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Dysregulation of physiological processes may contribute to Alzheimer’s disease
(AD) development. We previously found that an increase in the level of
physiological dysregulation (PD) in the aging body is associated with declining
resilience and robustness to major diseases. Also, our genome-wide association
study found that genes associated with the age-related increase in PD frequently
represented pathways implicated in axon guidance and synaptic function, which in
turn were linked to AD and related traits (e.g., amyloid, tau, neurodegeneration) in
the literature. Here, we tested the hypothesis that genes involved in PD and axon
guidance/synapse function may jointly influence onset of AD. We assessed the
impact of interactions between SNPs in such genes on AD onset in the Long Life
Family Study and sought to replicate the findings in the Health and Retirement
Study. We found significant interactions between SNPs in theUNC5C andCNTN6,
and PLXNA4 and EPHB2 genes that influenced AD onset in both datasets.
Associations with individual SNPs were not statistically significant. Our findings,
thus, support a major role of genetic interactions in the heterogeneity of AD and
suggest the joint contribution of genes involved in PD and axon guidance/synapse
function (essential for the maintenance of complex neural networks) to AD
development.
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1 Introduction

Age is the strongest risk factor for Alzheimer’s disease (AD),
suggesting that aging-related changes in the body may contribute to
AD development. Indeed, human aging is characterized by an
increasing level of dysregulation across body systems, leading to
declines in resilience and robustness, with increased susceptibility to
multiple health disorders and reduced ability to recover, as people
age (Cohen et al., 2013; Arbeev et al., 2016; Whitson et al., 2016;
Arbeev et al., 2019; Dansereau et al., 2019; Müller et al., 2019;
Chanti-Ketterl et al., 2021; Ukraintseva et al., 2021; Lu et al., 2022).
AD has also been linked to the dysregulation of metabolic processes
and neural networks (An et al., 2018; de la Monte et al., 2019; Jeong
et al., 2019; Yan et al., 2020; Fagiani et al., 2021; Jouini et al., 2021;
Nanclares et al., 2021; Joshi et al., 2022; Martínez-Serra et al., 2022),
which suggests that the aging-related increase in physiological
dysregulation may contribute to the development of AD (Tan
et al., 2011; von Bernhardi et al., 2015; Lutshumba et al., 2021;
Piehl et al., 2022).

In a number of recent works, we explored a composite index of
physiological dysregulation (PD) based on the statistical
Mahalanobis distance that measures deviations of multiple
biomarkers from their baseline/normal values, thereby reducing
the high-dimensional biomarker space into a single PD estimate
(Cohen et al., 2014; Arbeev et al., 2016). We found that the rate of
increase in PD is a significant predictor of worsening health status
manifested by onset of major complex diseases such as cancer,
cardiovascular diseases or type 2 diabetes (Arbeev et al., 2019). We
also found that genes associated with the increase in PD in our
genome-wide association study (GWAS) of the Long Life Family
Study participants are significantly enriched for involvement in axon
guidance and synaptic function (Arbeev et al., 2020). Notably,
pathways and molecules regulating axon guidance and synaptic
function have also been broadly connected to AD and related traits
(e.g., amyloid, tau, neurodegeneration) in the literature (Cissé et al.,
2011; Jun et al., 2014Wetzel-Smith et al., 2014; Jiang et al., 2015; Giri
et al., 2016; Hashimoto et al., 2016; Kang et al., 2016; Zuko et al.,
2016; Oguro-Ando et al., 2017; Han et al., 2018; Li et al., 2018; Liu
et al., 2018; Lee et al., 2019; Whelan et al., 2019; Yang et al., 2019;
Bamford et al., 2020; Cuestas Torres and Cardenas, 2020; Chen et al.,
2021; Zhang et al., 2021). These findings indicate a possibility that
genes involved in PD and axon guidance/synaptic function may
jointly contribute to onset of AD via intertwined mechanisms. In
this paper, we explore whether such genes influence AD onset in
older adults, individually or as a result of epistatic interactions, using
longitudinal human data from the Long Life Family Study and the
Health and Retirement Study.

2 Materials and Methods

2.1 Data

The Long Life Family Study (LLFS) is a family-based,
longitudinal study of healthy aging and longevity that enrolled
participants at three United States field centers (Boston, New
York, Pittsburgh) and in Denmark. From 2006 to 2009, more
than 4,900 participants from 583 families selected for exceptional

familial longevity based on the Family Longevity Selection Score
(Sebastiani et al., 2009) were enrolled in the study. The second in-
person visit of surviving participants from visit 1 and new enrollees
was completed in 2014–2017. The third in-person visit started in
2020 and is ongoing (these data are not yet available for this study).
At enrollment, the participants provided information on socio-
demographic indicators, past and current medical conditions,
medication use, and physical and cognitive functioning
(Wojczynski et al., 2022). LLFS participants were followed up
annually to track their vital and health status. The analyses
reported in this paper used the July 2020 release of LLFS data,
with the latest recorded follow-up date on 22 July 2019. Ages at the
baseline visit were validated using dates of birth from official
documents (such as a birth certificate or driver’s license) (Elo
et al., 2013) in the United States and through the civil
registration system in Denmark. Ages at censoring for those who
did not die within the follow-up period were determined from dates
of birth and the last follow-up. Information on past and present
health conditions (including AD or dementia) was collected during
the baseline and follow-up interviews from study participants or
proxies (when the participant was unable to provide an answer). The
question asked at the baseline visit was, “Please respond “yes” or
“no” if you have EVER been told by a doctor that you had this
condition.” Similar questions were asked during follow-up
interviews (“Please respond “yes” or “no” if you have EVER been
told by a doctor that you had this condition since we last interviewed
you on . . . ”). Participants or their proxies were then asked the age at
which they were diagnosed or their best guess. Also, during follow-
up interviews participants who had cognitive concern were given a
dementia questionnaire adopted by the study and were asked if they
saw a neurologist and “If “Yes” was the diagnosis Alzheimer’s
Disease?” Age at AD or dementia diagnosis (approximating the
age of AD onset) was determined by the age they responded
affirmatively and, if this information was unavailable, their age
when the questionnaire was administered. Ages at censoring,
computed as described above, were used in the time-to-event
modeling for those who did not report the event during the
follow-up.

Written informed consent was obtained from all subjects
following protocols approved in the United States by the
respective field center’s Institutional Review Boards (IRBs) and,
in Denmark, by the Regional Committees on Health Research Ethics
for Southern Denmark. In this paper, we performed secondary
analyses of LLFS data collected at all field centers. This study was
approved by the Duke University Health System IRB.

The University of Michigan’s Health and Retirement Study
(HRS) is a longitudinal panel study that surveys a representative
sample of approximately 20,000 people in America over the age of
50 every 2 years. The study launched data collection in 1992 and
has re-interviewed the original sample of respondents every
2 years. The participants have provided information about
income, work, assets, pension plans, health insurance, disability,
physical health and functioning, cognitive functioning, and
healthcare expenditures. Data were collected from different
sources, including in-person, telephone, mail, and the Internet.
The target population for the original HRS cohort included all
adults in the contiguous United States born during the years
1931–1941 who reside in households, with a 2:1 oversample of
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African-American and Hispanic populations. The original sample
is refreshed with new birth cohorts (51–56 years of age) every
6 years. The sample has been expanded over the years to include a
broader range of birth cohorts and described in more detail by
Sonnega et al. (2014). The RANDHRS Longitudinal File is an easy-
to-use dataset based on the HRS core data. This file was developed
at RAND with funding from the National Institute on Aging and
the Social Security Administration. This file (version 2016 V1) was
used in this study. Entry ages were determined from the first exam
date (called “wave” in HRS). Exit ages were determined from ages
at death and dates of birth for individuals who died during the
follow-up. For individuals who survived the whole study, the
lifespan was censored on 31 December 2017 (the latest available
date in the sample used). Starting from wave 10 (year 2010),
respondents (or proxies, if respondents were not able to provide
answers) were asked if they have ever been told they have
Alzheimer’s disease or dementia. If the condition was reported
at a prior interview, then the question was skipped. Ages of AD
onset were determined from the dates of the interview at the
respective wave when the condition was first reported and dates of
birth. For individuals who did not report the condition, ages at
censoring, computed as described above, were used in the time-to-
event modeling.

These two datasets are well-suited to serve as discovery and
validation sets for two reasons. First, they are complementary
because the LLFS is a family-based study in which participants
were selected from longevity-enriched families presumably sharing
genetic factors likely related to biological aging. Because the HRS is a
nationally-representative population-based study, it can be used to
determine whether relations detected in LLFS are replicated in the
general United States population. Second, the studies use the same
genotyping platform (see Section 2.3), thus simplifying the direct
validation of discovered associations. As the LLFS sample has
predominantly (>99%) White participants, we selected a

subsample of White HRS participants for replication (see
Section 2.3).

2.2 Candidate genes

Table 1 shows the list of candidate genes selected for this study,
with the number of SNPs in each gene that remained after the
genetic quality control (QC, see Section 2.3). This list includes six
genes found in our earlier GWAS (TRIO, ALCAM, CADM1,
CNTN6, RTN4, PLXNA4) that were significantly associated with
the rate of increase in PD with age and enriched in biological
processes of axon guidance/synaptic function (Arbeev et al., 2020).
Since AD has been linked to physiological dysregulation and
synaptic functioning in other research (Martínez-Serra et al.,
2022; Ma et al., 2023; see also Introduction), the above genes
were selected as candidates for the association analyses with AD
risk in this study. We also included in the analysis six additional
genes (PLXNB2, EPHA2, EPHB2, SEMA4D, UNC5B, UNC5C) for
plexins, semaphorins, ephrins, and receptors to netrins that are
major molecular players in axon guidance (during development)
and synaptic function (in adults) and have been repeatedly linked to
AD and related traits, such as amyloid beta, tau phosphorylation,
neurodegeneration, cognitive function and neuroinflammation, in
the literature. These additional genes were used as the literature-
based candidate AD genes that are involved in axon guidance/
synaptic function (Tang et al., 2008; Cissé et al., 2011; Jun et al., 2014;
Wetzel-Smith et al., 2014; Jiang et al., 2015; Giri et al., 2016;
Hashimoto et al., 2016; Zuko et al., 2016; Han et al., 2018; Li
et al., 2018; Liu et al., 2018; McDermott et al., 2018; Lee et al.,
2019; Yang et al., 2019; Chen et al., 2021; Zhang et al., 2021; Evans
et al., 2022; Ma et al., 2022). The resulting set of twelve candidate
genes was, therefore, highly enriched for putative roles in axon
guidance, synaptic function, PD, and AD-related traits, and was

TABLE 1 Candidate genes selected for this study.

Gene Chr N SNPs (LLFS) N SNPs (HRS) Relevant biological processes and health disorders

ALCAM 3 103 99 Cell adhesion, migration, axon growth, cancer, immunoglobulins

CADM1 11 151 110 Synaptic cell adhesion, axon guidance, cancer prognosis

CNTN6 3 494 366 Axon connections, cell adhesion, intellectual disability

TRIO 5 199 153 Synaptic function, axon guidance, cognition, cells migration, invasion

RTN4 2 111 90 Nerve growth inhibitor, block regeneration

PLXNA4 7 391 264 Plexins (receptors for semaphorins): axon guidance, Parkinson’s, AD, tau, cancer progression

PLXNB2 22 10 9 Plexins (receptors for semaphorins): axon guidance, Parkinson’s, AD, tau, cancer progression

EPHA2 1 16 15 Ephrins: axon guidance, cell migration, cell growth, AD

EPHB2 1 140 123 Ephrins: axon guidance, cell migration, cell growth, AD

SEMA4D 9 116 103 Semaphorins: axon guidance, gliosis, AD, cancer progression

UNC5B 10 83 66 Receptors for netrins: axon guidance, cell migration, apoptosis, neuronal survival, cancer prognosis

UNC5C 4 328 256 Receptors for netrins: axon guidance, cell migration, apoptosis, AD, cancer prognosis

Notes: Columns: Gene, gene name according to the HUGO Gene Nomenclature Committee (Braschi et al., 2019); Chr, chromosome; N SNPs LLFS, number of genotyped SNPs located in

respective gene that were available for analyses in the Long Life Family Study (LLFS); N SNPs HRS, number of genotyped SNPs located in respective gene that were available for analyses in the

Health and Retirement Study (HRS). The numbers indicated in the last two columns correspond to SNPs passing the genetic QC procedure (see Section 2.3). “Relevant biological processes and

health disorders” are based on the information from PubMed (https://pubmed.ncbi.nlm.nih.gov/) and NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/).
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based on our own recent findings, as well as on the literature
(Table 1).

2.3 Genotyping, quality control, and
selection of SNPs from the data

Blood assays in LLFS were collected via in-person visits and
centrally processed at a Laboratory Core (University of Minnesota).
Protocols were standardized, monitored, and coordinated through
the LLFS Data Management and Coordinating Center. Genotyping
in LLFS was performed by the Center for Inherited Disease Research
(CIDR) using Illumina Human Omni 2.5 v1 BeadChip array [details
on genotyping are provided in Lee et al. (2014)]. Genotyping in HRS
was performed by the CIDR using a similar array. Details on
genotyping in HRS are provided by Sonnega et al. (2014).

The genetic QC procedure was performed prior to selection of
SNPs for analyses based on recommended procedures (Anderson
et al., 2010; Marees et al., 2018). For LLFS, the original data
contained 5,036 individuals, and among those, 4,693
(2,581 females, 2,112 males) were genotyped with 2,225,478 SNPs
available. For HRS, the starting sample was 10,958 (6,285 females,
4,673 males) White participants (as reported in the data) with
available genetic data on 2,443,179 SNPs. In both studies, the
sample QC check removed individuals with a call rate below 95%
and/or heterozygosity rate beyond ± 4 standard deviations (SD)
from the mean as well as individuals of divergent ancestry, i.e., those
for whom the first two principal components (PC) scores (computed
as described below) were beyond 8 SD from the respective mean
scores for the HapMap Phase III European reference populations.

The SNPs QC check removed duplicated SNPs, variants with
missing allele code information, indels, SNPs with a call rate
below 95%, minor allele frequency below 1% (in the entire
sample and in the sex-specific subsamples), and those with a
significant deviation from Hardy-Weinberg equilibrium with
p-value <10–10. In analyses of SNP interactions, an additional
criterion was used to keep only SNP pairs that have the sum of
the four genotype combinations containing minor alleles to be at
least 20 subjects. For LLFS, the resulting sample after QC contained
4,635 individuals of European ancestry (2,548 females, 2,087 males)
and 1,468,536 autosomal SNPs, which passed the QC procedure. For
HRS, the respective sample was 10,715 participants of European
ancestry (6,152 females, 4,563 males) and 1,267,413 post-QC
autosomal SNPs. We used these SNPs to select SNPs in the
candidate genes shown in Table 1. All available SNPs were first
selected if their positions were within the boundary of the genes of
interest using information from dbSNP build 151 GRCh38, available
from ftp://ftp.ncbi.nlm.nih.gov/snp. SNPs from this initial list were
retained for the analyses if they appeared in the post-QC genetic data
of the respective dataset. The resulting numbers of SNPs in each
candidate gene in LLFS and HRS are shown in Table 1.

The R-package GENESIS version 2.18 (Conomos et al., 2019)
was used for the computation of PCs in LLFS using the PC-AiR
method (Conomos et al., 2015) to take into account the relatedness
among individuals in the LLFS sample. Linkage disequilibrium (LD)
pruning was performed before running PC analysis to select a set of
independent SNPs for computations of PCs (defined according to
the LD threshold 0.2 and a 500 kb sliding window, as implemented
in the SNPRelate package (Zheng et al., 2012)). The KING-robust
kinship coefficient estimator (Manichaikul et al., 2010) was used to

TABLE 2 Characteristics of the Long Life Family Study and Health and Retirement Study participants used in the study of associations of SNPs in candidate genes
with the onset of Alzheimer’s disease.

Sample characteristics LLFS HRS

Number of individuals in the sample 4,273 10,624

Number of AD cases during the follow-up 176 336

Age at baseline (mean ± SD [range]) 70.4 ± 15.4 [24, 110] 57.7 ± 8.9 [26, 94]

Age at AD onset (mean ± SD [range]) 90.8 ± 8.1 [67, 109] 82.5 ± 7.2 [58, 98]

Follow-up period (mean ± SD [range]) 8.8 ± 3.3 [0.17, 13.35] 18.9 ± 6.1 [0.38, 25.73]

Females (%) 55.5 57.5

Participants from US field centers (%) 75.2 –

Low educated participants (below high school) (%) 12.5 4.3

Smokers (%) 42.9 57.2

Medication use: anti-diabetic (%) 7.7 –

Medication use: lipid lowering (%) 37.0 –

Medication use: anti-hypertensive (%) 54.1 –

Medication use: angina meds (%) 32.8 –

Notes: 1) Abbreviations: LLFS, Long Life Family Study; HRS, Health and Retirement Study; AD, Alzheimer’s disease; SD, standard deviation. 2) The table shows the numbers after removal of

individuals in the genetic QC procedure it and deletion of individuals with missing values of covariates and outcomes used in the analyses. The initial sample considered for analyses was

5,036 for LLFS, and 10,958 for HRS. 401 (243) individuals were removed in the genetic QC procedure it in LLFS (HRS) (see Section 2.3). Then 362 (91) individuals were removed in LLFS (HRS)

because they had at least onemissing value of the covariates. Numbers of individuals with missing values of covariates and outcomes in LLFS: AD – 117; age at first exam – 0; sex – 0; country – 0;

education – 9; smoking – 15; medication use: anti-diabetic – 243; medication use: lipid lowering – 243; medication use: anti-hypertensive – 243; medication use: angina meds – 243. Numbers of

individuals with missing values of covariates and outcomes in HRS: AD - 1; age at first exam – 0; sex – 0; education – 27; smoking – 63.
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measure ancestry divergence to identify a mutually unrelated and
ancestry representative subset of individuals as needed for the PC-
AiR algorithm. In HRS, pruning was performed using PLINK (with
window size 100 variants, shifted by 10 variants at the end of each
step, and a pairwise squared correlation threshold of 0.8 at each step)
and then PCs were computed using EIGENSOFT version 6.1.4
(Patterson et al., 2006; Price et al., 2006).

2.4 Association analyses of individual SNPs
and SNP pairs

We first estimated associations of SNPs in the selected twelve
candidate genes (Table 1; Section 2.2) with the onset of AD in LLFS
data. Next, we validated associations of the top SNPs identified in LLFS
using the HRS data. We estimated the associations of both individual
SNPs and epistatic interactions between SNPs in these candidate genes.

LLFS is a family-based study, and as such, it has related
individuals. In addition, our time-to-event outcome of interest is

the age of AD onset. To account for relatedness between individuals
in analyses of time-to-event outcomes, we used a recently developed
R-package coxmeg (He and Kulminski, 2020) that implements a Cox
mixed-effects model for time-to-event outcomes in family-based
studies that is substantially faster than existing implementations
(e.g., R-package coxme). We analyzed individual SNPs in the
candidate genes (Table 1), using a block-diagonal family cluster
matrix with blocks defined by LLFS family ID. Similarly, we used
coxmeg to analyze interactions of pairs of SNPs (only pairs of SNPs
taken from different candidate genes were analyzed, e.g., one SNP
from ALCAM and one from CADM1 but not pairs of SNPs from
ALCAM alone). For the HRS, we used the standard Cox regression
model (R-package survival) as the HRS does not contain related
individuals.

In addition to genetic variants, the models used in the
association analyses included several covariates to adjust for
potential confounders. For the LLFS, the following covariates
were used: age at first in-person visit (when blood assays were
collected), sex (1 - male, 0 - female), country (1 - Denmark, 0 -

TABLE 3 SNPxSNP interactions significantly associated with the onset of AD in the LLFS.

SNP1 Chr1 Gene1 EAF1 SNP2 Chr2 Gene2 EAF2 Beta p-value FDR N

rs71309807 3 CNTN6 0.11 rs9307159 4 UNC5C 0.20 1.29 8.6 × 10−7 0.024 3,400

rs10273006 7 PLXNA4 0.45 rs309502 1 EPHB2 0.49 −0.73 2.3 × 10−6 0.029 3,402

rs4406027 4 UNC5C 0.10 rs73158836 7 PLXNA4 0.06 2.14 3.1 × 10−6 0.029 3,375

rs62263606 3 ALCAM 0.20 rs75167003 9 SEMA4D 0.05 2.34 4.3 × 10−6 0.030 3,405

rs13149449 4 UNC5C 0.07 rs7554093 1 EPHB2 0.09 1.42 5.4 × 10−6 0.030 3,402

rs58809210 4 UNC5C 0.18 rs76756609 3 CNTN6 0.06 1.97 7.8 × 10−6 0.031 3,403

rs262809 3 CNTN6 0.30 rs76347104 11 CADM1 0.03 2.10 7.8 × 10−6 0.031 3,401

rs3772327 3 CNTN6 0.48 rs3772554 3 ALCAM 0.17 0.88 1.0 × 10−5 0.034 3,400

rs2047888 3 CNTN6 0.18 rs7468365 9 SEMA4D 0.19 0.95 1.1 × 10−5 0.034 3,403

rs57155535 5 TRIO 0.07 rs78628725 11 CADM1 0.06 1.67 1.5 × 10−5 0.041 3,405

rs73818458 3 CNTN6 0.13 rs77146700 7 PLXNA4 0.04 1.61 2.1 × 10−5 0.047 3,393

rs27103 5 TRIO 0.26 rs893961 1 EPHB2 0.23 0.83 2.1 × 10−5 0.047 3,399

rs72746095 5 TRIO 0.09 rs79100129 9 SEMA4D 0.03 2.59 2.3 × 10−5 0.047 3,402

rs17193334 3 CNTN6 0.07 rs76347104 11 CADM1 0.03 2.72 2.4 × 10−5 0.047 3,402

rs10496037 2 RTN4 0.113 rs6951616 7 PLXNA4 0.449 1.008 2.7 × 10−5 0.048 3,389

rs76235219 1 EPHB2 0.031 rs79362259 3 CNTN6 0.037 3.025 3.1 × 10−5 0.048 3,404

rs10891807 11 CADM1 0.077 rs4661709 1 EPHA2 0.068 2.083 3.3 × 10−5 0.048 3,392

rs26081 5 TRIO 0.180 rs76235219 1 EPHB2 0.031 1.763 3.6 × 10−5 0.048 3,399

rs17302526 5 TRIO 0.048 rs75167003 9 SEMA4D 0.050 3.175 3.6 × 10−5 0.048 3,405

rs10999750 10 UNC5B 0.086 rs4731850 7 PLXNA4 0.229 1.243 3.6 × 10−5 0.048 3,403

rs28535173 22 PLXNB2 0.260 rs4699850 4 UNC5C 0.304 0.692 3.7 × 10−5 0.048 3,366

Notes: 1) This table shows results for pairs of SNPs from analyses using the R-package coxmeg (see Section 2.4). K (K = 1, 2) in the names of the columns correspond to the respective

characteristics of the Kth SNP, in the pair. 2) Columns: SNPK, single nucleotide polymorphism; ChrK, chromosome; GeneK, gene name according to the HUGO Gene Nomenclature

Committee (Braschi et al., 2019); EAFK, effect allele frequency; Beta, regression coefficient for the interaction between SNP1 and SNP2; p-value, unadjusted p-value for the interaction

(corresponding to the null hypothesis that the regression coefficient for the interaction is zero); FDR, false discovery rate (Benjamini and Hochberg, 1995) computed from p-values for the

interaction; N, number of individuals in the analyzed sample. The table shows only the results with FDR<0.05. Note that regression coefficients and p-values for the main terms for SNP1 and

SNP2 along with some additional information can be found in Supplementary Table S2.
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United States), education (1 - below high school, 0 - otherwise),
smoking (smoked >100 cigarettes in a lifetime: yes [1]/no [0]; asked
at the baseline visit), and medication use (anti-diabetic, lipid-
lowering, anti-hypertensive, angina meds; 1 - used at visit 1 or
visit 2, 0 - did not use). For the HRS, we used age at genotyping
(which is different from age at first exam in HRS), sex (1 - male, 0 -
female), smoking status (1 – ever smoked, 0 – never smoked), and
education (1 – below high school, 0 – high school graduate and
above). In addition, the top 5 PCs with the largest eigenvalues were
included in the regression models to account for the population
structure (the number of PCs was determined using scree plots).

Post-analysis QC was performed using easyQC (Winkler et al.,
2014) to remove erroneous output, such as missing/excessive
estimates or standard errors. After the post-analysis QC, we
performed an LD-based clumping of results using the PLINK
(Price et al., 2006) clumping procedure with an r-squared
threshold of 0.1. Because the HRS does not have all covariates
that were included in the LLFS analyses, we repeated the LLFS
analyses using the shorter list of covariates (age, sex, smoking,
education, PCs) from the HRS analyses. The LLFS results were
similar to those using the original list of covariates and thus are not
included in the paper.

3 Results

Characteristics of the LLFS and HRS samples are shown in
Table 2. We analyzed 4,273 LLFS participants (2,372 females,
1,901 males). Among these, 176 participants (115 for females,
61 for males) reported a new diagnosis of AD at follow-up. For
the HRS, the analytic sample included 10,624 participants
(6,104 females, 4,520 males) with 336 new cases of AD during
the follow-up period (199 among females, 137 among males). See
Notes under Table 2 and Materials and Methods that describe how
the analytic sample was constructed from the original sample.

No SNPs in the candidate genes from Table 1 individually
showed a significant association with AD in the LLFS after

correction for multiple comparisons (Supplementary Table S1).
However, we found statistically significant interactions between
SNPs in the candidate genes. Table 3 shows the top results for
associations of these interactions with onset of AD in the LLFS (in
total, 29,635 SNP pairs remained after post-analysis QC and
clumping). Twenty one SNP pairs had a false discovery rate
(FDR) less than 0.05 (Table 3; Supplementary Table S2). The
CNTN6, UNC5C, PLXNA4, and EPHB2 genes were broadly
involved in the SNPxSNP interactions and appeared in most of
the top significant interactions (see Supplementary Figure S1).

Table 4 shows the results of genetic interactions in the HRS data
that support (with p-values <0.05) the top two SNP pairs in the
CNTN6 – UNC5C and PLXNA4 – EPHB2 pairs found in the LLFS
(Table 3). These SNPs are in LD with the top SNPs found in the
LLFS (see Notes under Table 4). Note that the interactions between
the CNTN6 – UNC5C and PLXNA4 – EPHB2 genes in the HRS also
include other SNPs that are not in LD with the SNPs in the genes
found in the LLFS (Supplementary Figure S1). This indicates a broad
involvement of interactions between these genes in AD, which is not
limited by the few specific SNPs. Indeed, different SNPs in the same
gene may sometimes similarly influence its expression or protein
yield and thus they can be potentially interchangeable in terms of
their biological effects (Yashin et al., 2012). Such interactions should
also be explored in future studies at the gene level aggregating many
SNPs to better understand how multiple functionally similar SNPs
may contribute to gene-by-gene interactions that influence AD
onset.

4 Discussion

We estimated associations of individual SNPs in candidate genes
involved in PD and axon guidance, as well as SNPxSNP interactions,
with AD onset among LLFS and HRS participants. Our analysis
revealed significant interactions between the SNPs in the UNC5C,
CNTN6, PLXNA4, and EPHB2 genes that influenced AD onset in
both datasets. For the LLFS, the top significant interaction was

TABLE 4 HRS results supporting the top significant SNP pairs in CNTN6 and UNC5C, and PLXNA4 and EPHB2 genes found in LLFS.

SNP1(LLFS) GENE1 SNP2
(LLFS)

GENE2 SNP1(HRS) SNP2(HRS) R2

SNP1
D’

SNP1
R2

SNP2
D’

SNP2
P(HRS)

SNP1xSNP2

rs71309807 CNTN6 rs9307159 UNC5C rs13097143 rs1872129 0.22 0.90 0.25 0.95 0.0286

rs71309807 CNTN6 rs9307159 UNC5C rs12107538 rs17023470 0.14 0.91 0.14 0.50 0.0297

rs71309807 CNTN6 rs9307159 UNC5C rs10510165 rs1872129 0.23 0.91 0.25 0.95 0.0307

rs71309807 CNTN6 rs9307159 UNC5C rs3772351 rs1872129 0.17 0.92 0.25 0.95 0.0457

rs71309807 CNTN6 rs9307159 UNC5C rs11128578 rs1872129 0.17 0.92 0.25 0.95 0.0480

rs10273006 PLXNA4 rs309502 EPHB2 rs10229073 rs309495 0.13 0.99 0.50 0.97 0.0051

rs10273006 PLXNA4 rs309502 EPHB2 rs10229073 rs309543 0.13 0.99 0.45 0.87 0.0173

rs10273006 PLXNA4 rs309502 EPHB2 rs6957896 rs309495 0.15 0.52 0.50 0.97 0.0303

rs10273006 PLXNA4 rs309502 EPHB2 rs1499300 rs309495 0.15 0.88 0.50 0.97 0.0346

Notes: 1) This table shows results of replication of our top two findings from LLFS, shown in Table 3. 2) Columns SNP1 (LLFS), GENE1, SNP2 (LLFS), and GENE2 contain rs numbers and gene

names for respective pairs of SNPs, identified in LLFS. Columns SNP1 (HRS) and SNP2 (HRS) show SNPs, from respective genes identified in HRS data, and columns R2 SNP1, D′ SNP1, R2

SNP2, and D’ SNP2 display respective linkage disequilibrium measures between those SNPs and the SNPs shown in columns SNP1 (LLFS) and SNP2 (LLFS). Column P (HRS) SNP1 x

SNP2 presents p-values for the null hypotheses of zero interaction term for the SNPs in columns SNP1 (HRS) and SNP2 (HRS).
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observed between rs9307159 (UNC5C) and rs71309807 (CNTN6)
(HR = 3.62; Bonferroni p-value: 0.026). The same gene pair was also
among the top significant interactions associated with AD in the
HRS. Results for individual SNPs were not significant. Our findings,
thus, strongly support a major role of genetic interactions in the
heterogeneity of AD, including the interactions among genes
involved in aging-related increase in physiological dysregulation
and changes in axon guidance/synaptic functioning.

Our results also show that selecting candidate genes based on
their involvement in the same biological process relevant to AD is a
viable strategy for identifying significant genetic interactions
associated with AD. Indeed, molecular products of the UNC5C,
PLXNA4, and EPHB2 genes are jointly involved in axon guidance (in
development) and synaptic plasticity (in adults), essential for the
maintenance of complex neural networks. These genes and their
products have also been linked to AD and related traits in the
literature (Cissé et al., 2011; Barthet et al., 2013; Jun et al., 2014
Wetzel-Smith et al., 2014; Giri et al., 2016; Hashimoto et al., 2016;
Kang et al., 2016; Sun et al., 2016; van Dijken et al., 2017; Han et al.,
2018; Li et al., 2018; Liu et al., 2018; Lee et al., 2019; Yang et al., 2019;
Chen et al., 2021). Results of our analyses suggest that such genes are
plausible candidates for exploring the role of genetic interactions in
AD heterogeneity. One hypothetical mechanism connecting AD
with the axon guidance genes could be reactivation in the aging body
of the developmental synaptic pruning program involving such
genes, which may lead to synapse loss and subsequent
neurodegeneration (Vanderhaeghen and Cheng, 2010). As for
CNTN6, it is a member of the contactins family of neuronal
membrane proteins that function as cell adhesion molecules
playing roles in the formation of axon connections, neurite
outgrowth, synaptogenesis, cell survival, and neural circuit
formation and regeneration (Oguro-Ando et al., 2017; Chatterjee
et al., 2019). Various studies have implicated CNTN6, and more
broadly contactins as a group, in metabolic, neurological, and
mental health conditions, brain disorders, intellectual disability,
depression, and AD-related traits (Jia et al., 2017; Oguro-Ando
et al., 2017; Chatterjee et al., 2019; Bamford et al., 2020; Morris et al.,
2020). All genes selected for the interaction analysis in this study are
involved in the same biological processes relevant to AD, likely
contributing to their propensity for interactions affecting AD risk.

Earlier we emphasized that the increase in physiological
dysregulation is a fundamental feature of human aging
contributing to declines in both resistance to disease occurrence
(robustness), and ability to recover and survive after disease occurs
(resilience) (Arbeev et al., 2019; Ukraintseva et al., 2021). If so, then
the PD-related genes, and their interactions, may potentially
influence not only AD onset, but also survival after it, as well as
chances of extreme longevity. Therefore, a logical next step would be
to investigate associations of the PD-related genes with survival
outcomes at different age intervals. Given that the age-related
increase in PD may affect the functioning of multiple organs, the
PD-related genetic variants might also be associated with
comorbidities, offering another avenue in this line of research.

We acknowledge that this study has some limitations. First, our
outcome variable is an approximated age of onset derived from
questionnaires. As these data are recorded during the interviews,
they may not accurately reflect true ages of onset. This is a common
limitation of the studies using such outcomes. Second, our studied

samples were White, so that more analyses (and data) are necessary
to investigate if the results hold for other populations. Third, our
samples have relatively small numbers of AD cases. Therefore,
additional validation studies are needed to determine if the
interactions among UNC5C, CNTN6, PLXNA4, and EPHB2 genes
can influence AD onset in other, larger-scale, datasets with time-to-
event information on ages of AD onset.

In conclusion, interactions between SNPs (but not individual
SNPs) in genes involved in increase in physiological dysregulation
with age, a crucial feature of biological aging, and in axon guidance/
synaptic functioning, were significantly associated with the age of
AD onset in this study. Our findings support the idea that genetic
interactions contribute to the heterogeneity of late-onset
Alzheimer’s disease. Inherent differences in the rate of PD
change with age appear to interact with one’s genetic propensity
for synaptic dysfunction in determining AD risk. The results of our
study also indicate that system-level changes in the aging body, such
as the whole-body increase in physiological dysregulation, might
contribute to the brain changes required for AD development.
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