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Cell-cell communication (CCC) inference has become a routine task in single-cell
data analysis. Many computational tools are developed for this purpose. However,
the robustness of existing CCC methods remains underexplored. We develop a
user-friendly tool, RobustCCC, to facilitate the robustness evaluation of CCC
methods with respect to three perspectives, including replicated data,
transcriptomic data noise and prior knowledge noise. RobustCCC currently
integrates 14 state-of-the-art CCC methods and 6 simulated single-cell
transcriptomics datasets to generate robustness evaluation reports in tabular
form for easy interpretation. We find that these methods exhibit substantially
different robustness performances using different simulation datasets, implying a
strong impact of the input data on resulting CCC patterns. In summary,
RobustCCC represents a scalable tool that can easily integrate more CCC
methods, more single-cell datasets from different species (e.g., mouse and
human) to provide guidance in selecting methods for identification of
consistent and stable CCC patterns in tissue microenvironments. RobustCCC is
freely available at https://github.com/GaoLabXDU/RobustCCC.
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1 Introduction

Cell-cell communication (CCC) is a biological process where cells transmit signals to
other cells through biological or chemical molecules, playing an important role in tissue
formation and disease development (Singer, 1992; Armingol et al., 2021). With the
emergence of single-cell sequencing technology, inferring CCC based on single-cell
transcriptome (scRNA-seq) data provides new perspectives for understanding tissue or
tumor microenvironment. For example, Efremova et al. (2020) design CellPhoneDB to infer
significant ligand-receptor pairs by calculating the p-value of the product of mean expression
of ligand and receptor genes through randomly permuting cell type annotations.
CellPhoneDB is applied to the research of human gonadal development (Garcia-Alonso
et al., 2022). Jin et al. (2021) design CellChat, which utilizes the Hill-function to calculate the
communication score of each ligand-receptor pair. Similar to Efremova et al., they also
employ the same significance calculation strategy. CellChat is applied to infer CCC in skin
wound healing and disease states. Hu et al. (2021) design CytoTalk to construct inter-cellular
and intra-cellular regulatory networks using mutual information and identify significant
communication patterns through the Steiner Forest algorithm. CytoTalk is used to analyze
the differences of signaling networks across tissues and developmental stages.

A large number of CCC methods have been developed, raising the question of how to
systematically evaluate these methods. Dimitrov et al. (2022) conduct a comparative study of
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16 CCC resources and 7 CCC methods. Their focus is on assessing
the impact of different inference resources on the methods,
designing a framework called LIANA for integrating multiple
resources and methods. In another study, Li et al. (2022)
hypothesize that cells with close spatial distances would recognize
“short-range” ligand-receptor pairs, while cells with far spatial
distances would recognize “long-range” ligand-receptor pairs.
They systematically evaluate the accuracy of 16 CCC methods
based on single-cell spatial transcriptome data. In fact, CCC
methods are susceptible to various factors, including replicated
data (Tran et al., 2020), transcriptomic data noise (Altschuler
and Wu, 2010; Lähnemann et al., 2020; Qiu, 2020; Zhang and
Zhang, 2020) and prior knowledge noise (Kiselev et al., 2017;
Browaeys et al., 2020; Huh et al., 2020; Dimitrov et al., 2022).
These factors have different effects on the robustness of CCC
methods. Specifically, replicated data refers to multiple datasets
generated under nearly identical conditions, providing evidence
for the generalizability of biological results (Schurch et al., 2016;
Nosek and Errington, 2020). It is important to consider whether
CCC methods can infer similar communication patterns between
replicated data. Furthermore, transcriptomic data noise primarily
arises from expression divergence and dropout events. Expression
divergence can be attributed to cellular heterogeneity, resulting in
variation in expression values between any two cells (Altschuler and
Wu, 2010; Lähnemann et al., 2020). Dropout events occur when the
expression value of a gene that should be expressed in a cell is not
detected (Qiu, 2020; Zhang and Zhang, 2020). These two types of
transcriptomic data noise obscure the true communication patterns,
making them difficult to infer using CCC methods. Also, CCC
methods rely on cell type annotation and ligand-receptor data. The
noise in cell type annotation comes from the fact that some cells may
be incorrectly assigned to a certain type during cell clustering and
classification (Kiselev et al., 2017; Huh et al., 2020), which can bias
CCC methods in the selection of sender cells and receiver cells,
affecting the inference of communication pattern. The noise in
ligand-receptor data may come from errors in ligand-receptor
interaction predictions (Browaeys et al., 2020; Dimitrov et al.,
2022). Some predicted ligand-receptor interaction in datasets
have not been validated, which could increase the false positive
rate of CCC methods (Armingol et al., 2021). However, it is still
unknown whether existing methods obtain consistent results using
replicate data, are sensitive to transcriptomic data noise, and are
sensitive to cell type annotations and ligand-receptor datasets.
Therefore, it is necessary to systematically evaluate the impact of
replicated data, transcriptomic data noise and prior knowledge noise
on CCC methods.

To answer this question, we develop a user-friendly tool,
RobustCCC, which aim to evaluate the robustness of CCC
methods from three perspectives: replicated data, transcriptomic
data noise and prior knowledge noise. RobustCCC currently
integrates 14 state-of-the-art CCC methods and 6 simulated
single-cell transcriptomics datasets, generating robustness
evaluation reports in tabular form for easy interpretation. By
using RobustCCC to evaluate the robustness of 14 CCC methods,
we observe significant variations across different simulation
datasets. As a result, no single method emerge as the most robust
across all simulation datasets. In addition, RobustCCC is
implemented as an R package and is freely available at GitHub

(https://github.com/GaoLabXDU/RobustCCC). In summary,
RobustCCC represents a scalable tool that can easily integrate
more CCC methods and more single-cell datasets, easily perform
CCC methods and systematically evaluate their robustness,
providing guidance in selecting methods for identification of
consistent and stable CCC patterns in tissue microenvironments.

2 Materials and methods

2.1 Overview of RobustCCC

Wedevelop RobustCCC, which is a tool for evaluating robustness of
CCC methods. RobustCCC can construct 6 simulation datasets,
including two types of replicated data, two types of transcriptomic
data noise, and two types of prior knowledge noise. Additionally, it
incorporates 14 CCCmethods and a robustness quantification indicator.
Specifically, RobustCCC begins by constructing 6 simulation datasets,
including biological replicates, simulated replicates, Gaussian noise,
dropout, cell type permutation, ligand-receptor permutation. Next,
RobustCCC executes 14 CCC methods, including CellPhoneDB
(Efremova et al., 2020; Garcia-Alonso et al., 2022), CellCall (Zhang
et al., 2021), CellChat (Jin et al., 2021), CytoTalk (Hu et al., 2021),
ICELLNET (Noël et al., 2021), iTALK (Wang et al., 2019), Kumar
(Kumar et al., 2018), NATMI (Hou et al., 2020), NicheNet (Browaeys
et al., 2020), scConnect (Jakobsson et al., 2021), scMLnet (Cheng et al.,
2021), Skelly (Skelly et al., 2018), SingleCellSignalR (Cabello-Aguilar
et al., 2020) and Zhou (Zhou et al., 2017). Finally, RobustCCC calculates
the Jaccard coefficients of the inferred ligand-receptor pairs between the
simulation data and averages these Jaccard coefficients across multiple
cell sampling or data noising proportions. Based on the Jaccard
coefficient and the average Jaccard coefficient of each method in each
simulation data, RobustCCC generates a comprehensive robustness
assessment report in tabular form (Figure 1).

2.2 Cell-cell communication methods

We collect CCC methods according to the following criteria:

1) The inputs of the methods include scRNA-seq data, annotations
of two cell types, and known ligand-receptor pairs.

2) The outputs of the methods are communication scores or
significances of ligand-receptor pair.

In total, we collect 14 CCC methods, comprising 11 statistics-
based methods and 3 network-based methods. The statistics-based
methods refer to calculating communication scores of each ligand-
receptor pair based on their gene expression. To determine the
significance of communication scores, the cell labels are shuffled to
obtain a null distribution. Finally, the significant ligand-receptor
pairs involved in communication are inferred by filtering based on a
predefined significance threshold (e.g., p-value<0.05). Network-
based methods consider the upstream and downstream pathway
of ligand-receptor pairs and identify ligand-receptor pairs or
network modules involved in communication from biological
networks or co-expression networks. The details of these
methods are shown in Table 1.
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2.3 Single-cell RNA-seq data

We collect single-cell RNA-seq data from four mouse brains (two
male mouse replicates and two female mouse replicates) available on the
Single Cell Portal (ID: SCP795) (Kozareva et al., 2021). This dataset is the
transcriptomic atlas of the mouse cerebellar cortex constructed by
Kozareva et al. (2021) and generated using 10x Chromium (v3)
sequencing platform. In their study, Kozareva et al. use Louvain
clustering to identify rough cell clusters and iteratively annotated cell
types through iNMF (integrative non-negative matrix factorization) and
differential expression analysis. The dataset contains astrocytes,
endothelial, microglia and oligodendrocytes, which are known to
communicate with each other based on existing literature (Abbott
et al., 2006; Wälchli et al., 2015; Stogsdill et al., 2017; Chen et al.,
2019; Kirby et al., 2019; Segarra et al., 2019). The details of single-cell
RNA-seq data we collected are shown in Table 2.

We create 12 distinct pairs of cell types by combining the four
cell types mentioned earlier (astrocytes, endothelial cells, microglia,
and oligodendrocytes). Considering the four mouse scRNA-seq

datasets, we have obtained a total of 48 scRNA-seq datasets for
each cell type pair (4 mouse multiplied by 12 cell type pairs). These
datasets will serve as the basis for constructing simulation dataset
and evaluating the robustness of CCC methods.

2.4 Dataset construction

The following 6 simulation datasets are constructed, including
biological replicates, simulated replicates, Gaussian noise, dropout, cell
type permutation, ligand-receptor permutation. Specifically, biological
replicates and simulated replicates are two replicated data. Gaussian noise
and dropout are two transcriptomic data noise. Cell type permutation
and ligand-receptor permutation are two prior knowledge noise.

2.4.1 Biological replicates
We collect four mouse scRNA-seq data, including two biological

replicates from male mouse and two biological replicates from
female mouse.

FIGURE 1
Overview of RobustCCC. The robustness evaluation framework of CCCmethods includes: 1) 6 simulation datasets (biological replicates, simulated
replicates, Gaussian noise, dropout, cell type permutation, ligand-receptor permutation). White letters with black background indicate gene names, black
numbers with yellow background indicate the first type of cells (i.e., sender cells), black numbers with blue background indicate the second type of cells
(i.e., receiver cells), red circles and arrows indicate cell sampling or data noising operations. 2) 14 CCC methods (CellPhoneDB, CellCall, CellChat,
CytoTalk, ICELLNET, iTALK, Kumar, NATMI, NicheNet, scConnect, scMLnet, Skelly, SingleCellSignalR, and Zhou), 3) a robustness quantitative indicator
(Jaccard coefficient or average Jaccard coefficient).
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TABLE 1 The detail of cell-cell communication methods.

Methods Overview Version References URL

Statistics-based methods (ligand-receptor pairs only)

CellPhoneDB To identify significant interactions, the ligand-receptor pairs is used to
randomly permute cell type annotation and generate a null distribution

of communication scores

4.0.0 Efremova et al.
(2020)

https://github.com/ventolab/
CellphoneDB

Garcia-Alonso et al.
(2022)

CellCall The communication score calculated by sum of mean expression of
ligand and receptor genes and the enrichment score for downstream

gene of receptor

1.0.7 Zhang et al. (2021) https://github.com/ShellyCoder/cellcall

CellChat The significance of the results is computed through permutation,
modelling of the expression of ligand gene and the corresponding

receptor gene

1.1.3 Jin et al. (2021) https://github.com/sqjin/CellChat

ICELLNET The overall communication score is calculated by summing the product
of ligand gene expression and corresponding receptor gene expression

between the 2 cell types

1.0.1 Noël et al. (2021) https://github.com/soumelis-lab/
ICELLNET

iTALK Consider differential expression of ligand gene and receptor gene to
identify significant ligand-receptor interactions

0.1.0 Wang et al. (2019) https://github.com/Coolgenome/
iTALK

Kumar The ligand-receptor pairs are inferred when ligand and corresponding
receptor are each expressed in more than 20% of cells

NA Kumar et al. (2018) NA

NATMI The network edge weights for interactions between cell types are
determined by multiplying the normalized ligand and receptor

expressions of each cell type

commit
f35f677

Hou et al. (2020) https://github.com/asrhou/NATMI

scConnect The communication score is calculated as the geometric mean of the
ligand’s sending score and the receptor’s receiving score

1.0.3 Jakobsson et al.
(2021)

https://github.com/JonETJakobsson/
scConnect

Skelly The communication score is the product of the mean ligand expression
in 1 cell type and the mean receptor expression in the other cell type

NA Skelly et al. (2018) NA

SingleCellSignalR The communication score is measured using extended ligand-receptor
expression products

1.6.0 Cabello-Aguilar et al.
(2020)

https://bioconductor.org/packages/
release/bioc/html/SingleCellSignalR.

html

Zhou The ligand-receptor pairs are inferred when a ligand gene is
differentially expressed (highly expressed) in 1 cell type and the
corresponding receptor gene is differentially expressed (highly

expressed) in another cell type

NA Zhou et al. (2017) NA

Network-based method (consider up- and down-steam of ligand-receptor pairs)

CytoTalk Using mutual information to construct integrated networks of ligand-
receptor interactions between cell types and gene regulatory network

within cell type

4.0.10 Hu et al. (2021) https://github.com/tanlabcode/
CytoTalk

NicheNet A personalized PageRank algorithm utilizes a network of ligand-
receptor interactions to determine the communication score, measuring

the ligand’s ability to predict its downstream pathway targets

1.0.0 Browaeys et al.
(2020)

https://github.com/saeyslab/nichenetr

scMLnet Construction of multilayer networks using ligands, receptors, and target
genes to identify relevant ligand-receptor interactions

0.1.0 Cheng et al. (2021) https://github.com/SunXQlab/scMLnet

TABLE 2 The detail of single-cell RNA-seq data.

Single-cell data #Cells of astrocytes #Cells of endothelial #Cells of microglia #Cells of oligodendrocytes

F001 1,262 221 158 1,311

F002 3,020 386 211 2,138

M001 2,282 404 201 2,147

M002 3,874 507 261 2,862
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2.4.2 Simulated replicates
We randomly sample cells from the original scRNA-seq datasets

to simulate batch effects. For each cell type pair and cell sampling
proportion (e.g., 95%, 90%, and 85%), we perform three random
samplings from each scRNA-seq dataset, resulting in a total of
144 simulated replicates (3 times multiplied by 48 cell type pairs).

2.4.3 Gaussian noise
We add Gaussian noise to the original scRNA-seq datasets. We

calculate the mean and variance of expression for each gene in all cells
and construct a Gaussian noise distribution based on these statistics.
We then generate Gaussian noise data for each gene andmerge it with
the original data using a certain proportion (e.g., 5% Gaussian data
and 95% original data). For each cell type pair and noising proportion
(e.g., 5%, 10%, and 15%), we generate three Gaussian noise from each
scRNA-seq dataset, resulting in a total of 144 data withGaussian noise
(3 times multiplied by 48 cell type pairs).

2.4.4 Dropout
We randomly set expression values to 0 in the original scRNA-

seq datasets. For each cell type pair and noising proportion (e.g., 5%,
10%, and 15%), we generate three dropout events from the each
scRNA-seq dataset, resulting in a total of 144 data with dropout
events (3 times multiplied by 48 cell type pairs).

2.4.5 Cell type permutation
We randomly permuted the cell labels in the scRNA-seq

datasets. This permutation obscures the assignment of sender
and receiver cells in the CCC methods. For each cell type pair
and permuting proportion (e.g., 5%, 10%, and 15%), we perform
three permutations on each scRNA-seq data, resulting in a total of
144 data with cell type permutation (3 times multiplied by 48 cell
type pairs).

2.4.6 Ligand-receptor permutation
To generate inaccurate ligand-receptor pairs, we randomly

permute the gene symbols in the scRNA-seq datasets, since most
of the ligand-receptor datasets are integrated in the tools and difficult
to extract and import. This permutation increase the false positive rate
of CCC methods. For each cell type pair and permuting proportion
(e.g., 5%, 10%, and 15%), we perform three permutations on each
scRNA-seq data, resulting in a total of 144 data with ligand-receptor
permutation (3 times multiplied by 48 cell type pairs).

2.5 Robustness indicator

Robustness is the capability of a method to handle noises and
produce consistent results. The evaluation of the robustness of CCC
methods aims to assess the stability of the inferred ligand-receptor
pairs under different simulation datasets, including replicated data,
transcriptomic data noise and prior knowledge noise. The inferred
ligand-receptor pairs can be considered as a set, and the stability of
the inferred ligand-receptor pairs can be quantified by measuring
the similarity between sets. The Jaccard coefficient is a widely used
metric for measuring set similarity. It calculates the size of the
intersection divided by the size of the union of two sets. In the
context of evaluating robustness, we utilize the Jaccard coefficient as

an indicator to quantify the similarity between the sets of inferred
ligand-receptor pairs under different simulation datasets.

For replicated data, we calculate Jaccard coefficient of inferred
ligand-receptor pairs between batch effect data. The formula is as
follows:

JaccardbioRep Si, Sj( ) � Si| | ∩ Sj
∣∣∣∣

∣∣∣∣
Si| | ∪ Sj

∣∣∣∣
∣∣∣∣

JaccardsimuRep Spi , S
p
j( ) � Spi

∣∣∣∣
∣∣∣∣ ∩ Spj

∣∣∣∣∣
∣∣∣∣∣

Spi
∣∣∣∣

∣∣∣∣ ∪ Spj
∣∣∣∣∣

∣∣∣∣∣

Where Si, Sj represent the sets of inferred ligand-receptor pairs
from the i-th and j-th biological replicate data, respectively. Spi , S

p
j

represent the sets of inferred ligand-receptor pairs from the i-th and
j-th simulated replicate data, respectively, at a cell sampling
proportion of p.

For transcriptomic data noise and prior knowledge noise, we
calculate Jaccard coefficient of the inferred ligand-receptor pairs
between original data and noising data. The formula is as follows:

Jaccardnoise So, Spi( ) � So| | ∩ Spi
∣∣∣∣

∣∣∣∣
So| | ∪ Spi

∣∣∣∣
∣∣∣∣

Where So represents the sets of inferred ligand-receptor pairs
from original data, respectively. Spi represents the sets of inferred
ligand-receptor pairs from the i-th noised data when the noising
proportion is p.

Then, the average Jaccard coefficient is calculated under
different simulation datasets to characterize the overall
performance of the CCC methods. The formula is as follows:

Average JaccardSimuRep � mean
p

JaccardSimuRep Spi , S
p
j( )( )

Or

Average Jaccardnoise � mean
p

Jaccardnoise So, Spi( )( )

By comparing the Jaccard coefficients and average Jaccard
coefficient under multiple simulation datasets, we can evaluate
the robustness of CCC methods and identify variations in their
performance.

3 Results

3.1 Robustness of CCC methods on
replicated data

Replicated data are multiple datasets generated under nearly
identical conditions, providing evidence for generalizability of
biological results (Schurch et al., 2016; Nosek and Errington, 2020).
In other words, the communication pattern in the replicated data
should be the same or highly similar. In order to evaluate the robustness
of CCC methods, we consider whether CCC methods can infer similar
communication patterns between replicated data.

Regarding the robustness evaluation based on biological
replicates, we analyze the average Jaccard coefficient of inferred
ligand-receptor pairs between biological replicates. Among all the
methods, iTalk ranks first with an overall average Jaccard coefficient
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of 0.796, followed by CytoTalk with an average Jaccard coefficient of
0.721. Kumar, NATMI, and SingleCellSignalR have similar overall
average Jaccard coefficients of 0.668, 0.664, and 0.663, respectively.
We also observe the distribution of Jaccard coefficients between the
inferred ligand-receptor pairs in biological replicates. 6 out of the
14 methods have a distribution standard deviation of no more than
0.1, namely, CytoTalk, Kumar, NATMI, SingleCellSignalR, iTalk,

and scConnect, which are all ranked in the top five based on the
average Jaccard coefficient. It is worth noting that there is a large
difference between Zhou’s median and mean Jaccard coefficient,
mainly due to the distribution having many 0 s (in 7 out of 24 data)
and 1 s (in 13 out of 24 data) (Figure 2A; Supplementary Table S1).

Regarding the robustness evaluation based on simulated
resplicates, we also analyze the average Jaccard coefficient of

FIGURE 2
Evaluating robustness of 14 CCC in (A) biological replicates, (B) simulated replicates, (C)Gaussian noise, (D) dropout, (E) cell type permutation and (F)
ligand-receptor permutation. Each block in the heatmap represents the average Jaccard of a certain proportion (abbreviated as number %) or all
proportions (abbreviated asOV). Each point in the boxplot represents the Jaccard coefficient of onemethod in the expression profile of a pair of cell types
at one proportion of one simulation dataset for one mouse. A box contains a total of 144 Jaccard values under a cell sampling or data nosing
proportion, including 4 mouse, 12 pairs of cell types, and 3 times of cell sampling or data nosing operation.
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inferred ligand-receptor pairs between each pair of simulated
resplicates. Skelly ranks first with an overall average Jaccard
coefficient of 0.959 and performs particularly well at different
sampling proportions, ranking first at 90% and 85% proportions.
iTalk, NATMI and Kumar ranks second with an overall average
Jaccard coefficient of 0.949. At the 95% sampling proportion, the
average Jaccard coefficient for NATMI and Kumar (both are 0.973)
is higher than that of CellChat (0.968). SingleCellSignalR and
CytoTalk rank fifth and sixth, respectively. The boxplots illustrate
that the median Jaccard coefficient of most methods decreases as the
sampling proportion decreases, except CellChat and Zhou whose
median Jaccard coefficient remain at 1.0. Among the 14 CCC
methods, CellPhoneDB shows a more moderate decrease in the
median Jaccard coefficient, from 0.963 at a 95% proportion to
0.958 at a 90% proportion, and then to 0.948 at a 85%
proportion, resulting in a total decrease of 0.015. Furthermore,
the standard deviation of Jaccard coefficient distribution of
NATMI (0.0131) and CytoTalk (0.0133) is smaller than other
methods at 95% proportion (Figure 2B; Supplementary Table S2).

3.2 Robustness of CCC methods on
transcriptomic data noise

Transcriptomic data noise is primarily caused by expression
divergence and dropout events. These noises mask the real
communication pattern during the execution of CCC methods.
To evaluate the robustness of CCC methods, we consider
whether CCC methods can infer same communication patterns
in data with Gaussian noise and dropout as in the original data.

In the robustness evaluation based on data with Gaussian noise, the
heatmap of the average Jaccard coefficient of ligand-receptor pairs
between the data with Gaussian noise and the original data show that
CytoTalk ranks first among all methods, with an overall average Jaccard
coefficient of 0.988. Additionally, CytoTalk also achieves the highest
average Jaccard coefficients at noising proportions of 5%, 10%, and 15%,
with values of 0.994, 0.989, and 0.982, respectively. iTalk ranks second
with an overall average Jaccard coefficient of 0.818, while Kumar ranks
third with 0.729, and NATMI ranks fourth with 0.723. NicheNet ranks
fifth with an overall average Jaccard coefficient of 0.722, surpassing
Kumar andNATMI in average Jaccard coefficient at 5% and 10%noising
proportions. The boxplots of the Jaccard coefficient reveal that Gaussian
noise has different effects on different methods. Some methods, such as
CytoTalk, iTalk, and NicheNet, show a decrease in median Jaccard
coefficient with increasing noising proportion (e.g., CytoTalk’s median
decreases from0.994 to 0.982).Othermethods, likeNATMI,Kumar, and
SingleCellSignalR, have a lowmedian Jaccard coefficient at 5% noise and
show little sensitivity to increases in the noising proportion (theirmedian
Jaccard coefficients remain at 0.737, 0.727, and 0.721, respectively)
(Figure 2C; Supplementary Table S3).

In the robustness evaluation based on data with dropout, we
calculate the average Jaccard coefficient of ligand-receptor pairs
between the data with dropout and the original data. Most methods
perform similarly on data with dropout as on original data, with overall
average Jaccard coefficients exceeding 0.95 (e.g., 0.971 for Kumar,
SingleCellSignalR, and NATMI). The standard deviation is also within
an acceptable range, not exceeding 0.05 (except for ICELLNET at 15%
with a standard deviation of 0.056). However, we still observe a

decrease in the median Jaccard coefficient as the proportion of
random set 0 increases. Although the decrease is not significant for
the top-performing methods, such as Kumar, SingleCellSignalR,
NATMI, CytoTalk, iTALK, ICELLNET, and scConnect, with
decreases ranging from 0.026 to 0.051 (e.g., Kumar’s median
decreases from 0.987 to 0.956) (Figure 2D; Supplementary Table S4).

3.3 Robustness of CCC methods on prior
knowledge noise

Cell type annotations and ligand-receptor data are necessary
when inferring CCC. The different cell type annotations can bias
CCC methods in the selection of sender cells and receiver cells,
affecting the inference of communication pattern. The unvalidated
ligand-receptor pairs could increase the false positive rate of CCC
methods. To evaluate the robustness of CCC methods, we permute
cell type annotations and ligand-receptor data, considering whether
CCC methods can infer same communication patterns in data with
these two prior knowledge noises as in the original data.

For the robustness evaluation based on cell type permutation, we
consider the Jaccard coefficient between the permuted scRNA-seq
data and the original data. CytoTalk achieves the highest Jaccard
coefficient of 0.882, and it also ranks first in average Jaccard
coefficients at permuting proportions of 5%, 10%, and 15%, with
values of 0.922, 0.882, and 0.843, respectively. Kumar and NATMI
both rank second with an overall average Jaccard coefficient of 0.844,
with NATMI performing better at 5% proportion and Kumar
performing better at 10% proportion. SingleCellSignalR,
scConnect, and ICELLNET rank fourth, fifth, and sixth,
respectively, with overall average Jaccard coefficients of 0.841,
0.806, and 0.755. The boxplots demonstrate that the median
Jaccard coefficient for each method decreases as the permuting
proportion permuting increases, indicating that permuting cell type
annotations affects the performance of CCC methods. Among these
methods, CytoTalk, Kumar, NATMI, and SingleCellSignalR are less
affected by shuffled cell type annotations, with median similarities
above 0.8, a decrease of no more than 0.1 (from 5% to 15%
proportion), and a Jaccard coefficient variance at each proportion
not exceeding 0.1 (Figure 2E; Supplementary Table S5).

For the robustness evaluation based on ligand-receptor
permutation, The heatmap of the average Jaccard coefficient of
ligand-receptor pairs between the permutation data and the
original data show that CytoTalk achieves the highest Jaccard
coefficient of 0.915. It also ranks first in average Jaccard coefficients
at permuting proportions of 5%, 10%, and 15%, with values of
0.962, 0.906, and 0.878, respectively. Kumar ranks second with an
overall average Jaccard coefficient of 0.898, and NATMI performs
similarly, ranking third with an overall average Jaccard coefficient
of 0.897. SingleCellSignalR, scConnect, and ICELLNET rank
fourth, fifth, and sixth, respectively, with overall average Jaccard
coefficients of 0.889, 0.846, and 0.845. We also observe the median
and standard deviation of the Jaccard distribution. The median
decreases with an increase in the permuting proportion, indicating
that gene permutation has an impact on the CCC methods.
CytoTalk, Kumar, NATMI, and SingleCellSignalR are less
affected by ligand-receptor permutation, with median Jaccard
distribution values above 0.8 and a decrease of no more than
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0.1 (from 5% to 15% proportion) (Figure 2F; Supplementary
Table S6).

3.4 Ranking CCC methods based on
robustness

We conduct a comprehensive ranking of cell-cell
communication methods based on their overall average Jaccard
coefficients across different simulation datasets, including biological
replicates, simulated replicates, Gaussian noise, dropout, cell type
permutation, ligand-receptor permutation (Figure 3; Supplementary
Table S7).

The evaluation results reveal significant variations in the
robustness of CCC methods across different simulation datasets.
Among the 14 methods evaluated, CytoTalk emerges as the most
robust method, achieving the highest overall ranking and ranking
within the top 5 in most simulation datasets. It notably performs well
in Gaussian noise, cell type permutation and ligand-receptor
permutation, where it secures the first position. Kumar secures the
second position in the overall ranking and stands out as the top
performer in dropout. NATMI secures the third position in the overall
ranking and consistently ranks within the top 5 in all perturbed data.
It performs well in dropout, cell type permutation, ligand-receptor
permutation, where it secures the third position. iTALK attains the
fourth position in the overall ranking and exhibits the best
performance in biological replicates. Skelly ranks first in simulated
replicates.

These findings emphasize the varying degrees of robustness
exhibited by different CCC methods under different simulation
datasets. CytoTalk demonstrates the best robustness across
multiple perturbed data types. Kumar, NATMI, iTALK and Skelly
also demonstrate strong performance in specific simulated data.

4 Discussion

We develop RobustCCC, a user-friendly tool to evaluate
robustness of CCC methods. RobustCCC incorporates 14 state-
of-the-art CCC methods and 6 simulated single-cell transcriptomics
datasets to generate comprehensive robustness evaluation reports
presented in tabular form for easy interpretation. In summary,
RobustCCC serves as a scalable tool that can easily integrate
more CCC methods and more single-cell datasets from different
species (e.g., mouse and human) to provide guidance in selecting
methods for identification of consistent and stable CCC patterns in
tissue microenvironments.

During the robustness evaluation, we notice that some methods
performed differently than others. For instance, in the case of Zhou
(Zhou et al., 2017), we observe a large standard deviation in the
Jaccard coefficient distribution. Further investigation revealed that
Zhou is a gene different expression-based method, the commonly
used thresholds are not suitable for all data, implying that the
performance of Zhou is determined by a suitable threshold
adjusted by the user. In the case of CellChat (Jin et al., 2021), we
observe a significant decrease in the Jaccard coefficient, potentially
attributed to outliers with low Jaccard coefficients affecting the
median and mean values. This suggests that CellChat may be
more sensitive to changes in data. However, this sensitivity does
not mean that CellChat cannot effectively infer ligand-receptor
pairs, which may be an advantage in identifying small-signal
ligand-receptor pairs in high-quality data. In addition, based on
the ranking of methods under different simulated data (Figure 3), we
can observe that there is no optimal method that can perform best
under all simulated data, indicating that different methods tend to
deal with different interference factors. The quality and interference
type of the input data can affect each cell-cell communication
methods to different degrees.

FIGURE 3
Ranking CCC methods based on robustness. The size and color of the dots represent the rank of the method on the perturbed data. The dots with
dark color and large size represent the top ranking. Themethods are sorted in ascending order by the overall rankwhich is the average of themethod rank
in each perturbed data.
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Regarding the comparison between network-based and
statistical-based methods, we do not observe a clear difference in
robustness. However, within the network-based methods [CytoTalk
(Hu et al., 2021), NicheNet (Browaeys et al., 2020), and scMLnet
(Cheng et al., 2021)], CytoTalk demonstrate clear advantages over
the other twomethods. This may be attributed to CytoTalk’s de novo
construction of an inter-cellular regulatory network, resulting in a
denser network with more edges. These additional edges can be
considered as redundancy or backup, providing better protection
against noises. In contrast, NicheNet and scMLnet rely on sparse real
biological networks, making them relatively weaker against noises.

Further, we compare all methods in all datasets by calculating
Jaccard of top 30 ligand-receptor pairs ranked by interaction scores
(i.e., communication scores). The result exhibited in Supplementary
Figure S1 shown that the ranking of SingleCellSignalR in biological
repeats and simulated repeats are greatly improved, indicating that
ligand-receptor pairs with high communication score in
SingleCellSignalR are more likely to appear simultaneously in
repeated data. Although the ranking of CytoTalk decrease, it may
be because only the crosstalk score is considered in evaluation
framework (same consideration as Dimitrov et al.), which will
infer more ligand-receptor pairs that have not filtered by
integrated signaling network. Because the network construction
in CytoTalk is very time-consuming. In most of the dataset,
network construction takes more than 30 min, and in some
datasets, it takes more than 2 h or more (24 cores, Intel Xeon
E5-2680 v3 CPU). Although only crosstalk score is considered,
based on the Jaccard coefficient of top 30 ligand-receptor pairs, we
can still observe that CytoTalk maintains the first place in ligand-
receptor permutation. It may be because crosstalk score additionally
includes a non-self-talk score by using mutual information to
quantify the correlation of ligands and receptors within the same
cell type, this additional correlation information may reduce the
influence of ligand-receptor permutation on the method. Moreover,
other methods roughly maintain the original rankings, because the
numbers of inferred ligand-receptor pairs by most methods are not
more than 30 or around 30.

In addition, we compare the results of 14 CCC methods with
each other. The average Jaccard coefficient of results between one
CCC method to the other CCC methods show that the
consistency of these methods is not high. The mean pairwise
Jaccard coefficient ranged from 0.003 to 0.183 across datasets
(Supplementary Figure S2). Dimitrov et al. (2022) compare the
results of different CCC methods and observe same phenomenon
(the median pairwise Jaccard index ranged from 0.045 to
0.112 across datasets).

In our evaluation framework, we use 48 scRNA-seq datasets of
mouse cerebellar cortex (4 mouse multiplied by 12 cell type pairs) to
evaluate robustness of CCC method. Since the performance of
different methods may change with respect to different datasets,
more datasets from different organizations and different species
enable more systematic evaluation CCC methods.

We also notice that many methods for inferring CCC based on
single-cell spatial transcriptome data have been designed in recent
years, such as COMMOT (Cang et al., 2023), SpaTalk (Shao et al.,
2022), Giotto (Dries et al., 2021) and SpaOTsc (Cang and Nie, 2020).

These methods are not considered in this paper, because it is not
clear what factors in the spatial information affect the robustness of
the communication method, making it impossible to generate
corresponding simulated data. In future work, we aim to
incorporate these methods into RobustCCC and evaluate their
robustness.
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