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Transcription-factor binding to cis-regulatory regions regulates the gene
expression program of a cell, but occupancy is often a poor predictor of the
gene response. Here, we show that glucocorticoid stimulation led to the
reorganization of transcriptional coregulators MED1 and BRD4 within
topologically associating domains (TADs), resulting in active or repressive
gene environments. Indeed, we observed a bias toward the activation or
repression of a TAD when their activities were defined by the number of
regions gaining and losing MED1 and BRD4 following dexamethasone (Dex)
stimulation. Variations in Dex-responsive genes at the RNA levels were
consistent with the redistribution of MED1 and BRD4 at the associated
cis-regulatory regions. Interestingly, Dex-responsive genes without the
differential recruitment of MED1 and BRD4 or binding by the
glucocorticoid receptor were found within TADs, which gained or lost
MED1 and BRD4, suggesting a role of the surrounding environment in
gene regulation. However, the amplitude of the response of Dex-
regulated genes was higher when the differential recruitment of the
glucocorticoid receptor and transcriptional coregulators was observed,
reaffirming the role of transcription factor-driven gene regulation and
attributing a lesser role to the TAD environment. These results support a
model where a signal-induced transcription factor induces a regionalized
effect throughout the TAD, redefining the notion of direct and indirect
effects of transcription factors on target genes.
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Introduction

Gene regulation is controlled by the recruitment of transcriptional
regulators to cis-regulatory regions and implicates an intricate interplay
with the chromatin environment and the chromosome architecture
(Lee and Young, 2013; Kim and Shendure, 2019; Schoenfelder and
Fraser, 2019). In fact, the environment surrounding a gene is an
important determinant of its transcriptional regulation as
exemplified by the gene position effect (Elgin and Reuter, 2013).
Furthermore, the use of transgenes in animal models highlighted
that the integration site is a major determinant of expression levels.
Random integration of transgenes in the mouse genome confirmed
large differences in transcription levels depending on the integration site
(Akhtar et al., 2013). In fact, the transgene typically adopts the
chromatin environment of the integration site, which will influence
gene regulation (Akhtar et al., 2013; Despang et al., 2019). However,
why and how this process takes place remains poorly understood.

In higher eukaryotes, genes are clustered not only in the linear
genome but also in the three-dimensional genome (Bonev and
Cavalli, 2016; Rowley and Corces, 2018; Schoenfelder and Fraser,
2019; Misteli, 2020). Indeed, physical interactions between genomic
regions create a multilevel structure. At high levels, compartments A
and B segregate actively transcribed regions from repressed regions
(Lieberman-Aiden et al., 2009; Dixon et al., 2012; Wang et al., 2016).
At a smaller scale, topologically associating domains (TADs)
represent self-interacting regions favoring contacts between cis-
regulatory regions and genes (Lieberman-Aiden et al., 2009; Nora
et al., 2012; Wang et al., 2016). In addition to physical proximity
between genes, there is an expanding body of evidence suggesting
that genes are transcriptionally co-regulated in response to external
signals (Osborne et al., 2004; Fanucchi et al., 2013). In fact, genes
belonging to the same TAD are often co-expressed (Le Dily et al.,
2014; Boudaoud et al., 2017; Hsieh et al., 2020; Krietenstein et al.,
2020). For instance, activated and repressed genes following steroid
stimulation are often segregated into distinct TADs (Le Dily et al.,
2014; Vockley et al., 2016; D’Ippolito et al., 2018). In addition to
TADs, smaller structures such as sub-TADs (Rao et al., 2014; Rowley
et al., 2017; Huang et al., 2019) and co-expression domains (Osborne
et al., 2004; Soler-Oliva et al., 2017) have also been supporting the
notion of gene co-regulation. Yet, the mechanisms driving gene co-
regulation in response to external signals are still unclear.

Transcription factors modify the transcriptional program in
response to external signals by converging toward sequence-
specific DNA motifs within cis-regulatory regions. Accordingly,
they play major roles in normal and disease development by
establishing and maintaining cell states (Lee and Young, 2013).
Across the genome, transcription factors bind in clusters and
synergize to control the transcriptional program (Spitz and
Furlong, 2012; Voss and Hager, 2015; Liu and Tjian, 2018).
Transcription factors and their coregulators form condensates,
creating dynamic environments surrounding active genes (Hnisz
et al., 2017; Boija et al., 2018; Cho et al., 2018; Chong et al., 2018;
Sabari et al., 2018; Zamudio et al., 2019). Furthermore, it is generally
accepted that physical proximity between enhancer and promoter
regions is responsible for transmitting the effect of distally bound
transcription factors to promoter regions (Deng et al., 2012; 2014;
Lee et al., 2015; Chen et al., 2018). However, transcriptional changes
are often observed without evidence of direct occupancy by the

induced transcription factors or proximity of the cis-regulatory
regions with the gene promoter (Alexander et al., 2019;
Benabdallah et al., 2019; Schoenfelder and Fraser, 2019). These
observations suggest that transcription factors create a regionalized
impact on a gene domain through modulation of coregulators and/
or the chromosome architecture.

Signal-induced transcription factor stimulations, including
steroid nuclear receptors, are associated with a global
redistribution of transcriptional coregulators, leading to the
activation or repression of specific genes (López-Maury et al.,
2008; Voss and Hager, 2015). Among them, the glucocorticoid
receptor (GR, NR3C1) leads to the rapid activation and
repression of target genes (Reddy et al., 2009). Interestingly, gene
activation and repression are not always correlated with GR DNA
occupancy (Thormann et al., 2018), suggesting the implication of
alternative mechanisms involved in gene regulation. Considering
that the GR interacts with a large number of transcriptional
coregulators, activation and repression mechanisms were
suggested to involve competition mechanisms with other
transcription factors (Schmidt et al., 2016). Since, GR-responsive
genes are spatially connected through pre-stimulation interactions
(D’Ippolito et al., 2018; Portuguez et al., 2022), an interesting
possibility is that signal-induced transcription factors, when
activating and repressing, modulate the microenvironment within
a gene domain leading to co-regulated transcriptional changes.

Here, we show that glucocorticoids, through the GR, induce a
reorganization of transcriptional coregulators MED1 and BRD4.
These regionalized changes in gene regulation are secluded within
TADs, showing gains and losses in MED1 and BRD4. The presence
of a gene within a changing TAD is an important determinant of the
gene response. Our model proposes that regionalized gene
regulation within TADs is a direct consequence of the
modulation of the levels of transcriptional coregulators in
response to glucocorticoids.

Materials and methods

Cell culture

A549 (ATCC, CCL-185) cells were grown in F12K medium
(Gibco, 21127022). The culture medium was supplemented with
10% fetal bovine serum (Invitrogen, qualified 12483020), 100 μM
MEM non-essential amino acids (Cellgro, 25-0250), 2 mM
L-glutamine (Gibco, 25030-081), 100 U/mL penicillin, and
100 μg/mL streptomycin (Gibco, 15170-063). For Dex (Sigma,
D1756) stimulations, cells were kept for 3 days in phenol red-free
DMEM (Corning, #17-205-CV) supplemented with 5% charcoal/
dextran-stripped fetal bovine serum (Fisher, #SH3006803), 100 μM
MEM non-essential amino acids, 2 mM L-glutamine, 100 U/mL
penicillin, and 100 μg/mL streptomycin. A Dex concentration of
100 nM was used for 60 min.

ChIP-seq

ChIP-seq experiments were performed as described previously
(Bilodeau et al., 2009; Kagey et al., 2010; Fournier et al., 2016;
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Boudaoud et al., 2017). In brief, 50 million cells were cross-linked for
10 min with 1% formaldehyde and quenched with 125 mM glycine
for 5 min. Cells were then washed with PBS, pelleted, flash frozen,
and stored at −80°C. Sonicated DNA fragments were
immunoprecipitated with antibodies directed against MED1
(Bethyl Laboratories, A300-793A) and BRD4 (Bethyl
Laboratories, A301-985A50). Library preparation and high-
throughput sequencing were performed at the McGill University
and Génome Québec Innovation Centre (MUGQIC), Montréal,
Canada. Previously published GR ChIP-seq raw data were
retrieved from the ENCODE portal. Analysis of raw sequencing
reads was performed using the standard analysis pipelines for
quality control, enrichment quantification, and visualization from
the Canadian Center for Computational Genomics (Bourgey et al.,
2019) for ChIP-seq analysis (version 4.1.2). In brief, reads were
trimmed using Trimmomatic (Bolger et al., 2014). High-quality
reads were aligned to the human reference genome (hg38) using the
BWA (Li and Durbin, 2009) aligner. PCR duplicates were removed
using Picard’s MarkDuplicates (http://broadinstitute.github.io/
picard/). Narrow peaks were called using MACS2 (Zhang et al.,
2008) callpeak with the following options: --nomodel --gsize
2479938032.8 and supplying the sequenced corresponding input
DNA as the background control. Peaks overlapping with ENCODE
DAC exclusion list regions (Amemiya et al., 2019) (accession
number ENCSR636HFF) and belonging to non-standard
chromosomes were removed. Analysis of read coverages per bins
was performed using multiBamSummary from deepTools 3.5.1
(Ramírez et al., 2016). To identify differentially occupied regions,
we used the R package DiffBind (Ross-Innes et al., 2012) [using the
DESeq2 method (Love et al., 2014)] with the following parameters:
summits = TRUE, minOverlaps = 2, and adjusted p-value (false
discovery rate) < 5%. The volcano plot was generated using the R
package EnhancedVolcano. Heatmaps were generated using
computeMatrix and plotHeatmap from deepTools 3.5.1. To
generate genomic visualizations, reads from BAM files were
normalized using reads per kilobase per million mapped reads
(RPKM), extended to 225 bp using the bamCoverage function
from deepTools 3.5.1 (Ramírez et al., 2016), and uploaded to the
University of California, Santa Cruz (UCSC) Genome Browser
(Kent et al., 2002). To identify enriched DNA-binding motifs, the
CentriMo tool (version 5.5.3) (Bailey and MacHanick, 2012) from
MEME suite was used with --local --score 5.0 --ethresh 10.
0 parameters as the input and the JASPAR database for non-
redundant transcription factor binding sites in eukaryotes
(Castro-Mondragon et al., 2022) as reference.

Genomic region–gene associations were performed using the
Genomic Regions Enrichment of Annotations Tool implemented in
the R package rGREAT (McLean et al., 2010; Gu and Hübschmann,
2023) using “basal plus extension” as a gene regulatory domain
definition and a maximum extension of 10 kb. To assign distal cis-
regulatory regions to genes, genomic regions were integrated with
chromatin interactions from Hi-C data (described in the following
section). The ChromHMM 18-state model dataset from human
A549 cells following 1 h Dex stimulation was retrieved from the
ENCODE consortium website (accession number ENCSR931PHX).
The percentages were computed as the proportion of nucleotides
overlapping with each chromatin state. The 18 chromatin states are
as follows: active transcription start site (TssA), flanking

transcription start site (TssFlnk), upstream flanking transcription
start site (TssFlnkU), downstream flanking transcription start site
(TssFlnkD), strong transcription (Tx), weak transcription (TxWk),
genic enhancer 1 (EnhG1), genic enhancer 2 (EnhG2), active
enhancer 1 (EnhA1), active enhancer 2 (EnhA2), weak enhancer
(EnhWk), ZNF genes and repeats (ZNF/Rpts), heterochromatin
(Het), bivalent/poised TSS (TssBiv), bivalent enhancer (EnhBiv),
repressed Polycomb (ReprPC), weak repressed Polycomb
(ReprPCWk), and Quiescent/low (Quies).

Chromosome architecture

A549 Hi-C raw data (D’Ippolito et al., 2018; McDowell et al.,
2018) were retrieved from the ENCODE portal (Davis et al.,
2018) and processed using the HiC-Pro pipeline version 3.1.0
(Servant et al., 2015). In brief, paired-end reads were aligned to
the hg38 reference genome using Bowtie 2 (Langmead and
Salzberg, 2012), and default parameters were used to remove
duplicate and low-map quality reads and assign reads to MboI
restriction fragments. Hi-C interaction matrices were generated
at a resolution of 50, 10, and 5 kb. Significant chromatin
interactions were identified using FitHic2 version 2.0.8 (Kaul
et al., 2020) at 5 kb and 10 kb resolution of the interaction matrix
in control and Dex (1 h) conditions. The GenomicInteractions R
package (Harmston et al., 2015) was used for manipulating
chromatin interaction data. TADs were identified at a
resolution of 50 kb using Armatus version 2.3 (Filippova et al.,
2014) with a gamma parameter of 0.8. For each TAD, the number
of regions gaining and losing MED1 and BRD4 was computed to
calculate the TAD score using the following formula: gain/(gain +
loss).

Transcriptomic

Previously published Dex-stimulated A549 RNA-seq raw data
were retrieved from the ENCODE portal and processed using the
MUGQIC RNA-Seq pipeline version 4.1.2 (Bourgey et al., 2019). In
brief, reads were trimmed for adaptor sequences using
Trimmomatic (Bolger et al., 2014). High-quality reads were
aligned to the human reference genome (hg38) using the STAR
aligner (Dobin et al., 2013). PCR duplicates were removed using
Picard’s MarkDuplicates (http://broadinstitute.github.io/picard/).
Gene counts were determined using featureCounts (version 2.0.1)
(Liao et al., 2014) with the genomic annotation Ensembl release 104.
Samples considered as outliers were removed after the visual
inspection of the PCA plot and assessment of the distance
between samples. Differentially expressed genes were identified
using DESeq2 (Love et al., 2014) and called significant when the
Benjamini–Hochberg-corrected p-values were under 0.05.
Upregulated genes were selected at a minimum log2 fold
change > 0.75 and downregulated genes at a minimum log2 fold
change < −0.75. A gene was considered activated or repressed if it
was selected at least once between 0 and 6 h. A gene was defined as
active if having at least one read in 60% of the samples between 0 and
6 h. Genes defined as inactive were not considered in downstream
analysis.
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FIGURE 1
Redistribution of MED1 and BRD4 is correlated across the genome following glucocorticoid stimulation. (A) Venn diagram representing MED1 and
BRD4consensus occupied regions in A549 cells in control (Ctrl) andDex-stimulated conditions. (B)Correlations of genome-wide read coverage betweenMED1 and
BRD4 ChIP-seq samples in control and Dex-stimulated conditions. Coverage calculation was performed for consecutive bins of equal size (10 kb). A
log10 transformationwas applied after adding a pseudocount of 1 to the coregulator read count. Pearson’s correlationwas computed using the read count raw
values. (C) ChIP-seq occupancy profiles of GR, MED1, and BRD4 at ANGPTL4 and IL11 genes, which are known to be activated and repressed by glucocorticoids,
respectively. ChIP-seqprofiles are displayed inRPKM.Genedepictions are presentedbelow theChIP-seq tracks. The 18-model chromatin stateswere retrieved from
ENCODE and gathered in categories as follows: active TSS (TssA), flanking TSS (TssFlnk, TssFlnkU, and TssFlnkD), strong transcription (Tx), weak transcription (TxWk),
genic enhancer (EnhG1 and EnhG2), active enhancer (EnhA1 and EnhA2), weak enhancer (EnhWk), and quiescent/low (Quies). (D) Volcano plot of differentially
occupied regions combining ChIP-seq replicates for MED1 and BRD4 after a 1-h Dex stimulation. Regions gaining (n = 5,442) and losing (n = 1,097) MED1 and
BRD4 are represented by red and green dots, respectively. Regions associated with ANGPTL4 and IL11 are displayed. (E) Top—density heatmaps representing
MED1 andBRD4ChIP-seq intensities at regions gaining (n=5,442) and losing (n=1,097) transcriptional coregulators followingDex stimulation in A549 cells. Regions
were sorted in descending order based on themean value per region. Bottom—averageChIP-seq signal for regions gaining and losingMED1 and BRD4. A region of
5 kb centered on the occupied region is displayed. (F) Overlaps of regions gaining and losing MED1 and BRD4 with the 18-model chromatin states.
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Results

Glucocorticoid response implicates
redistribution of MED1 and BRD4

To explore the generation of regional effects on gene
regulation, we examined the recruitment of the bromodomain-
containing protein 4 (BRD4) and the mediator complex subunit
MED1, which are functional coregulators of the GR (Chen and
Roeder, 2007; Pradhan et al., 2016) and are found within mobile
phase separation droplets (Sabari et al., 2018). Experiments were
carried out in A549 cells following a 60-min treatment with Dex.
Between 8,189 and 27,310, regions were identified in the different
datasets, and the consensus was determined by the overlap
between replicates (Supplementary Table S1). As expected, a
large proportion of regions occupied by MED1 were shared
with BRD4 in control (84.4%) and Dex-stimulated cells
(93.7%) (Figure 1A). Accordingly, the read coverage across the
genome was highly correlated between the two transcriptional
coregulators in control (Pearson’s r = 0.95 and p < 2.2e-16) and
Dex-stimulated (Pearson’s r = 0.92 and p < 2.2e-16) cells
(Figure 1B). Concurrent gains and losses in MED1 and
BRD4 were frequently observed throughout the genome. For
example, regulatory regions of ANGPTL4 and IL11 genes, which
are positively and negatively Dex-regulated genes, respectively,
(S1A-B Fig), showed increased and decreased levels of BRD4 and
MED1 at regions bound by the GR (Figure 1C). Overall,
concurrent increases and decreases at 5,442 and 1,097 regions,
respectively, were identified combining the MED1 and
BRD4 replicates (Figure 1D; Supplementary Table S2). These
regions will be referred to as regions gaining and losing
MED1 and BRD4 thereafter. To confirm that regions
integrating replicates for BRD4 and MED1 properly identified
differential regions for both coregulators, we generated ChIP-seq
density heatmaps (Figure 1E). Increases and decreases in both
MED1 and BRD4 were observed in regions defined as gaining and
losing transcriptional coregulators. At these regions, the
variations in MED1 and BRD4 signals following the Dex
stimulation were correlated (for gains, Pearson’s r = 0.94 and
p < 2.2e-16; for losses, Pearson’s r = 0.91 and p < 2.2e-16,
Supplementary Figure S1C). Therefore, our results confirm
that Dex stimulation reorganizes MED1 and BRD4 genome-wide.

To validate that the GR was directly implicated in the
rearrangement of transcriptional coregulators, regions gaining
and losing BRD4 and MED1 were overlaid with the GR genome-
wide occupancy using the available data (D’Ippolito et al., 2018;
McDowell et al., 2018). A large subset of regions gaining (97.8%) and
losing (40.7%) MED1 and BRD4 was occupied by the GR
(Supplementary Table S2), consistent with a global reorganization
of transcriptional coregulators following the direct action of the GR.
To functionally assess the genomic regions with the differential
recruitment of MED1 and BRD4, we integrated information from
the 18-model chromatin states (Ernst and Kellis, 2012) (Figure 1F).
Most regions gaining MED1 and BRD4 were associated with
enhancers (EnhA1 and EnhA2), while regions losing coregulators
were primarily found at promoter (Tss and TssFlnkU) regions. As
expected, gains were associated with the GR DNA-binding motif,
while losses were enriched for the DNA-binding motif of the AP-1

family of transcription factors (Supplementary Figure S1D). These
findings confirm the GR-associated modulation of cis-regulatory
regions following Dex stimulation.

FIGURE 2
Differential recruitment of MED1 and BRD4 is associated to gene
level variations. (A) Scatter plot showing the correlation between
variations in RNA levels of Dex-regulated genes and the recruitment of
MED1 and BRD4 at their cis-regulatory regions after 1 h of Dex
stimulation. For RNA levels, the log2 of the fold change is represented.
For recruitment of transcriptional coregulators, the log2 of the read
density at each differential region is represented. Regions gaining and
losing MED1 and BRD4 were associated to genes based on their linear
proximity or the presence on 3D chromatin interactions. Correlations
were assessed using Pearson’s correlation method. (B) Time course
analysis of the variations at the RNA level of genes associated with 1 or
multiple (2+) regions with the differential recruitment of
transcriptional coregulators. For RNA levels, the average of the log2 of
the fold change for each gene within the group and the standard error
of the mean (error bars) are represented. Mann–Whitney U tests were
used to compare means between genes associated with 1 or multiple
regions at 0.5, 1, 2, 3, 4, 5, and 6 h. The Benjamini–Hochberg
procedure was applied on the empirical p-values to correct for
multiple testing. ns, not significant; *p < 0.05 and **p < 0.01.
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Gains and losses in MED1 and
BRD4 correlate with gene level variations

To establish whether the differential recruitment of MED1 and
BRD4 was associated with variations at the gene level, we used an
available transcriptomic dataset of A549 cells stimulated with Dex
(D’Ippolito et al., 2018; McDowell et al., 2018). A total of
1,759 differentially expressed genes (911 activated and
848 repressed) were identified between 0 and 6 h of Dex stimulation
(Supplementary Figure S2A; Supplementary Table S3). Regions gaining
and losing MED1 and BRD4 following Dex treatment were assigned
linearly to genes using rGREAT (McLean et al., 2010; Gu and
Hübschmann, 2023) or connected to a gene via chromatin
interactions using publicly available Hi-C data (D’Ippolito et al.,
2018) (see Materials and Methods). As expected, gains in
MED1 and BRD4 were enriched in Dex-activated genes (Fisher’s
test, OR = 9.3, and p-value = 3.58e-164). On the other hand, losses
in transcriptional coregulators were enriched in Dex-repressed genes
(Fisher’s test, OR = 4.5, and p-value = 4.2e-40). To determine if the
differential recruitment of MED1 and BRD4 was associated with the
amplitude of RNA-level variations, we compared fold changes.
Variations in MED1 and BRD4 were correlated with variations at
the RNA levels at all Dex stimulation time points (Figure 2A;
Supplementary Figure S2B). In addition to differential recruitment,
the number of regions gaining and losing MED1 and BRD4 could be a
determining factor in the gene output.When genes were associated with
two or more regions gaining or losing transcriptional coregulators
MED1 and BRD4, the mean change in RNA levels was greater
(Figure 2B). The presence of two or more regions with differential
recruitment was associated with an increase between 1.23- and 2.12-
folds and a decrease between 1.49- and 1.91-folds at the RNA level.
Therefore, our results support that the differential recruitment of
transcriptional coregulators MED1 and BRD4 at cis-regulatory
regions is associated with variations at the gene levels.

Regional gains and losses in MED1 and
BRD4 in response to Dex

The chromosomal architecture is known to delimit different
transcriptional activities within the nucleus and influence the range
of action of enhancer regions (Dowen et al., 2014; Schoenfelder and
Fraser, 2019). Among key factors for chromosome organization,
TADs could represent physical frontiers to subdivide gene domains.
Furthermore, TADs are maintained following hormonal stimulation
and associated with the creation of coordinated regulatory units (Le
Dily et al., 2014; D’Ippolito et al., 2018). To directly test the
relationship of regions gaining and losing MED1 and BRD4 with
TADs, we determined TAD boundaries at 1 h after Dex stimulation
in A549 cells by processing available Hi-C data using Armatus
(Filippova et al., 2014; D’Ippolito et al., 2018; McDowell et al., 2018)
(Supplementary Table S4). Each region differentially occupied by
MED1 and BRD4 was assigned to its corresponding TAD, and ratios
of gains and losses were calculated [score = (gain)/(gain + loss)]
(Figure 3A). Of the 4,957 TADs, 37.3% (1,851 TADs) were
associated with at least one region with the differential
recruitment of MED1 and BRD4. TAD scores were distributed
following a bimodal distribution (Hartigan’s dip test and

p < 2.2e-16), highlighting a bias toward homogeneity for the
differential recruitment of transcriptional coregulators
(Figure 3B). Indeed, TADs were biased toward either gaining
(75% with a score ≥ 0.7, referred to as up) or losing (16% with a
score ≤ 0.3, referred to as down) MED1 and BRD4 (Figure 3C). On
average, 3.4 regions with the differential recruitment of MED1 and
BRD4 were found among TADs scored as up, down, or balanced.
These results support the regionalized recruitment of transcriptional
coregulators following stimulation of the GR.

The TAD environment surrounding a gene
influences the response to Dex

While regions gaining and losing MED1 and BRD4 were
strongly associated with variations in gene levels, not all Dex-
regulated genes were associated with the differential recruitment
of transcriptional coregulators. Indeed, the fact that 60% and 78.9%
of activated and repressed genes following Dex treatment were not
associated with differential coregulators raised questions about the
mechanisms involved. We hypothesized that the activity of the TAD
environment of a gene was an important determinant of gene level
variations in addition to the differential recruitment of
transcriptional regulators by the GR. The majority of 1,759 Dex-
regulated genes (76%) were enriched within a TAD, gaining or
losing MED1 and BRD4 (permutation test, n = 10,000, and p =
9.99e-5) (Supplementary Table S3). As expected, activated and
repressed genes were enriched within TADs scored as up
(Fisher’s test, OR = 5.02, and p = 7.56e-113) and down (Fisher’s
test, OR = 2.07, and p = 7.79e-14). If the TAD environment
surrounding a gene is an important determinant in the response
to Dex, differentially expressed genes should be found within up and
down TADs, matching the changes independently from the
differential recruitment of transcriptional coregulators. Globally,
39.8% of Dex-regulated genes assigned to a responsive TAD were
associated with a region gaining or losing MED1 and BRD4,
compared to 60.2% that were not (Supplementary Table S3).
Interestingly, whether the differentially expressed genes were
associated to regions gaining or losing MED1 and BRD4 or not,
they were enriched within a TAD matching their activity (Figures
4A, B). Indeed, chi-squared tests revealed a significant association
between the direction of the gene response and the activity of the
TAD, whether the gene was occupied (χ2 = 214.42 and p = 2.98e-45)
or not (χ2 = 81.58 and p = 8.07e-17) by regions gaining or losing
MED1 and BRD4 (Figures 4B, C). Analysis of Pearson residuals
using a critical absolute value of 2 showed that Dex-regulated genes
associated with the differential recruitment of MED1 and BRD4 or
not were enriched within a TAD category matching the gene activity
(Figure 4C). To validate our observations, we subdivided Dex-
regulated genes into bound or not by the GR. Statistically
significant relationships between the direction of the gene
response and the activity of the TAD, whether the gene was
bound by the GR (χ2 = 163.69 and p = 2.36e-34) or not (χ2 =
71.24 and p = 1.24e-14), were confirmed (Supplementary Figure S3).
These results suggest that, in the absence of a measurable differential
recruitment of transcriptional coregulators and GR binding, the
presence of a gene within a specific TAD is an important
determinant of the response.
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The TAD environment has less impact than
the recruitment of the GR and
transcriptional coregulators

Our results support that the differential amount of MED1 and
BRD4 is associated with changes at the gene level (Figure 2). If
true, differentially expressed genes following Dex stimulation
that are influenced by the environment of the TAD should be less
affected compared to those associated with regions gaining and
losing MED1 and BRD4. To determine if the amplitude of the
differential gene regulation was equivalent between genes
associated or not with regions gaining or losing MED1 and
BRD4, we evaluated the trajectories of gene expression
changes throughout the 6-h time course for each category of
TAD (up, balanced, and down) (Figure 5). As expected, global
gene activity was correlated with the TAD classification, and gene
activation or repression was observed in TADs gaining or losing
MED1 and BRD4, respectively. The contact with regions gaining
or losing transcriptional coregulators was associated with
stronger activation (between 2.73- and 6.51-fold increases)
and repression (between 1.49- and 2.16-fold decreases).
Similar results were obtained when differentially occupied

genes were subdivided in bound or not by the GR with the
exception that no differences were observed between repressed
genes (Supplementary Figure S4). Taken together, these results
show that while primary DNA binding by a transcription factor
and the differential recruitment of transcriptional coregulators
produce a stronger gene response, the surrounding TAD
environment also influences the gene output.

Discussion

Model for regionalized transcriptional
regulation

Our results establish that following ligand activation, the GR
elicits regionalized gains and losses in transcriptional
coregulators MED1 and BRD4, creating favorable or
unfavorable environments for transcriptional regulation. The
primary consequence of the GR recruitment is to modulate
levels of transcriptional coregulators, which not only leads
directly to the activation or repression of the bound target
genes but also influences other genes in the vicinity (Figures 1, 4).

FIGURE 3
TADs are biased toward gaining or losing MED1 and BRD4 in response to a glucocorticoid stimulation. (A) The ratios of regions gaining and losing
MED1 and BRD4within each TAD are biased. The TAD score [= number of gains/(number of gains + losses)] was calculated for each of the 1,851 TADswith
at least one region with the differential recruitment of MED1 and BRD4. Top—ranking of TADs based on the score. Values of 0 and 1 are, respectively,
equal to a TADwith only regions losing or gainingMED1 and BRD4. Middle—the number of regions gaining and losingMED1 and BRD4 in each TAD is
displayed. Bottom—the size of each TAD (Mb) is displayed. (B) Density plot representing the bimodal distribution of TAD scores. (C)Quantification of the
number of TADs defined as up (score ≥ 0.7), balanced (0.3 < score < 0.7), and down (score ≤ 0.3).
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FIGURE 4
Dex-regulated genes are enrichedwithin TADsmatching their activity independently from the differential recruitment ofMED1 andBRD4. (A)Dex-regulated
genes associatedwith the differential recruitment of MED1 and BRD4 or not were foundwithin TADsmatching their activity. Dex-activated and -repressed genes
were assigned TADs and subdividedwhether theywere associated to a regionwith the differential recruitment of transcriptional coregulators (n=532) or not (n=
805). Data are represented as a percentage of the total number of genes. (B) Representation of the 1,337 Dex-regulated genes found within a responsive
TAD. RNA levels in the fold change (log2) are displayed from 1 to 6 h after Dex stimulation. Hierarchical clustering (using the Euclidean distance)was applied to the
geneexpressionmatrix and is represented by the dendogram. Regions gainingor losingMED1 andBRD4are represented by red andgreen lines, respectively. TAD
scores were calculated and are represented as mentioned before. (C) Association plot illustrating the dependence between changes at the RNA level for Dex-
regulated genes and the category of the TAD (up, balanced, and down). The height of each bar is proportional to the Pearson residual, while the width is
proportional to the square root of the expected frequency so that the area of the rectangle is proportional to the difference between observed and expected
frequencies. Residual values are colored if greater than 2 (enrichment, blue) or less than −2 (depletion, red). Top—Dex-regulated genes associated with the
differential recruitment of MED1 and BRD4. Bottom—Dex-regulated genes not associated with the differential recruitment of MED1 and BRD4.
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While we cannot exclude the possibility that genes not bound by
the GR and not associated with regions gaining or losing
MED1 and BRD4 are false negatives due to technical reasons,
we envision two possibilities to explain how a regionalized effect
on transcriptional regulation is achievable. On one hand, phase
separation droplets created by the accumulation of
transcription regulators could diffuse and be used as cargo
between genes (Silveira and Bilodeau, 2018). Accordingly,
modulation of the local concentration of transcriptional
regulators could facilitate or hamper their diffusion to
neighboring genes and affect transcription. This model is
supported by the GR implication in the formation of
biological condensates during gene activation (Stortz et al.,
2020; Frank et al., 2021). On the other hand, modifying the
recruitment of transcriptional regulators could impact the
dynamic of the regulatory regions themselves and the
frequency of contact with promoters within a TAD. This
model is supported by the existence of subdomains or
chromatin modules within TADs characterized by short-
range enhancer–promoter and promoter–promoter
interactions and the increased dynamics of regulatory regions
after hormonal stimulation (Le Dily and Beato, 2018; Hsieh
et al., 2020; Krietenstein et al., 2020; van Mierlo et al., 2023). The
low resolution of Hi-C approaches can explain why we failed to
detect physical interactions between unbound differentially
expressed genes and GR-occupied regions. Be that as it may,
our results globally support regional transcriptional
consequences for genes in proximity to regulatory regions
responding to a transcription factor, whether binding or
physical interactions are detected.

Implication of the model for gene
positioning effects in mammalian cells

The proposed model represents an important shift in the
conception of direct and indirect effects elicited by transcription
factors. Current methods to determine the primary effects of a
transcription factor are based on the integration of multi-omics data.
For example, chromosome architecture data are coupled to genome-
wide localization of the transcription factor to determine
transcription factor-bound regions and assign them to genes.
Following the integration of gene expression datasets,
differentially expressed genes that are unbound are typically
discarded and labeled as indirect effects. Here, we are proposing
that recruitment of a transcription factor and its associated
coregulators has two types of primary effects on transcription: 1)
a direct effect through DNA binding of the transcription factor at
cis-regulatory regions and 2) a domain-dependent effect based on
the position in a specific environment. It is important to note that
what we are describing as domain-dependent could represent highly
dynamic transcription factors or physical contacts with cis-
regulatory regions making detection of enhancer–promoter
contacts more difficult. The distinction between these models and
the precise definition of the boundaries in which they are acting will
require further investigations. Nonetheless, our interpretation is an
important distinction from the current definition of indirect effects.
Based on our assessment, inducing a transcription factor will
redistribute transcriptional coregulators, leading to primary direct
and indirect effects. With this nomenclature, gene expression
changes independent of direct DNA binding or position effects
would be considered as secondary.

FIGURE 5
Differential recruitment of MED1 and BRD4 translates into a stronger gene response. Gene level variations match the transcriptional activity of the
TAD following Dex treatment. Genes associated to a region with the differential recruitment of MED1 and BRD4 (blue) or not (yellow) are displayed up to
6 h after treatment. For each TAD category, mean variations in RNA levels through time and the standard error of the mean (error bars) are represented.
Mann–Whitney U tests were used to compare RNA level variations between genes with and without the differential recruitment of transcriptional
coregulators at 0.5, 1, 2, 3, 4, 5, and 6 h. The Benjamini–Hochberg procedure was applied on the empirical p-values to correct for multiple testing. ns, not
significant; *p < 0.05, **p < 0.01, and ***p < 0.001.
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Distinction between gene activation and
repression

Transcription factors activate and repress genes by modulating
recruitment of coregulators (Lambert et al., 2018). Our results support
that gains in transcriptional coregulators MED1 and BRD4 are
dependent on the presence of the GR on chromatin. However, for
most regions where losses in MED1 and BRD4 were observed, the GR
was not detected (Supplementary Table S2). While the presence of the
GR at repressed regions could be harder to detect, the result also
suggests that the recruitment of the GR at chromatin is not necessary to
remove transcriptional coregulators. The GR was shown to titrate and
sequester transcriptional coregulators, suggesting a passive mechanism
of gene repression referred to as squelching (Schmidt et al., 2016; Bothe
et al., 2021; Portuguez et al., 2022). Considering that genes repressed by
the GR are active in basal conditions, repression can be driven by
opportunity. When the concentration of the GR increases in the
nucleus, interference with the transcriptional program in place
would provide the transcriptional coregulators required for
subsequent transcriptional activation. This interpretation is
supported by the fact that higher levels of MED1 and BRD4 are
found at Dex-repressed genes compared to Dex-activated genes in
normal conditions (Portuguez et al., 2022). This type of passive
mechanism would result in repression being distributed throughout
active genes rather than being targeted. Thismodel would explain why a
limited number of regions with a significant loss in MED1 and
BRD4 were identified (Supplementary Table S2). Interestingly, GR-
responsive genes share spatial domains specialized in activation or
repression (Portuguez et al., 2022).Whether activation domains require
spatial association to a repressed domain is an open question.
Interestingly, while GR has been extensively studied molecularly, no
mutant with the ability to activate transcription without also repressing
has previously been reported to our knowledge (the ability ofmutants to
repress without activating is frequent) (Beck et al., 2011). It will be
interesting to determine if repression is mandatory for the ability of the
GR to activate transcription.

Conclusion

The influence of the genomic microenvironment has been
associated with the gene position effect in mammalian cells. We
are proposing that TADs are being modulated by the redistribution
of transcriptional coregulators. Therefore, when a transgene is added
to different genomic contexts, access to mobile transcriptional
regulators or dynamic cis-regulatory regions will differ.
Furthermore, this model explains the fast kinetics of differential
expression observed for genes not bound by an induced
transcription factor but responding to stimulation. It remains to
be determined if, during the biological response of a cell, activation
and repression mechanisms are molecularly linked.
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SUPPLEMENTARY FIGURE S1
Dex-dependent changes at the RNA and chromatin levels. (A) Gene level
variations for ANGPTL4 and IL11 genes following Dex stimulation. Variations
in RNA levels through time were determined after smoothing the
trajectories using the local regression (LOESS) method. (B) RNA-seq profiles
of ANGPTL4 and IL11 genes following Dex stimulation. Tracks are displayed
in reads per kilobase permillionmapped reads (RPKM). Gene depictions are
presented below the RNA-seq tracks. (C) Scatter plot displaying the
difference in normalized count values between Dex and control conditions
for MED1 and BRD4. Each dot represents a genomic region defined as
differentially recruiting transcriptional coregulators. Correlations were
assessed using Pearson’s correlation method. (D)Motif enrichment analysis
of genomic regions gaining (top) or losing (bottom) MED1 and BRD4. The
top three DNA-binding motifs recovered using the JASPAR database are
displayed.

SUPPLEMENTARY FIGURE S2
Differential recruitment of MED1 and BRD4 is associated with the gene
response to Dex. (A) Quantification of the number of Dex-regulated genes
after 0.5, 1, 2, 3, 4, 5, and 6 h of stimulation. Activated (red) and repressed
(green) genes are represented at each time point. (B) Scatter plots showing
the correlation between variations in RNA levels of Dex-regulated genes and
the recruitment of transcriptional coregulators at their cis-regulatory
regions after 0.5, 2, 3, 4, 5, and 6 h. For RNA levels, the log2 of the fold change
is represented. For recruitment of MED1 and BRD4, the log2 of the read
density at each differential region is represented. Regions gaining and
losing MED1 and BRD4 were associated to genes based on their linear
proximity or the presence on 3D chromatin interactions. Correlations were
assessed using Pearson’s correlation method.

SUPPLEMENTARY FIGURE S3
Dex-regulated genes are enriched within TADs matching their activity
independently from GR binding. (A) Dex-regulated genes bound by the GR
or not were found within TADs matching their activity. Dex-activated and
-repressed genes were assigned TADs and subdivided whether they were
associated to a region with the differential recruitment of the GR (n= 857) or
not (n = 480). Data are represented as a percentage of the total number of
genes. (B) Representation of the 1,337 Dex-regulated genes found within a
responsive TAD. RNA levels in fold change (log2) are displayed from 1 to 6 h
after Dex stimulation. Hierarchical clustering (using the Euclidean distance)

was applied to fold changes and is represented by the dendogram. Regions
gaining or losing MED1 and BRD4 are represented by red and green lines,
respectively. TAD scores were calculated and are represented as before. (C)
Association plot illustrating the dependence between changes at the RNA
level for Dex-regulated genes and the category of the TAD (up, balanced,
and down). The height of each bar is proportional to the Pearson residual,
while the width is proportional to the square root of the expected frequency
so that the area of the rectangle is proportional to the difference between
observed and expected frequencies. Residual values are colored if greater
than 2 (enrichment, blue) or less than -2 (depletion, red). Top—Dex-
regulated genes with GR binding. Bottom—Dex-regulated genes without
GR binding.

SUPPLEMENTARY FIGURE S4
Differential binding of the GR translates into stronger gene activation.
Genes associated to GR binding (blue) or not (yellow) are displayed up
to 6 h after treatment. For each TAD category, mean variation in RNA
levels through time and the standard error of the mean (error bars) are
represented. Mann–Whitney U tests were used to compare RNA level
variations between genes with and without GR binding at 0.5, 1, 2, 3, 4, 5,
and 6 h. The Benjamini–Hochberg procedure was applied on the empirical
p-values to correct for multiple testing. ns, not significant; *p < 0.05 and
***p < 0.001.

SUPPLEMENTARY TABLE S1
List of genomic regions for MED1 and BRD4 ChIP-seq datasets in control and
Dex-stimulated conditions.

SUPPLEMENTARY TABLE S2
List of genomic regions with the differential recruitment of MED1 and
BRD4 following Dex stimulation.

SUPPLEMENTARY TABLE S3
List of Dex-regulated genes.

SUPPLEMENTARY TABLE S4
List of genomic coordinates for TADs.

SUPPLEMENTARY TABLE S5
List of publicly available datasets used in this study.
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