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Introduction: Lung cancer is one of themost frequent neoplasms worldwide with
approximately 2.2 million new cases and 1.8 million deaths each year. The
expression levels of programmed death ligand-1 (PDL1) demonstrate a
complex association with lung cancer. Neuroblastoma is a high-risk malignant
tumor and is mainly involved in childhood patients. Identification of new
biomarkers for these two diseases can significantly promote their diagnosis
and therapy. However, in vivo experiments to discover potential biomarkers are
costly and laborious. Consequently, artificial intelligence technologies, especially
machine learning methods, provide a powerful avenue to find new biomarkers for
various diseases.

Methods: We developed a machine learning-based method named LDAenDL to
detect potential long noncoding RNA (lncRNA) biomarkers for lung cancer and
neuroblastoma using an ensemble of a deep neural network and LightGBM.
LDAenDL first computes the Gaussian kernel similarity and functional similarity
of lncRNAs and the Gaussian kernel similarity and semantic similarity of diseases to
obtain their similar networks. Next, LDAenDL combines a graph convolutional
network, graph attention network, and convolutional neural network to learn the
biological features of the lncRNAs and diseases based on their similarity networks.
Third, these features are concatenated and fed to an ensemble model composed
of a deep neural network and LightGBM to find new lncRNA–disease associations
(LDAs). Finally, the proposed LDAenDL method is applied to identify possible
lncRNA biomarkers associated with lung cancer and neuroblastoma.

Results: The experimental results show that LDAenDL computed the best AUCs of
0.8701, 107 0.8953, and 0.9110 under cross-validation on lncRNAs, diseases, and
lncRNA-disease pairs on Dataset 1, respectively, and 0.9490, 0.9157, and 0.9708 on
Dataset 2, respectively. Furthermore, AUPRs of 0.8903, 0.9061, and 0.9166 under
three cross-validations were obtained on Dataset 1, and 0.9582, 0.9122, and 0.9743
on Dataset 2. The results demonstrate that LDAenDL significantly outperformed the
other four classical LDA prediction methods (i.e., SDLDA, LDNFSGB, IPCAF, and
LDASR). Case studies demonstrate that CCDC26 and IFNG-AS1 may be new
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biomarkers of lung cancer, SNHG3 may associate with PDL1 for lung cancer, and
HOTAIR and BDNF-AS may be potential biomarkers of neuroblastoma.

Conclusion: We hope that the proposed LDAenDL method can help the
development of targeted therapies for these two diseases.
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1 Introduction

Long non-coding RNAs (lncRNAs) are non-coding RNAs with
more than 200 nucleotides (Bertone et al., 2004; Peng et al., 2022a; Peng
et al., 2022b). LncRNAs play an important role in the development and
progression of various diseases (Lanjanian et al., 2021;Meng et al., 2021;
Yang and Li 2021; Peng et al., 2022c). LncRNAs have dense associations
withmany diseases, for example, lung cancer, colorectal cancer, prostate
cancer, andAlzheimer’s disease (Klattenhoff et al., 2013; Tan et al., 2013;
Chakravarty et al., 2014; He et al., 2014; Zhang et al., 2014). LncRNA
H19 is associated with the under-regulation of renal carcinoma cells
(Wang et al., 2015). The expression of EGOT in breast cancer is much
lower than one in adjacent noncancerous tissues (Broadbent et al.,
2008). NEAT1 is overexpressed in prostate cancer cells (Pasmant et al.,
2011). The identification of lncRNA-disease associations (LDAs) helps
us to further understand the biological processes and the molecular
mechanisms of various complex diseases. However, the number of
known and experimentally validated LDAs is very small. Thus, it is
important to identify potential LDAs. Determining LDAs through in
vivo experiments is costly and time-consuming, therefore, it is necessary
to design efficient computational approaches for identifying potential
LDAs (Meng et al., 2021; Peng et al., 2022d). Computational LDA
prediction methods are categorized as biological network-based
methods and machine learning-based methods.

Biological network-based methods use network algorithms for
association prediction (Liu et al., 2023a). This type of method first
constructs heterogeneous networks of lncRNAs and diseases and then
identifies LDAs via matrix decomposition, random walk, and so on. To
predict potential LDAs, LRWRHLDA combined Laplace normalized
random walk with restart (Wang et al., 2022), LDGRNMF used graph
regularized nonnegative matrix factorization (Wang et al., 2021),
DSCMF developed a dual sparse collaborative matrix factorization
approach (Liu et al., 2021a), RWSF-BLP added random walk-based
multi-similarity fusion to bidirectional label propagation (Xie et al.,
2021), HBRWRLDA utilized bi-random walk on hypergraphs (Xie
et al., 2022), and MHRWRLDA exploited a random walk model with
restart through multiplex and heterogeneous networks (Yao et al.,
2021).

With the fast advance of RNA sequencing technologies, artificial
intelligence has obtained wide applications in biomedical data
analysis (Peng et al., 2023a; Peng et al., 2023b; Xu et al., 2023).
Notably, artificial intelligence technologies, especially machine
learning methods, have been widely applied to predict miRNA-
disease associations (Liu et al., 2022) and circRNA-disease
associations (Liu et al., 2023b). To find new LDAs, HGATLDA
developed a novel heterogeneous graph attention network model
(Zhao et al., 2022), DeepMNE extracted multi-omics data and
designed a deep multi-network embedding model (Ma, 2022),
iLncDA-LTR is a rank-based method (Wu et al., 2022),

MAGCNSE utilized a graph convolutional network (Liang et al.,
2022), LDAformer extracted topological features and used a
transformer encoder for LDA classification (Zhou et al., 2022),
BiGAN explored a bidirectional generative adversarial network
(Yang et al., 2021), and SVDNVLDA extracted linear and non-
linear features and used an XGBoost for LDA prediction (Li et al.,
2021).

Computational methods have found many potential LDAs,
however, network-based methods were more likely to favor well-
investigated lncRNAs or diseases and can not predict LDAs for new
lncRNAs or new diseases. Machine learning-based methods failed to
effectively integrate different kernels from multiple data sources.
Thus, in this study, we developed a machine learning-based method
named LDAenDL to detect potential lncRNA biomarkers for lung
cancer and neuroblastoma based on an ensemble of a deep neural
network and LightGBM.

2 Materials and methods

As shown in Figure 1, LDAenDL first computes the Gaussian
kernel similarity and functional similarity of lncRNAs and the
Gaussian kernel similarity and semantic similarity of diseases to
obtain their similar networks. Next, LDAenDL combines a graph
convolutional network (GCN) (Kipf and Welling, 2016), graph
attention network (GAT) (Velickovic et al., 2017), and
convolutional neural network (Gu et al., 2018) to learn the
biological features of lncRNAs and diseases based on their
similarity networks. Third, these features are concatenated and
fed to an ensemble model composed of a deep neural network
(DNN) and LightGBM to find new LDAs. Finally, LDAenDL was
applied to identify possible lncRNA biomarkers associated with lung
cancer and neuroblastoma.

2.1 Data preparation

We used two human LDA datasets that were provided by Chen
et al. (2012) and Cui et al. (2018). Dataset 1 contains 605 LDAs
between 157 diseases and 82 lncRNAs. Dataset 2 contains
1,529 LDAs between 190 diseases and 89 lncRNAs. An LDA
network can be denoted as Y ∈ Rn×m where yij � 1 if lncRNA li
interacts with disease dj, otherwise, it equals 0.

2.2 Similarity computation

Inspired by the LDA-DLPU method (Peng et al., 2022a), we
computed the Gaussian kernel similarity and functional similarity of
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lncRNAs and the Gaussian kernel similarity and semantic similarity
of diseases. Based on the computed lncRNA similarity and disease
similarity matrices, we learned the features of lncRNAs and diseases
by combining a GCN, GAT, and CNN.

2.3 Feature learning

Dai et al. (2022) designed a hybrid graph representation learning
model (GraphCDA) to represent the features of circRNAs and diseases
and obtained better circRNA-disease association prediction
performance. Inspired by GraphCDA proposed by Dai et al. (2022),
we exploit a GraphCDA-based LDA feature learning model.

2.3.1 Graph convolutional network
A GCN was applied to obtain the feature representations of

lncRNAs and diseases based on their similarity networks. For a GCN
G, it is denoted as an adjacency matrix S ∈ RN×N with N nodes
where each node can be described as an F-dimensional vector. And
GCN outputs node representation matrix Hnew in Eqs 1, 2:

Hnew � GCN S,H( ) (1)
GCN S,H( ) � σ A−1

2S′A−1
2HQ( ) (2)

where S′ � I + S,A � ∑jSi,j
′ andQ ∈ RF×F denote degree matrix and

trainable weight matrix, and σ(·) denotes a ReLU activation
function.

2.3.2 Graph attention network
A GAT (Veličković et al., 2017) uses multi-head attention to set

weights for all adjacent nodes based on their importance. LDAenDL
introduces a GAT layer between two GCN layers to help the GCN to
extract high-level features of lncRNAs and diseases.

For the GCN G, a GAT layer outputs node representationsHnew

in Eq. 3:

Hnew � GAT S,H( ) (3)
For K attention mechanisms in multi-head attention and its

weight matrix Wk, let Hi
�→

denote the input feature vector of the i-th
lncRNA, its feature representation �H

new
i in Hnew can be denoted as

Eq. 4:

�H
new

i � σ
1
K
∑K
k�1

∑n
j ≠ i

ϕk
ijWk

�Hi
⎛⎝ ⎞⎠ (4)

where ϕkit denotes the k-th attention coefficients between two
lncRNA nodes i and t:

ϕk
ij �

exp f aTk Wk
�Hi ‖ Wk

�Hj ‖ BkSij[ ]( )( )
∑t≠i exp f aTk Wk

�Hi ‖ Wk
�Ht ‖ BkSit[ ]( )( ) (5)

where || denotes a concatenation operation, f denotes the
LeaklyReLU activation function, ak ∈ R2F+1 denotes a weight
vector related to the k-th attention mechanism, and Bk denotes
the weight of an edge Sij.

FIGURE 1
The pipeline of LDAenDL.
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2.3.3 Feature representation of lncRNAs and
diseases

For a lncRNA similarity network Gc, its adjacency matrix C, and
node feature matrix H(0)

c ∈ RNc×Fc , we alternately use GCN and
GAT layers to obtain the graph feature representation of lncRNAs at
different levels in Eq. 6:

H 1( )
c � GCN C,H 0( )

c( )
H 2( )

c � GAT C,H 1( )
c( )

H 3( )
c � GCN C,H 2( )

c( )
⎧⎪⎨⎪⎩ (6)

Thus, a 1D CNN is used to produce the lncRNA feature
representation matrix Xc by combining the output features H(1)

c

and H(3)
c in the different GCN layers.

Similarly, the graph feature representations of diseases at
different levels are denoted by Eq. 7:

H 1( )
d � GCN D,H 0( )

d( )
H 2( )

d � GAT D,H 1( )
d( )

H 3( )
d � GCN D,H 2( )

d( )
⎧⎪⎪⎨⎪⎪⎩ (7)

A 1D CNN is used to produce the disease feature representation
matrix Xc by combining the output features H(1)

d and H(3)
d in the

different GCN layers.

2.3.4 Preference matrix construction
The preference matrix U that describes all lncRNA-disease pairs

can be represented as Eq. 8 based on Xc and Xd:

U � Xc
TXd (8)

We used binary cross-entropy as the activation function to
evaluate the difference between the preference matrix U and the
known adjacency matrix R. By minimizing the loss function on two
LDA datasets, the feature representation matrices Xc and Xd of
lncRNAs and diseases are learned.

2.4 LDA prediction

2.4.1 DNN
We built a DNN to predict new LDAs based on known LDAs

and the learned LDA features. The DNN contains an input layer, an
output layer, and multiple hidden layers. In the input layer, there are
F neurons that are the same as the number of LDA features.

Given an LDA sample x, the input layer with k inputs is
represented by Eq. 9:

x � [x1, x2, . . .xk] (9)
where xi denotes the i-th feature in a sample x.

The hidden layer is represented by Eq. 10:

hj � ∑k

i�1 wixi + bj (10)

where wi and bj denote the weight of xi and the bias in the j-th
hidden layer, respectively.

The output in the j-th hidden layer is denoted by Eq. 11:

h � f hj( ) (11)

where f denotes a ReLU activation function. Finally, the output layer
with the sigmoid function outputs the LDA prediction results in Eq. 12:

σ h( ) � 1
1 + e−h

(12)

2.4.2 LightGBM
In this section, we built a LightGBM (Ke et al., 2017) to identify

new LDAs. For a training set X � (xi, yi){ }ni�1 with n lncRNA-
disease pair, LightGBM intends to build an approximation of f̂ to a
certain function f(x) by minimizing the expected value of loss
function L(y, f(x)) by Eq. 13:

f̂ � argmin
f

Ex,y L y, f x( )( )[ ] (13)

LightGBM integrates T regression trees ∑T
t�1 ft(X) to

approximate the final model by Eq. 14:

fT X( ) � ∑T

t�1ft X( ) (14)

The regression trees are expressed as wq(x), q ∈ 1, 2, . . . , J{ },
where J, q, and w denote the number of leaves, the decision rules
of the tree, and the sample weight of leaf nodes, respectively.

At step t, LightGBM is trained in an additive form:

Γt � ∑n
i�1
L yi, Ft−1 xi( ) + ft xi( )( ) (15)

The objective function (15) is rapidly approximated with
Newton’s method (Sun et al., 2020).

To solve the objective function of LightGBM,we removed the constant
term for simplicity, and model (15) can be represented as Eq. 16:

Γt � ∑n
i�1

gift xi( ) + 1
2
hif

2
t xi( )( ) (16)

where gi and hi are the first-order and second-order gradients
related to the loss function. Given the sample set Ij related to
leaf j, Eq. 16 is transformed to Eq. 17:

Γt � ∑J
j�1

∑
i∈Ij

gi
⎛⎝ ⎞⎠wj + 1

2
∑
i∈Ij

hi + λ⎛⎝ ⎞⎠w2
j

⎛⎝ ⎞⎠ (17)

Given a certain tree structure q(x), for each leaf node w*
j, its

optimal leaf weight and the extreme value of Γk could be computed by
Eq. 18:

w*
j � − ∑i∈Ij gi∑i∈Ij hi + λ

Γ*T � −1
2
∑J
j�1

∑
i ∈ Ij

gi( )2

∑i∈Ij hi + λ

(18)

where Γ*T is a scoring function used to evaluate the quality of a tree
structure q. Finally, Model (15) can be denoted as:

G � 1
2

∑i ∈ IL
gi( )2∑i∈IL hi + λ

+ ∑i ∈ IR
gi( )2∑i∈IR hi + λ

− ∑i ∈ I gi( )2∑i∈I hi + λ
⎛⎝ ⎞⎠ (19)
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where IL and IR denote the example sets in the left and right subtrees
of q, respectively.

2.4.3 Ensemble learning
Through the solution of models (12) and (15), we can identify

potential LDAs based on a DNN and LightGBM. Ensemble learning
has better prediction accuracy than a single model. To further
improve LDA prediction accuracy, we combined a DNN and
LightGBM and developed an ensemble model for LDA
identification through soft voting in Eq. 16:

Score � αCDNN + βCLightGBM (20)
where CDNN and CLightGBM denote LDA prediction results from
the DNN and LightGBM, respectively. α and β are their weights

with values of 0.4 and 0.6, respectively. In particular, a
lncRNA–disease pair is taken as an LDA if its association
probability is greater than 0.5; otherwise, the pair is taken as a
negative LDA.

3 Results

3.1 Evaluation metrics

In this article, we compared our proposed LDAenDL
method with four LDA prediction methods, SDLDA,
LDNFSGB, IPCAF, and LDASR. Precision, recall, accuracy,
F1-score, AUC, and AUPR were used to compare the

TABLE 1 Comparison of LDAenDL with the other four methods under CV1.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8514 ± 0.0509 0.7004 ± 0.0639 0.4878 ± 0.1309 0.6726 ± 0.1200 0.8764 ± 0.0493

Dataset 2 0.9399 ± 0.0154 0.8552 ± 0.0393 0.6615 ± 0.0966 0.8405 ± 0.0300 0.9391 ± 0.0290

Recall
Dataset 1 0.6521 ± 0.0732 0.6092 ± 0.0790 0.5721 ± 0.1580 0.5129 ± 0.0946 0.7019 ± 0.0639

Dataset 2 0.8239 ± 0.0437 0.8021 ± 0.0498 0.6434 ± 0.1545 0.7358 ± 0.0562 0.8304 ± 0.0523

Accuracy
Dataset 1 0.7799 ± 0.0341 0.6769 ± 0.0423 0.4906 ± 0.0951 0.6417 ± 0.0597 0.7996 ± 0.0312

Dataset 2 0.8857 ± 0.0283 0.8323 ± 0.0230 0.6526 ± 0.0775 0.7972 ± 0.0268 0.8879 ± 0.0289

F1-score
Dataset 1 0.7365 ± 0.0563 0.6462 ± 0.0451 0.5125 ± 0.1100 0.5668 ± 0.0536 0.7768 ± 0.0399

Dataset 2 0.8775 ± 0.0278 0.8260 ± 0.0230 0.6401 ± 0.1017 0.7827 ± 0.0260 0.8804 ± 0.0334

AUC
Dataset 1 0.8023 ± 0.0477 0.7346 ± 0.0465 0.5096 ± 0.1432 0.7057 ± 0.0420 0.8701 ± 0.0339

Dataset 2 0.9366 ± 0.0195 0.8839 ± 0.0270 0.7104 ± 0.0997 0.8641 ± 0.0256 0.9490 ± 0.0220

AUPR
Dataset 1 0.8461 ± 0.0553 0.7239 ± 0.0626 0.5336 ± 0.1423 0.6775 ± 0.0971 0.8903 ± 0.0273

Dataset 2 0.9533 ± 0.0129 0.8832 ± 0.0307 0.7128 ± 0.1012 0.8671 ± 0.0252 0.9582 ± 0.0167

The bold value denotes the best performance.

TABLE 2 Comparison of LDAenDL with the other four methods under CV2.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8854 ± 0.0377 0.7548 ± 0.0639 0.5583 ± 0.0910 0.7462 ± 0.0613 0.9135 ± 0.0317

Dataset 2 0.9232 ± 0.0331 0.8005 ± 0.0625 0.5557 ± 0.1473 0.7625 ± 0.0749 0.9528 ± 0.0225

Recall
Dataset 1 0.7182 ± 0.0694 0.7309 ± 0.0646 0.7538 ± 0.1067 0.6431 ± 0.0757 0.6649 ± 0.0814

Dataset 2 0.8579 ± 0.0655 0.6936 ± 0.0794 0.5279 ± 0.1969 0.5758 ± 0.0894 0.4616 ± 0.1702

Accuracy
Dataset 1 0.8187 ± 0.0282 0.7552 ± 0.0291 0.5766 ± 0.0740 0.7165 ± 0.0339 0.8005 ± 0.0381

Dataset 2 0.9043 ± 0.0174 0.7670 ± 0.0432 0.5593 ± 0.1159 0.7010 ± 0.0463 0.7196 ± 0.0821

F1-score
Dataset 1 0.7917 ± 0.0519 0.7407 ± 0.0526 0.6339 ± 0.0715 0.6873 ± 0.0512 0.7664 ± 0.0593

Dataset 2 0.8886 ± 0.0475 0.7402 ± 0.0577 0.5190 ± 0.1434 0.6485 ± 0.0555 0.6032 ± 0.1612

AUC
Dataset 1 0.8788 ± 0.0274 0.8329 ± 0.0273 0.6402 ± 0.1004 0.7951 ± 0.0317 0.8953 ± 0.0284

Dataset 2 0.9559 ± 0.0160 0.8603 ± 0.0363 0.5992 ± 0.1601 0.8045 ± 0.0362 0.9157 ± 0.0420

AUPR
Dataset 1 0.8934 ± 0.0387 0.8163 ± 0.0537 0.6355 ± 0.1217 0.7914 ± 0.0542 0.9061 ± 0.0254

Dataset 2 0.9561 ± 0.0354 0.8292 ± 0.0680 0.6040 ± 0.1476 0.7630 ± 0.0717 0.9122 ± 0.0436

The bold value denotes the best performance.
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performance of LDAenDL with the four methods. The six
metrics have been defined by Peng et al. (2022b) (Shen et al.,
2022).

3.2 Comparison of LDAenDL with the other
four methods

To implement the performance evaluation, inspired by the
three cross-validations proposed by Zhou et al. (2021), we
conducted cross-validations on lncRNAs (CV1), diseases
(CV2), and lncRNA-disease pairs (CV3). Tables 1–3 give the
precision, recall, accuracy, F1-score, AUC, and AUPR under
CV1, CV2, and CV3 on two LDA datasets. In Tables 1–6, the
bold font in each row denotes the best performance.

Under CV1, LDAenDL randomly took 80% of lncRNAs as
training samples, and the rest were taken as test samples to
investigate the LDA prediction ability for new lncRNAs. The
results from Table 1 show that our proposed LDAenDL
approach obtained the best precision, recall, accuracy, F1-score,
AUC, and AUPR on two datasets under CV1 except that it
computed slightly lower precision on Dataset 2 (0.9391 vs.
0.9399). It computed the highest AUPRs of 0.8903 and 0.9582,
and far exceeded the AUPR values computed by SDLDA
(i.e., 0.8461 and 0.9533).

Figure 2 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV1. The results demonstrated that LDAenDL can discover
possible diseases associated with a new lncRNA.

Under CV2, LDAenDL randomly took 80% of diseases as
training samples, and the rest were taken as test samples to
investigate the LDA prediction ability for new diseases. The
results from Table 2 show that our proposed LDAenDL
approach obtained better precision, AUC, and AUPR on two
datasets under CV2. However, SDLDA computed higher recall,

accuracy, and F1-score than LDAenDL, which may be caused by
smaller disease samples.

Figure 3 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV2. The results show that LDAenDL can be applied to screen
possible lncRNAs associated with a new disease.

Under CV3, LDAenDL randomly took 80% of lncRNA-disease
pairs as training samples, and the rest were taken as test samples to
investigate the LDA prediction ability. The results from Table 3 show
that our proposed LDAenDL approach obtained the best precision,
recall, accuracy, F1-score, AUC, andAUPR on two datasets under CV3.
It computed the highest AUCs of 0.9110 and 0.9708 and far exceeded

TABLE 3 Comparison of LDAenDL with the other four methods under CV3.

SDLDA LDNFSGB IPCARF LDASR LDAenDL

Precision
Dataset 1 0.8782 ± 0.0306 0.7782 ± 0.0270 0.7069 ± 0.0478 0.7695 ± 0.0393 0.8637 ± 0.0312

Dataset 2 0.9178 ± 0.0154 0.8548 ± 0.0156 0.7693 ± 0.0850 0.8553 ± 0.0189 0.9351 ± 0.0157

Recall
Dataset 1 0.7256 ± 0.0376 0.8169 ± 0.0408 0.6155 ± 0.0652 0.6836 ± 0.0342 0.8234 ± 0.0314

Dataset 2 0.8824 ± 0.0198 0.8818 ± 0.0204 0.5034 ± 0.1469 0.8204 ± 0.0238 0.8999 ± 0.0179

Accuracy
Dataset 1 0.8120 ± 0.0216 0.7916 ± 0.0256 0.6793 ± 0.0403 0.7385 ± 0.0283 0.8462 ± 0.0229

Dataset 2 0.9015 ± 0.0114 0.8658 ± 0.0127 0.6793 ± 0.0753 0.8405 ± 0.0129 0.9186 ± 0.0126

F1-score
Dataset 1 0.7939 ± 0.0260 0.7965 ± 0.0262 0.6563 ± 0.0492 0.7233 ± 0.0289 0.8426 ± 0.0232

Dataset 2 0.8996 ± 0.0119 0.8679 ± 0.0129 0.5995 ± 0.1312 0.8371 ± 0.0137 0.9171 ± 0.0130

AUC
Dataset 1 0.8774 ± 0.0200 0.8578 ± 0.0234 0.7384 ± 0.0466 0.8133 ± 0.0218 0.9110 ± 0.0197

Dataset 2 0.9560 ± 0.0081 0.9346 ± 0.0074 0.7680 ± 0.0882 0.9143 ± 0.0112 0.9708 ± 0.0062

AUPR
Dataset 1 0.8952 ± 0.0177 0.8489 ± 0.0289 0.7409 ± 0.0515 0.8131 ± 0.0277 0.9166 ± 0.0203

Dataset 2 0.9639 ± 0.0063 0.9273 ± 0.0098 0.7689 ± 0.0924 0.9100 ± 0.0136 0.9743 ± 0.0058

The bold value denotes the best performance.

TABLE 4 Comparison of LDAenDL with individual models under CV1.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.8772 ± 0.0461 0.8569 ± 0.0511 0.8764 ± 0.0493

Dataset 2 0.9149 ± 0.0375 0.9386 ± 0.0278 0.9391 ± 0.0290

Recall
Dataset 1 0.6851 ± 0.0694 0.7106 ± 0.0714 0.7019 ± 0.0639

Dataset 2 0.8337 ± 0.0510 0.8278 ± 0.0533 0.8304 ± 0.0523

Accuracy
Dataset 1 0.7930 ± 0.0317 0.7939 ± 0.0340 0.7996 ± 0.0312

Dataset 2 0.8772 ± 0.0288 0.8865 ± 0.0295 0.8879 ± 0.0289

F1-score
Dataset 1 0.7664 ± 0.0429 0.7737 ± 0.0446 0.7768 ± 0.0399

Dataset 2 0.8711 ± 0.0321 0.8786 ± 0.0344 0.8804 ± 0.0334

AUC
Dataset 1 0.8712 ± 0.0373 0.8622 ± 0.0340 0.8701 ± 0.0339

Dataset 2 0.9308 ± 0.0209 0.9497 ± 0.0227 0.9490 ± 0.0220

AUPR
Dataset 1 0.8842 ± 0.0327 0.8822 ± 0.0284 0.8903 ± 0.0273

Dataset 2 0.9449 ± 0.0190 0.9586 ± 0.0171 0.9582 ± 0.0167

The bold value denotes the best performance.
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those computed by SDLDA (i.e., 0.8774 and 0.9560). Furthermore, our
LDAenDL approach computed the highest AUPRs of 0.9166 and
0.9743 and far exceeded those computed by SDLDA (i.e., 0.8952,
and 0.9639).

Figure 4 shows the AUC and AUPR values computed by
LDAenDL and the other four methods on two datasets under
CV3. The results demonstrated that LDAenDL could find
potential LDAs based on known LDAs.

TABLE 5 Comparison of LDAenDL with individual models under CV2.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.9049 ± 0.0383 0.8927 ± 0.0309 0.9135 ± 0.0317

Dataset 2 0.9274 ± 0.0412 0.9439 ± 0.0283 0.9528 ± 0.0225

Recall
Dataset 1 0.6182 ± 0.1006 0.6873 ± 0.0734 0.6649 ± 0.0814

Dataset 2 0.3426 ± 0.1457 0.5370 ± 0.1739 0.4616 ± 0.1702

Accuracy
Dataset 1 0.7759 ± 0.0453 0.8017 ± 0.0336 0.8005 ± 0.0381

Dataset 2 0.6580 ± 0.0689 0.7533 ± 0.0842 0.7196 ± 0.0821

F1-score
Dataset 1 0.7289 ± 0.0794 0.7740 ± 0.0493 0.7664 ± 0.0593

Dataset 2 0.4835 ± 0.1531 0.6678 ± 0.1537 0.6032 ± 0.1612

AUC
Dataset 1 0.8853 ± 0.0374 0.8869 ± 0.0281 0.8953 ± 0.0284

Dataset 2 0.8412 ± 0.0512 0.9164 ± 0.0441 0.9157 ± 0.0420

AUPR
Dataset 1 0.8882 ± 0.0368 0.8981 ± 0.0257 0.9061 ± 0.0254

Dataset 2 0.8416 ± 0.0530 0.9150 ± 0.0466 0.9122 ± 0.0436

The bold value denotes the best performance.

TABLE 6 Comparison of LDAenDL with individual models under CV3.

DNN LightGBM LDAenDL

Precision
Dataset 1 0.8561 ± 0.0357 0.8477 ± 0.0320 0.8637 ± 0.0312

Dataset 2 0.9214 ± 0.0171 0.9322 ± 0.0157 0.9351 ± 0.0157

Recall
Dataset 1 0.8241 ± 0.0373 0.8110 ± 0.0381 0.8234 ± 0.0314

Dataset 2 0.8983 ± 0.0204 0.8936 ± 0.0176 0.8999 ± 0.0179

Accuracy
Dataset 1 0.8419 ± 0.0244 0.8322 ± 0.0265 0.8462 ± 0.0229

Dataset 2 0.9106 ± 0.0130 0.9142 ± 0.0122 0.9186 ± 0.0126

F1-score
Dataset 1 0.8389 ± 0.0247 0.8284 ± 0.0277 0.8426 ± 0.0232

Dataset 2 0.9095 ± 0.0134 0.9124 ± 0.0126 0.9171 ± 0.0130

AUC
Dataset 1 0.9076 ± 0.0225 0.9015 ± 0.0204 0.9110 ± 0.0197

Dataset 2 0.9562 ± 0.0107 0.9692 ± 0.0064 0.9708 ± 0.0062

AUPR
Dataset 1 0.9067 ± 0.0244 0.9082 ± 0.0215 0.9166 ± 0.0203

Dataset 2 0.9611 ± 0.0102 0.9728 ± 0.0061 0.9743 ± 0.0058

The bold value denotes the best performance.

FIGURE 2
The AUC and AUPR values of five LDA prediction methods under CV1.
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FIGURE 3
The AUC and AUPR values of five LDA prediction methods under CV2.

FIGURE 4
The AUC and AUPR values of five LDA prediction methods under CV3.
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3.3 Comparison of LDAenDL with individual
models

To measure the effect of the ensemble algorithm on LDA
prediction performance, we compared LDAenDL with two
individual models, DNN, and LightGBM. Tables 4–6 show the
precision, recall, accuracy, F1-score, AUC, and AUPR of the
DNN, LightGBM, and LDAenDL under CV1, CV2, and CV3,
respectively.

Under CV1, as shown in Table 4, LDAenDL outperformed
the DNN and LightGBM on two LDA datasets for the majority of
conditions. LDAenDL computed the best accuracy and F1-score
on the two datasets. Although LDAenDL computed slightly lower
AUC value than the DNN on dataset 1, and still slightly lower
AUC than LightGBM on dataset 2, their differences were very
small. For example, the DNN computed an AUC of 0.8712 while
LDAenDL computed 0.8701 on dataset 1, and the DNN
calculated an AUC of 0.9497 while LDAenDL calculated
0.9490 on dataset 2. LDAenDL obtained the best AUPR on
dataset 1, and LightGBM obtained an AUPR of 0.9586 while
LDAenDL obtained an AUPR of 0.9582.

Under CV2, as shown in Table 5, LDAenDL outperformed the
DNN under all conditions on two LDA datasets. Recall, accuracy,

TABLE 7 The predicted top 20 lncRNA biomarkers for lung cancer in each of the two datasets.

Dataset 1 Dataset 2

Rank lncRNA Evidence Rank lncRNA Evidence

1 TUG1 27485439, 31532756 1 TUG1 27485439, 31532756

2 CRNDE 28550688, 30982057 2 DLEU2 31721438

3 DANCR 30535487, 32196604 3 WT1-AS 32349718

4 MIAT 29795987 4 CRNDE 28550688, 30982057

5 NPTN-IT1 27896272, 29416684 5 DANCR 30535487, 32196604

6 HNF1A-AS1 25863539 6 SNHG11 32239719

7 LINC00032 Unconfirmed 7 IFNG-AS1 Unconfirmed

8 WT1-AS 32349718 8 HULC 30575912

9 CBR3-AS1 32945466 9 XIST 29812958

10 HULC 30575912 10 PCA3 Unconfirmed

11 CCDC26 Unconfirmed 11 SRA1 Unconfirmed

12 SNHG3 31602642 12 HAR1A Unconfirmed

13 PVT1 27904703 13 DSCAM-AS1 32280246

14 BCAR4 28537678 14 NPTN-IT1 27896272, 29416684

15 PTENP1 32698750 15 TCL6 Unconfirmed

16 RMST Unconfirmed 16 PTENP1 32698750

17 LSINCT5 20214974 17 PANDAR 28121347

18 MIR155HG 32432745 18 TDRG1 31742752

19 BOK-AS1 Unconfirmed 19 KCNQ1OT1 31486494

20 KCNQ1OT1 31486494 20 IGF2-AS 28471495

FIGURE 5
The top 20 predicted lncRNA biomarkers for lung cancer in each of
the two datasets (The repeated lncRNAs in the two datasets have been
removed). This figure was drawn using Cytoscape (Shannon et al., 2003).
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and F1-score computed by LightGBM were slightly better than
LDAenDL on the two datasets. But it calculated the best AUC
and AUPR on dataset 1.

Under CV3, as shown in Table 6, LDAenDL computed the
highest precision, recall, accuracy, F1-score, AUC, and AUPR on
the two LDA datasets except that it computed a slightly lower
recall on dataset 1. The results demonstrate that LDAenDL is
appropriate to predict possible LDAs from unknown lncRNA-
disease pairs.

3.4 Case study

3.4.1 Identifying possible lncRNA biomarkers for
lung cancer

Lung cancer is one of the most prevalent causes of mortality
globally. It mainly contains small cell lung cancer and non-small
cell lung cancer. Targeted drug therapy is its one therapeutic
option (Lahiri et al., 2023). We used the proposed LDAenDL
method to predict possible lncRNA biomarkers for lung cancer.
Table 7 shows the predicted top 20 lncRNA biomarkers for lung
cancer. The 20 lncRNA biomarkers associated with lung cancer
have no known association information with lung cancer in the
two datasets.

In dataset 1, LDAenDL predicted that CCDC26 could be
associated with lung cancer. CCDC26 can enhance thyroid
cancer malignant progression (Ma et al., 2021). It promotes
imatinib resistance in human gastrointestinal stromal tumors
(Yan et al., 2019). Its inhibition could increase the sensitivity of
doxorubicin in MDR-CML cells (Liu et al., 2021b). In this study, we
predicted that CCDC26 could be associated with lung cancer in
dataset 1.

In dataset 2, LDAenDL predicted that IFNG-AS1 could be
associated with lung cancer. IFNG-AS1 has been reported in
long-lasting memory T cells (Castellucci et al., 2021). It can
boost interferon gamma generation in human natural killer cells
(Stein et al., 2019). We identified that IFNG-AS1 could be associated
with lung cancer in Dataset 2.

Figure 5 shows the top 20 predicted lncRNAs associated with lung
cancer in each of the two datasets. Yellow solid lines and blue solid lines
denote lncRNA-lung cancer associations confirmed by the literatures
among the predicted top 20 associations on datasets 1 and 2,
respectively. Grey solid lines denote the predicted and co-occurring
lncRNA-lung cancer associations that can be confirmed by the
literatures in the two datasets, and grey dashed lines denote the
predicted and unconfirmed lncRNA-lung cancer associations in the
two datasets. The repeated lncRNAs in the two datasets have been
removed.

TABLE 8 The top 20 predicted lncRNA biomarkers for neuroblastoma in each of the two datasets.

Dataset 1 Dataset 2

Rank lncRNA Evidence Rank lncRNA Evidence

1 HOTAIR Unconfirmed 1 BDNF-AS Unconfirmed

2 HNF1A-AS1 Unconfirmed 2 SNHG4 32614236

3 CDKN2B-AS1 Unconfirmed 3 BANCR Unconfirmed

4 GAS5 28035057 4 HAR1A Unconfirmed

5 CCAT1 Unconfirmed 5 HCP5 33189302

6 TUG1 Unconfirmed 6 TUG1 Unconfirmed

7 UCA1 Unconfirmed 7 HOTAIR Unconfirmed

8 CRNDE Unconfirmed 8 SRA1 Unconfirmed

9 WT1-AS Unconfirmed 9 TERC Unconfirmed

10 BANCR Unconfirmed 10 SPRY4-IT1 Unconfirmed

11 WRAP53 Unconfirmed 11 KCNQ1OT1 31433907

12 SPRY4-IT1 Unconfirmed 12 IGF2-AS 30914706

13 CCAT2 33475889 13 PTENP1 Unconfirmed

14 CCDC26 Unconfirmed 14 CCAT1 Unconfirmed

15 PVT1 Unconfirmed 15 PCAT1 Unconfirmed

16 HULC Unconfirmed 16 NPTN-IT1 Unconfirmed

17 CASC2 Unconfirmed 17 DGCR5 Unconfirmed

18 DANCR 34050113 18 HULC Unconfirmed

19 KCNQ1OT1 31433907 19 BOK-AS1 Unconfirmed

20 7SK Unconfirmed 20 BCYRN1 Unconfirmed
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3.4.2 Identifying possible lncRNAs associated with
PDL1 for lung cancer

Recent advances in lung cancer treatment have demonstrated
significant responses in patients when they were treated with
programmed death-1/programmed death-ligand 1 (PD-1/PD-L1)
checkpoint blockade immunotherapies (Lahiri et al., 2023). To find
possible lncRNAs associated with PDL1 for lung cancer, inspired by
LPI-DLDN proposed by Peng et al. (2022a), we first downloaded the
sequence of PDL1 from the UniProt database. Next, we extracted the
biological features of PDL1 and depicted PDL1 as a 10,029-dimensional
vector using BioTriangle. Finally, we used cosine similarity to compute
the similarities between PDL1 and the other proteins in a lncRNA-
protein interaction dataset (Li et al., 2015) and found the top 3 proteins
with the highest interaction probabilities with PDL1. The results show
that SNHG3 has a higher interaction probability with PDL1 and has
been reported to be associated with lung cancer.

3.4.3 Identifying possible lncRNA biomarkers for
neuroblastoma

Neuroblastoma is the most frequent pediatric solid tumor and
accounts for approximately 15% of childhood cancer-related
mortality (Zafar et al., 2021). We used the proposed LDAenDL
method to identify possible lncRNA biomarkers for neuroblastoma.
Table 8 shows the top 20 predicted lncRNA biomarkers for
neuroblastoma in each of the two datasets. The repeated
lncRNAs in the two datasets have been removed.

In dataset 1, we predicted that HOTAIR could be associated with
neuroblastoma with the highest probability. HOTAIR is a novel oncogenic
biomarker in human cancer (Rajagopal et al., 2020). Its knockdown can
promote radiosensitivity in colorectal cancer (Liu et al., 2020). It also can
enhance the carcinogenesis of gastric (Zhang et al., 2020). We identified
that HOTAIR may be one biomarker of neuroblastoma in dataset 1.

In dataset 2, we predicted that BDNF-AS could be associated
with neuroblastoma with the highest probability. PABPC1-induced
stabilization of BDNF-AS helps the inhibition of malignant
progression in glioblastoma cells (Su et al., 2020). It can regulate
the miR-9-5p/BACE1 pathway that affects neurotoxicity in
Alzheimer’s disease (Ding et al., 2022). We identified that BDNF-
AS is a possible biomarker of neuroblastoma in dataset 2.

Figure 6 shows the top 20 predicted lncRNAs associated with
neuroblastoma in each of the two datasets. Yellow solid lines and
blue solid lines denote lncRNA-neuroblastoma associations
confirmed by the literatures among the predicted top 20
associations on datasets 1 and 2, respectively. Grey solid lines
denote the predicted and co-occurring lncRNA-neuroblastoma
associations that can be confirmed by the literatures in the two
datasets, and grey dashed lines denote the predicted and
unconfirmed lncRNA-neuroblastoma associations in the two
datasets. The repeated lncRNAs in the two datasets have been
removed.

4 Conclusion

Lung cancer and neuroblastoma are two human diseases that
severely affect the human body. Detecting new biomarkers for
them contributes to their diagnosis and therapy. Experimental
biomarker identification methods are costly and laborious. Thus,
we developed a machine learning-based method named
LDAenDL to predict possible lncRNA biomarkers for the two
diseases based on an ensemble of a deep neural network and
LightGBM. LDAenDL first computed lncRNA similarity and
disease similarity and then combined a GCN, GAT, and CNN
to learn the biological features of lncRNAs and diseases. Finally,
these features were fed to a DNN and LightGBM to find
new LDAs.

LDAenDL was compared with the other four classical LDA
prediction methods (i.e., SDLDA, LDNFSGB, IPCAF, and LDASR).
The results showed that LDAenDL computed the best AUCs and
AUPRs under three cross-validations on two LDA datasets,
demonstrating the optimal LDA prediction performance of
LDAenDL. We further identified possible lncRNA biomarkers for
lung cancer and neuroblastoma. The results demonstrated that
CCDC26 and IFNG-AS1 may be new biomarkers for lung
cancer, SNHG3 may be associated with PDL1 for lung cancer,
and HOTAIR and BDNF-AS may be potential biomarkers for
neuroblastoma.

In the future, we will combine data from multiple sources, for
example, miRNA, circRNA, and drugs, to improve LDA identification
performance. We will also design a new deep-learning model to
efficiently extract the biological features of lncRNAs and diseases for
LDA prediction. We hope that the proposed LDAenDL can help the
development of targeted therapies for these two diseases.
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FIGURE 6
The top 20 predicted lncRNA biomarkers for neuroblastoma in
each of the two datasets. (The repeated lncRNAs in the two datasets
have been removed). This figurewas drawn using Cytoscape (Shannon
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