkers between RA and
controls. (C) Calibration curves verify the consistency of the nomogram. (D) Decision curve analysis of the diagnostic biomarkers prediction model with
values. (E) ROC curve for the three genes in the diagnostic prediction model. (F) The predictive value of the nomogram in RA from the ROC curve.
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However, the difference was not significant in GSE89408
(Figure 9N). Besides, TNFSF10 was upregulated in the training
cohort (Figure 9C) and validation cohorts, including GSE93272
(Figure 9F), GSE55235 (Figure 9L) and GSE89408 (Figure 9O). The
difference was not significant in GSE205962 (Figure 9I). In
summary, the three diagnostic biomarkers in the five cohorts
showed the same trend of differential expression.

4 Discussion

RA is a common autoimmune disorder with the characteristics
of a high disability rate and irreversibility (Tao et al., 2022). It is,
therefore, indispensable to determine biomarkers for the early
diagnosis of RA. The objective of this study was to identify

diagnostic biomarkers associated with RA in the peripheral blood
and verify the diagnostic value of DE-ARGs in multiple cohorts
containing different tissues. To understand the impact of autophagy
on the immune microenvironment of peripheral blood, we also
analyzed the correlation between DE-ARGs and immune cells.

Machine learning has developed rapidly in the application of
diagnosis. The technology can visualize, understand and classify
clinical data, significantly improving the accuracy of medical
imaging, biomarkers and other diagnostic methods (Kabade
et al., 2021). It has been reported that the machine learning
algorithm was created to forecast the transmission of COVID-19,
which facilitated virus outbreak control and isolation of infected
individuals (John et al., 2022). In this study, 25 DE-ARGs were
identified by differential analysis of RA and normal individuals.
Three different algorithms were performed to screen for three

FIGURE 6
Evaluation and visualization of immune cell infiltration. (A) The bar plot shows the proportion of immune cells in different samples. (B) Violin diagram
indicating 22 types of immune cells.
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diagnostic biomarkers (EEF2, HSP90AB1 and TNFSF10). The
nomogram model was established based on the three genes and
had great predictive value for the training cohort and eight

validation cohorts containing peripheral blood, as well as
synovium samples. According to immune infiltration analysis, the
diagnostic biomarkers had a significant correlation with various

FIGURE 7
Correlation of diagnostic biomarkers with immune cells and different immune factors. (A) Immune cells, (B) Chemokines, (C) Immunoinhibitors, (D)
Immunostimulators. Differences between groups are indicated by “*”. *p < 0.05; **p < 0.01; ***p < 0.001.
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immune cells and factors. Furthermore, we also confirmed that the
diagnostic biomarkers were remarkably differentially expressed in
the five cohorts.

Eukaryotic elongation factor 2 (EEF2) is an elongation factor
that enhances translational elongation by mediating translocation
(Shen et al., 2021) and can serve as a promoter to accelerate cell
proliferation for improved wound healing (Kaleci and Koyuturk,
2020). Previous research has shown that overexpression of
EEF2 kinase can improve cellular autophagy by promoting the
transformation of microtubule associated protein LC3-I into
LC3-II in cells and the formation of acidic vesicle organelle (Hait
et al., 2006). CircEEF2 also contributes to autophagy by inhibiting
the mTOR pathway and upregulating the expression of autophagy-
related gene 5 (ATG5) and ATG7 (Yong et al., 2020). Regarding
tissue repair, activation of EEF2 was observed to reduce apoptosis
and enhance the recovery of dense connective tissue (Chen et al.,
2023) by promoting autophagic flux (Pires Da Silva et al., 2020).

Fibroblasts are the critical effector cells in RA (Bartok and Firestein,
2010). EEF2 kinase has been reported to promote cellular autophagy
to improve fibroblast differentiation by activating the p38MAPK
signaling pathway (Wang et al., 2018). Multiple bioinformatics
studies have identified EEF2 as an immune-related biomarker
(Melaiu et al., 2012; Lin et al., 2021; Xin et al., 2023). In this
study, immune infiltration results revealed a noteworthy
correlation between the levels of EEF2 expression and the
content of Macrophage M1 and B cell memory. The role of
macrophages is crucial in the pathology of RA (Liu and Proud,
2016). The latest research suggests that autophagy activation
promotes the transformation of macrophage M1 (pro-
inflammatory) into macrophage M2 (anti-inflammatory), which
exerts a protective effect against collagen induced arthritis (CIA)
(Zhang et al., 2023). A previous study reported that EEF2 kinase
might be activated by oxidized low density lipoprotein (oxLDL)
through increased calcium ion concentration and contributes to

FIGURE 8
ROC curves and corresponding AUC values for the different expression cohorts. (A–C) Blood samples from Control and RA patients in GSE93272,
GSE100191, and GSE205962. (D–F) Synovium samples from Control and RA patients in GSE12021, GSE55235, and GSE89408. (G–I) Synovium samples
from OA and RA patients in GSE12021, GSE55235, and GSE39340.
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macrophage survival (Chen et al., 2009). Meanwhile, the secretion
levels of inflammatory factors in macrophage M1 were significantly
altered in EEF2 kinase mutant mice (Liu and Proud, 2016),
suggesting that EEF2 may affect RA progression by influencing
macrophage polarization. Numerous studies have shown that B cells
significantly impact RA from both pathology (Wu H. et al., 2018;
Qin et al., 2022) and treatment (Gazeau et al., 2017; Bergantini et al.,
2020), whereas evidence about the regulation of EEF2 on B cells is
rarely reported, which suggests that further research is necessary to
investigate the effects of EEF2 on the immune cells of RA.

Heat shock protein 90 kDA alpha, class B, member 1
(HSP90AB1) is a member of the HSPs family that acts as
molecular chaperones to support protein folding and stability
maintenance, particularly following exposure to multiple cellular
stresses (Haase and Fitze, 2016). HSP90AB1 may inhibit the
upregulation of MMP-13 from mitigating transitional
degradation of articular cartilage in arthritis (Fan et al., 2009).
The loss of endoplasmic reticulum homeostasis is a crucial factor
in the progression of autoimmune inflammatory disorders
(Miglioranza Scavuzzi and Holoshitz, 2022). One research has
revealed that transfection of human granulosa cells with siRNA
targeting HSP90AB1 mRNA reduced autophagy and alleviated
endoplasmic reticulum stress, while the autophagy inhibitor 3-
MA reversed the above process (Wu Y. et al., 2018), implicating a
functional relationship between HSP90AB1 and autophagy in
RA. The analysis of immune infiltration revealed that the level of
HSP90AB1 expression had the highest correlation with dendritic

cells. It has been observed that the synovium and peripheral
blood of individuals with RA have a high concentration of
dendritic cells (Marzaioli et al., 2021), which contribute to the
initiation and process of RA by antigen presentation and immune
coordination (Wehr et al., 2019). The apoptosis of dendritic cells
may reduce T-cell stimulatory capacity, which exerts anti-
inflammatory effects in RA (Baldwin et al., 2010). A previous
study revealed that HSP90AB1 but not HSP90 alpha was involved
in the antiapoptotic response of dendritic cells mediated by CpG-
B ODN (Kuo et al., 2007), suggesting inhibition of dendritic cells
by HSP90AB1 may serve as a potential therapeutic intervention
for RA.

TNFSF10, also known as tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), belongs to the TNF ligand family, which is
believed to have a protective impact against RA by regulating systemic
inflammatory autoimmune responses. It has been proven that
TNFSF10 promotes the proliferation of RA fibroblasts in a dose-
dependent manner by activating ERK, p38, and PI3K/Akt pathways
(Morel et al., 2005). Administration of human serum albumin (HSA)
conjugate linked with TRAIL (HSA-TRAIL) via the tail vein in CIA
mice significantly improved morbidity together with clinical scores and
reduced serum levels of IL-2, IL-1β, TNF-α, and IFN-γ (Byeon et al.,
2014). The current research revealed a correlation between the level of
TNFSF10 expression and the content of neutrophils and memory
CD4 T cells. Neutrophils are the most abundant circulating white
blood cells in humans, and dysregulation of neutrophils is also
responsible for the pathogenesis of RA. A clinical study revealed a

FIGURE 9
Expression levels of EEF2, HSP90AB1, and TNFSF10 in the GSE17755 (A–C), GSE93272 (D–F), GGSE205962 (G–I), GSE55235 (J–L) and
GSE89408 (M–O). Differences between groups are indicated by “*”. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Genetics frontiersin.org11

Dong et al. 10.3389/fgene.2023.1238407

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238407


significant correlation between the content of neutrophils and the
duration of morning stiffness in RA patients (Orange et al., 2020).
Neutrophil infiltration in the synovium of RA releases IL-17A to
stimulate synoviocyte production of CCL20, which attracts
monocytes/macrophages to secrete pro-inflammatory factors,
including TNF-α and IL-1β, affecting osteoclast differentiation and
causing bone destruction (Katayama, 2021). Besides, peripheral blood
neutrophils in RA patients secrete higher levels of ROS, disrupting the
oxidative/antioxidative balance and exacerbating disease severity
(Pradhan et al., 2019). Regarding the treatment of RA, PEGylated
TNFSF10 significantly alleviates synovial neutrophil infiltration,
cartilage erosion and synovial inflammation in CIA mice (Park
et al., 2017). CD4 T cells are served as central effector cells in the
persistence of RA. A previous study found a significant correlation
between the RA severity and the expression levels of TNFSF10 on
CD4 T cells (Bisgin et al., 2010). In recent years, increased cytotoxic
CD4 T cell in the peripheral blood of patients with RA has received
increasing attention. The production of IL-17 and IFN-γ from
CD4 T cells in peripheral blood may directly contribute to the
pathogenesis of RA (Park et al., 2014), while TNFSF10 may
selectively activate CD4 T cells to promote IFN-γ production (Tsai
et al., 2004), indicating that TNFSF10 may be a potential therapeutic
target for RA.

In contrast to other bioinformatics studies examining the role
of programmed death genes in RA (Xie et al., 2023; Zhou et al.,
2023), this study focused on the diagnostic value of autophagy-
related genes in RA. In addition, compared to the previous study
(Fan et al., 2023), this research utilized three machine learning
algorithms to screen diagnostic biomarkers for the construction of
the diagnostic model that showed excellent diagnostic efficacy in
multiple cohorts containing samples from different tissues and
diseases.

5 Conclusion

In the present study, we identified three diagnostic biomarkers
(EEF2, HSP90AB1 and TNFSF10) by three machine learning
algorithms and constructed a nomogram diagnostic model based
on the three genes exhibiting great diagnostic value. The diagnostic
biomarkers also demonstrated the same trend of differential
expression in multiple validation cohorts. Our findings shed
essential light on the diagnosis and treatment of RA.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

GD and HG designed the study. GD and HG performed the
study. GD and YC analyzed the data. GD wrote the paper. HY
supervised the research and reviewed the manuscript. All authors
contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (No. 81473759).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1238407/
full#supplementary-material

References

Baehrecke, E. H. (2005). Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell
Biol. 6 (6), 505–510. doi:10.1038/nrm1666

Baldwin, H. M., Ito-Ihara, T., Isaacs, J. D., and Hilkens, C. M. (2010). Tumour
necrosis factor alpha blockade impairs dendritic cell survival and function in
rheumatoid arthritis. Ann. Rheum. Dis. 69 (6), 1200–1207. doi:10.1136/ard.2009.110502

Bartok, B., and Firestein, G. S. (2010). Fibroblast-like synoviocytes: key effector cells in
rheumatoid arthritis. Immunol. Rev. 233 (1), 233–255. doi:10.1111/j.0105-2896.2009.00859.x

Bergantini, L., d’Alessandro, M., Cameli, P., Vietri, L., Vagaggini, C., Perrone, A., et al.
(2020). Effects of rituximab therapy on B cell differentiation and depletion. Clin.
Rheumatol. 39 (5), 1415–1421. doi:10.1007/s10067-020-04996-7

Bisgin, A., Terzioglu, E., Aydin, C., Yoldas, B., Yazisiz, V., Balci, N., et al. (2010).
TRAIL death receptor-4, decoy receptor-1 and decoy receptor-2 expression on CD8+
T cells correlate with the disease severity in patients with rheumatoid arthritis. BMC
Musculoskelet. Disord. 11, 192. doi:10.1186/1471-2474-11-192

Byeon, H. J., Min, S. Y., Kim, I., Lee, E. S., Oh, K. T., Shin, B. S., et al. (2014). Human
serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis. Bioconjug
Chem. 25 (12), 2212–2221. doi:10.1021/bc500427g

Catrina, A. I., Svensson, C. I., Malmström, V., Schett, G., and Klareskog, L. (2017).
Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid
arthritis. Nat. Rev. Rheumatol. 13 (2), 79–86. doi:10.1038/nrrheum.2016.200

Chen, J. H., Riazy, M., Smith, E. M., Proud, C. G., Steinbrecher, U. P., and Duronio,
V. (2009). Oxidized LDL-mediated macrophage survival involves elongation factor-2
kinase. Arterioscler. Thromb. Vasc. Biol. 29 (1), 92–98. doi:10.1161/atvbaha.108.
174599

Chen, J., Wang, J., Wu, X., Simon, N., Svensson, C. I., Yuan, J., et al. (2023).
eEF2 improves dense connective tissue repair and healing outcome by regulating
cellular death, autophagy, apoptosis, proliferation and migration. Cell Mol. Life Sci.
80 (5), 128. doi:10.1007/s00018-023-04776-x

Frontiers in Genetics frontiersin.org12

Dong et al. 10.3389/fgene.2023.1238407

https://www.frontiersin.org/articles/10.3389/fgene.2023.1238407/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1238407/full#supplementary-material
https://doi.org/10.1038/nrm1666
https://doi.org/10.1136/ard.2009.110502
https://doi.org/10.1111/j.0105-2896.2009.00859.x
https://doi.org/10.1007/s10067-020-04996-7
https://doi.org/10.1186/1471-2474-11-192
https://doi.org/10.1021/bc500427g
https://doi.org/10.1038/nrrheum.2016.200
https://doi.org/10.1161/atvbaha.108.174599
https://doi.org/10.1161/atvbaha.108.174599
https://doi.org/10.1007/s00018-023-04776-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238407


Chen, Y. M., Chang, C. Y., Chen, H. H., Hsieh, C. W., Tang, K. T., Yang, M. C.,
et al. (2018). Association between autophagy and inflammation in patients with
rheumatoid arthritis receiving biologic therapy. Arthritis Res. Ther. 20 (1), 268.
doi:10.1186/s13075-018-1763-0

Deretic, V., and Levine, B. (2018). Autophagy balances inflammation in innate
immunity. Autophagy 14 (2), 243–251. doi:10.1080/15548627.2017.1402992

Fan, D. D., Tan, P. Y., Jin, L., Qu, Y., and Yu, Q. H. (2023). Bioinformatic
identification and validation of autophagy-related genes in rheumatoid arthritis.
Clin. Rheumatol. 42 (3), 741–750. doi:10.1007/s10067-022-06399-2

Fan, Z., Tardif, G., Hum, D., Duval, N., Pelletier, J. P., and Martel-Pelletier, J. (2009).
Hsp90{beta} and p130(cas): novel regulatory factors of MMP-13 expression in human
osteoarthritic chondrocytes. Ann. Rheum. Dis. 68 (6), 976–982. doi:10.1136/ard.2008.
092288

Gazeau, P., Alegria, G. C., Devauchelle-Pensec, V., Jamin, C., Lemerle, J., Bendaoud,
B., et al. (2017). Memory B cells and response to abatacept in rheumatoid arthritis. Clin.
Rev. Allergy Immunol. 53 (2), 166–176. doi:10.1007/s12016-017-8603-x

Haase, M., and Fitze, G. (2016). HSP90AB1: helping the good and the bad. Gene 575
(2), 171–186. doi:10.1016/j.gene.2015.08.063

Hait, W. N., Wu, H., Jin, S., and Yang, J. M. (2006). Elongation factor-2 kinase: its
role in protein synthesis and autophagy. Autophagy 2 (4), 294–296. doi:10.4161/auto.
2857

Huang, Y. M., Zhuang, Y., and Tan, Z. M. (2022). Changes in rheumatoid arthritis
under ultrasound before and after sinomenine injection. World J. Clin. Cases 10 (1),
35–42. doi:10.12998/wjcc.v10.i1.35

Jiang, M., Liu, K., Lu, S., Qiu, Y., Zou, X., Zhang, K., et al. (2023). Verification of
cuproptosis-related diagnostic model associated with immune infiltration in
rheumatoid arthritis. Front. Endocrinol. (Lausanne) 14, 1204926. doi:10.3389/fendo.
2023.1204926

John, C. C., Ponnusamy, V., Krishnan Chandrasekaran, S., and Nandakumar, R.
(2022). A survey on mathematical, machine learning and deep learning models for
COVID-19 transmission and diagnosis. IEEE Rev. Biomed. Eng. 15, 325–340. doi:10.
1109/rbme.2021.3069213

Kabade, V., Hooda, R., Raj, C., Awan, Z., Young, A. S., Welgampola, M. S., et al.
(2021). Machine learning techniques for differential diagnosis of vertigo and dizziness:
A review. Sensors (Basel) 21 (22), 7565. doi:10.3390/s21227565

Kaleci, B., and Koyuturk, M. (2020). Efficacy of resveratrol in the wound healing
process by reducing oxidative stress and promoting fibroblast cell proliferation and
migration. Dermatol Ther. 33 (6), e14357. doi:10.1111/dth.14357

Katayama, H. (2021). Rheumatoid arthritis: development after the emergence of a
chemokine for neutrophils in the synovium. Bioessays 43 (10), e2100119. doi:10.1002/
bies.202100119

Kuo, C. C., Liang, C. M., Lai, C. Y., and Liang, S. M. (2007). Involvement of heat shock
protein (Hsp)90 beta but not Hsp90 alpha in antiapoptotic effect of CpG-B
oligodeoxynucleotide. J. Immunol. 178 (10), 6100–6108. doi:10.4049/jimmunol.178.
10.6100

Lee, K. S., and Park, H. (2022). Machine learning on thyroid disease: A review. Front.
Biosci. (Landmark Ed. 27 (3), 101. doi:10.31083/j.fbl2703101

Li, J., Cui, Y., Jin, X., Ruan, H., He, D., Che, X., et al. (2023). Significance of pyroptosis-
related gene in the diagnosis and classification of rheumatoid arthritis. Front.
Endocrinol. (Lausanne) 14, 1144250. doi:10.3389/fendo.2023.1144250

Lin, T., Cheng, H., Liu, D., Wen, L., Kang, J., Xu, L., et al. (2021). A novel six
autophagy-related genes signature associated with outcomes and immune
microenvironment in lower-grade glioma. Front. Genet. 12, 698284. doi:10.3389/
fgene.2021.698284

Liu, R., and Proud, C. G. (2016). Eukaryotic elongation factor 2 kinase as a drug target
in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol. Sin.
37 (3), 285–294. doi:10.1038/aps.2015.123

Liu, Y., Jin, J., Xu, H., Wang, C., Yang, Y., Zhao, Y., et al. (2021). Construction of a pH-
responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy.
Acta Biomater. 121, 541–553. doi:10.1016/j.actbio.2020.11.027

Ma, Y., Di, R., Zhao, H., Song, R., Zou, H., and Liu, Z. (2022). P2X7 receptor
knockdown suppresses osteoclast differentiation by inhibiting autophagy and
Ca(2+)/calcineurin signaling. Mol. Med. Rep. 25 (5), 160. doi:10.3892/mmr.
2022.12677

Marzaioli, V., Canavan, M., Floudas, A., Flynn, K., Mullan, R., Veale, D. J., et al.
(2021). CD209/CD14(+) dendritic cells characterization in rheumatoid and psoriatic
arthritis patients: activation, synovial infiltration, and therapeutic targeting. Front.
Immunol. 12, 722349. doi:10.3389/fimmu.2021.722349

Melaiu, O., Cristaudo, A., Melissari, E., Di Russo, M., Bonotti, A., Bruno, R., et al.
(2012). A review of transcriptome studies combined with data mining reveals novel
potential markers of malignant pleural mesothelioma. Mutat. Res. 750 (2), 132–140.
doi:10.1016/j.mrrev.2011.12.003

Miglioranza Scavuzzi, B., and Holoshitz, J. (2022). Endoplasmic reticulum stress,
oxidative stress, and rheumatic diseases. Antioxidants (Basel) 11 (7), 1306. doi:10.3390/
antiox11071306

Morel, J., Audo, R., Hahne, M., and Combe, B. (2005). Tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast
proliferation through mitogen-activated protein kinases and phosphatidylinositol 3-
kinase/Akt. J. Biol. Chem. 280 (16), 15709–15718. doi:10.1074/jbc.M414469200

Orange, D. E., Blachere, N. E., DiCarlo, E. F., Mirza, S., Pannellini, T., Jiang, C. S., et al.
(2020). Rheumatoid arthritis morning stiffness is associated with synovial fibrin and
neutrophils. Arthritis Rheumatol. 72 (4), 557–564. doi:10.1002/art.41141

Park, J. K., Han, B. K., Park, J. A., Woo, Y. J., Kim, S. Y., Lee, E. Y., et al. (2014). CD70-
expressing CD4 T cells produce IFN-γ and IL-17 in rheumatoid arthritis. Rheumatol.
Oxf. 53 (10), 1896–1900. doi:10.1093/rheumatology/keu171

Park, J. S., Oh, Y., Park, O., Foss, C. A., Lim, S. M., Jo, D. G., et al. (2017). PEGylated
TRAIL ameliorates experimental inflammatory arthritis by regulation of Th17 cells
and regulatory T cells. J. Control Release 267, 163–171. doi:10.1016/j.jconrel.2017.
10.004

Pires Da Silva, J., Monceaux, K., Guilbert, A., Gressette, M., Piquereau, J., Novotova,
M., et al. (2020). SIRT1 protects the heart from ER stress-induced injury by promoting
eEF2K/eEF2-Dependent autophagy. Cells 9 (2), 426. doi:10.3390/cells9020426

Pradhan, A., Bagchi, A., De, S., Mitra, S., Mukherjee, S., Ghosh, P., et al. (2019). Role of
redox imbalance and cytokines in mediating oxidative damage and disease progression
of patients with rheumatoid arthritis. Free Radic. Res. 53 (7), 768–779. doi:10.1080/
10715762.2019.1629586

Qin, Y., Cai, M. L., Jin, H. Z., Huang, W., Zhu, C., Bozec, A., et al. (2022). Age-
associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing
activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1
pathways. Ann. Rheum. Dis. 81 (11), 1504–1514. doi:10.1136/ard-2022-222605

Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S. S. W., Wu, W. C., et al. (2019).
Tisidb: an integrated repository portal for tumor-immune system interactions.
Bioinformatics 35 (20), 4200–4202. doi:10.1093/bioinformatics/btz210

Shen, Y., Zhang, Z. C., Cheng, S., Liu, A., Zuo, J., Xia, S., et al. (2021).
PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD
by suppressing eEF2 phosphorylation. Mol. Cell 81 (7), 1425–1438.e10. doi:10.1016/j.
molcel.2021.01.032

Tao, W., Zhang, Q., and Wang, L. (2022). Investigation of the clinical efficacy of
acupuncture combined with traditional Chinese medicine fumigation in the treatment
of rheumatoid arthritis by meta-analysis. Contrast Media Mol. Imaging 2022, 7998725.
doi:10.1155/2022/7998725

Tian, Z., Chen, C., Fan, Y., Ou, X., Wang, J., Ma, X., et al. (2019). Glioblastoma and
anaplastic astrocytoma: differentiation using MRI texture analysis. Front. Oncol. 9, 876.
doi:10.3389/fonc.2019.00876

Tsai, H. F., Lai, J. J., Chou, A. H., Wang, T. F., Wu, C. S., and Hsu, P. N. (2004).
Induction of costimulation of human CD4 T cells by tumor necrosis factor-related
apoptosis-inducing ligand: possible role in T cell activation in systemic lupus
erythematosus. Arthritis Rheum. 50 (2), 629–639. doi:10.1002/art.20038

Vomero, M., Manganelli, V., Barbati, C., Colasanti, T., Capozzi, A., Finucci, A., et al.
(2019). Reduction of autophagy and increase in apoptosis correlates with a favorable
clinical outcome in patients with rheumatoid arthritis treated with anti-TNF drugs.
Arthritis Res. Ther. 21 (1), 39. doi:10.1186/s13075-019-1818-x

Wang, S., Deng, Z., Ma, Y., Jin, J., Qi, F., Li, S., et al. (2020). The role of autophagy and
mitophagy in bone metabolic disorders. Int. J. Biol. Sci. 16 (14), 2675–2691. doi:10.7150/
ijbs.46627

Wang, Y., Huang, G., Wang, Z., Qin, H., Mo, B., and Wang, C. (2018). Elongation
factor-2 kinase acts downstream of p38 MAPK to regulate proliferation, apoptosis and
autophagy in human lung fibroblasts. Exp. Cell Res. 363 (2), 291–298. doi:10.1016/j.
yexcr.2018.01.019

Wang, Z., Huang, X., and Zhu, D. (2022). Amultistrategy-integrated learning sparrow
search algorithm and optimization of engineering problems. Comput. Intell. Neurosci.
2022, 2475460. doi:10.1155/2022/2475460

Wehr, P., Purvis, H., Law, S. C., and Thomas, R. (2019). Dendritic cells, T cells and
their interaction in rheumatoid arthritis. Clin. Exp. Immunol. 196 (1), 12–27. doi:10.
1111/cei.13256

Wu, H., Deng, Y., Feng, Y., Long, D., Ma, K., Wang, X., et al. (2018a). Epigenetic
regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol.
Immunol. 15 (7), 676–684. doi:10.1038/cmi.2017.133

Wu, Y., Ma, C., Zhao, H., Zhou, Y., Chen, Z., and Wang, L. (2018b). Alleviation
of endoplasmic reticulum stress protects against cisplatin-induced
ovarian damage. Reprod. Biol. Endocrinol. 16 (1), 85. doi:10.1186/s12958-018-
0404-4

Xie, M., Zhu, C., and Ye, Y. (2023). Ferroptosis-related molecular clusters and diagnostic
model in rheumatoid arthritis. Int. J. Mol. Sci. 24 (8), 7342. doi:10.3390/ijms24087342

Frontiers in Genetics frontiersin.org13

Dong et al. 10.3389/fgene.2023.1238407

https://doi.org/10.1186/s13075-018-1763-0
https://doi.org/10.1080/15548627.2017.1402992
https://doi.org/10.1007/s10067-022-06399-2
https://doi.org/10.1136/ard.2008.092288
https://doi.org/10.1136/ard.2008.092288
https://doi.org/10.1007/s12016-017-8603-x
https://doi.org/10.1016/j.gene.2015.08.063
https://doi.org/10.4161/auto.2857
https://doi.org/10.4161/auto.2857
https://doi.org/10.12998/wjcc.v10.i1.35
https://doi.org/10.3389/fendo.2023.1204926
https://doi.org/10.3389/fendo.2023.1204926
https://doi.org/10.1109/rbme.2021.3069213
https://doi.org/10.1109/rbme.2021.3069213
https://doi.org/10.3390/s21227565
https://doi.org/10.1111/dth.14357
https://doi.org/10.1002/bies.202100119
https://doi.org/10.1002/bies.202100119
https://doi.org/10.4049/jimmunol.178.10.6100
https://doi.org/10.4049/jimmunol.178.10.6100
https://doi.org/10.31083/j.fbl2703101
https://doi.org/10.3389/fendo.2023.1144250
https://doi.org/10.3389/fgene.2021.698284
https://doi.org/10.3389/fgene.2021.698284
https://doi.org/10.1038/aps.2015.123
https://doi.org/10.1016/j.actbio.2020.11.027
https://doi.org/10.3892/mmr.2022.12677
https://doi.org/10.3892/mmr.2022.12677
https://doi.org/10.3389/fimmu.2021.722349
https://doi.org/10.1016/j.mrrev.2011.12.003
https://doi.org/10.3390/antiox11071306
https://doi.org/10.3390/antiox11071306
https://doi.org/10.1074/jbc.M414469200
https://doi.org/10.1002/art.41141
https://doi.org/10.1093/rheumatology/keu171
https://doi.org/10.1016/j.jconrel.2017.10.004
https://doi.org/10.1016/j.jconrel.2017.10.004
https://doi.org/10.3390/cells9020426
https://doi.org/10.1080/10715762.2019.1629586
https://doi.org/10.1080/10715762.2019.1629586
https://doi.org/10.1136/ard-2022-222605
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1016/j.molcel.2021.01.032
https://doi.org/10.1016/j.molcel.2021.01.032
https://doi.org/10.1155/2022/7998725
https://doi.org/10.3389/fonc.2019.00876
https://doi.org/10.1002/art.20038
https://doi.org/10.1186/s13075-019-1818-x
https://doi.org/10.7150/ijbs.46627
https://doi.org/10.7150/ijbs.46627
https://doi.org/10.1016/j.yexcr.2018.01.019
https://doi.org/10.1016/j.yexcr.2018.01.019
https://doi.org/10.1155/2022/2475460
https://doi.org/10.1111/cei.13256
https://doi.org/10.1111/cei.13256
https://doi.org/10.1038/cmi.2017.133
https://doi.org/10.1186/s12958-018-0404-4
https://doi.org/10.1186/s12958-018-0404-4
https://doi.org/10.3390/ijms24087342
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238407


Xin, S., Liu, X., Li, Z., Sun, X., Wang, R., Zhang, Z., et al. (2023). ScRNA-seq
revealed an immunosuppression state and tumor microenvironment
heterogeneity related to lymph node metastasis in prostate cancer.
Exp. Hematol. Oncol. 12 (1), 49. doi:10.1186/s40164-023-00407-0

Yang, J., Liu, J., Li, J., Jing, M., Zhang, L., Sun, M., et al. (2022). Celastrol inhibits
rheumatoid arthritis by inducing autophagy via inhibition of the PI3K/AKT/mTOR
signaling pathway. Int. Immunopharmacol. 112, 109241. doi:10.1016/j.intimp.2022.
109241

Yong, M., Hu, J., Zhu, H., Jiang, X., Gan, X., and Hu, L. (2020). Circ-EEF2 facilitated
autophagy via interaction with mir-6881-3p and ANXA2 in EOC. Am. J. Cancer Res. 10
(11), 3737–3751.

Zhang, L., Li, W., Hou, Z., Wang, Z., Zhang, W., Liang, X., et al. (2023). Theaflavin-3,3’-
Digallate ameliorates collagen-induced arthritis through regulation of autophagy and
macrophage polarization. J. Inflamm. Res. 16, 109–126. doi:10.2147/jir.S374802

Zhao, J., Jiang, P., Guo, S., Schrodi, S. J., and He, D. (2021). Apoptosis, autophagy,
NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for
innovative therapy in rheumatoid arthritis. Front. Immunol. 12, 809806. doi:10.3389/
fimmu.2021.809806

Zhou, Y., Li, X., Ng, L., Zhao, Q., Guo, W., Hu, J., et al. (2023). Identification of
copper death-associated molecular clusters and immunological profiles in
rheumatoid arthritis. Front. Immunol. 14, 1103509. doi:10.3389/fimmu.2023.
1103509

Frontiers in Genetics frontiersin.org14

Dong et al. 10.3389/fgene.2023.1238407

https://doi.org/10.1186/s40164-023-00407-0
https://doi.org/10.1016/j.intimp.2022.109241
https://doi.org/10.1016/j.intimp.2022.109241
https://doi.org/10.2147/jir.S374802
https://doi.org/10.3389/fimmu.2021.809806
https://doi.org/10.3389/fimmu.2021.809806
https://doi.org/10.3389/fimmu.2023.1103509
https://doi.org/10.3389/fimmu.2023.1103509
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238407

	Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid ar ...
	1 Introduction
	2 Materials and methods
	2.1 Dataset collection
	2.2 Identification of differentially expressed autophagy-related genes (DE-ARGs)
	2.3 GO and KEGG analysis of DE-ARGs
	2.4 Identification of diagnostic biomarkers for RA
	2.5 Establishment and evaluation of nomogram
	2.6 Immune infiltration and immune-related factors

	3 Results
	3.1 Screening of differentially expressed autophagy-related genes
	3.2 GO and KEGG enrichment analysis of DE-ARGs in RA
	3.3 Three DE-ARGs served as diagnostic biomarkers for RA
	3.4 The performance of the diagnostic model
	3.5 Immune infiltration analysis
	3.6 Blood and synovial tissue validation of diagnostic model
	3.7 Differential expression of diagnostic biomarkers in different RA cohorts

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


