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Background: For prediction on leukemic transformation of MDS patients,
emerging model based on transcriptomic datasets, exhibited superior
predictive power to traditional prognostic systems. While these models were
lack of external validation by independent cohorts, and the cell origin (CD34+

sorted cells) limited their feasibility in clinical practice.

Methods: Transformation associated co-expressed gene cluster was derived
based on GSE58831 (‘WGCNA’ package, R software). Accordingly, the least
absolute shrinkage and selection operator algorithm was implemented to
establish a scoring system (i.e., MDS15 score), using training set
(GSE58831 originated from CD34+ cells) and testing set (GSE15061 originated
from unsorted cells).

Results: A total of 68 gene co-expression modules were derived, and the ‘brown’
module was recognized to be transformation-specific (R2 = 0.23, p = 0.005,
enriched in transcription regulating pathways). After 50,000-times LASSO
iteration, MDS15 score was established, including the 15-gene expression
signature. The predictive power (AUC and Harrison’s C index) of MDS15 model
was superior to that of IPSS/WPSS in both training set (AUC/C index 0.749/0.777)
and testing set (AUC/C index 0.933/0.86).

Conclusion: By gene co-expression analysis, the crucial gene module was
discovered, and a novel prognostic system (MDS15) was established, which was
validated not only by another independent cohort, but by a different cell origin.
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Introduction

MDS represents a heterogenous cluster of myeloid neoplasms,
featured by dysplasia, ineffective hematopoiesis, with or without
excessive blasts. Leukemic transformation is one of the main causes
of death in MDS patients (Platzbecker et al., 2021). However,
evaluation of transformation risk for individual patients, remains
an essential but difficult aspect in clinical investigations. By far
several prognostic systems have been established, such as IPSS
(International Prognostic Scoring System (Greenberg et al.,
1997)), IPSS-R (Revised International Scoring System (Greenberg
et al., 2012)) and WPSS (WHO Prognostic Scoring System
(Malcovati et al., 2007)), which are based on clinical (cytopenia,
blast percentage, disease subtypes, etc.) or genetic variables
(cytogenetics). The risk categories correlated with duration of
leukemic transformation without treatment, according to which
the risk-adapted treatment strategy was used in clinical practice.
Nevertheless, it is recognized that patients with the same genetic
signature (mutation/cytogenetic variation) frequently have distinct
clinical and prognostic features. Genes involving in RNA splicing,
epigenetic modification and signaling transduction, were most
frequently mutated in MDS (Lindsley and Ebert, 2013), which
lead to dysregulation of gene expression. Beyond DNA variation,
the emerging transcriptomic investigations unraveled the gene
expression signature for MDS (Pellagatti et al., 2006; Pellagatti
et al., 2010; Gerstung et al., 2015), and a few prognostic models
were built. The work of Moritz Gerstung et al. even proved that the
predictive power of expression signature was superior to that of
traditional markers (IPSS, genetics, cytogenetic, etc.) on AML-free
survival (Gerstung et al., 2015). While these studies were lack of
external validation by independent cohorts, and the robustness of
models was questioned due to the heterogeneity between
experimental platforms and cell origins. Additionally, these
models were either too elaborate (included too many variables),
or derived from CD34+ sorted cells, which limited the feasibility in
practice (unsorted samples instead of CD34+ sorted were used in
most clinics).

New methods had emerged to analyze the transcriptomic
datasets, which made it possible to improve the accuracy of the
prediction model. An updated transcriptomic analysis method,
WGCNA, can recognize co-expressed gene clusters according to
scale-free network theory and correlated clinical or genetic traits
with MEs (the first principal component representing gene co-
expression modules) (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008). By WGCNA, the co-expressed gene clusters,
significantly associating with AML transformation or high-risk
factors, were unraveled using GSE58831 dataset in the present
study. MDS15 model was established using multiple-iteration
LASSO, consisting of 15 gene expression variables. The
MDS15 model comprises expression markers from 15 genes:
NEAT1, LYSMD2, SLC4A1AP, KMT2A, PHC1, ADHFE1,
TFAP2E, TPBG, TRIP11, GAS6-AS1, KCNMB4, ZNF225,
LOC100506730, WT1, and STARD9. The NEAT1 gene yields a
lncRNA known to influence AML progression (Zhao et al., 2019;
Feng et al., 2020; Yan et al., 2021; Rostami et al., 2022). KMT2A also
stands as a prognostic determinant in MDS/AML (Li et al., 2013;
Kotani et al., 2019), with its partial tandem duplication or
rearrangement traditionally recognized as harbingers of

diminished survival. GAS6-AS1, another long noncoding RNA, is
notably overexpressed in AML and correlates with adverse survival
outcomes; curbing its expression has been shown to decelerate AML
progression (Zhou et al., 2021). Several studies have illuminated that
elevated WT1 expression detrimentally affects the survival rates in
MDS, and its expression in peripheral blood astutely forecasts
progression-free survival (Rautenberg et al., 2019). However, the
remaining genes delineated in the MDS15 model have not been
definitively linked to eitherMDS prognosis or the biology of myeloid
malignancies.

Then to address the versatility of MDS15, predictive power was
validated in both GSE58831 and GSE15061 datasets. Furthermore,
GSEA was implemented to uncover the possible related biological
process toMDS15 risk scores. The flowchart of this study was shown
in Figure 1.

Methods

Datasets download

We searched the GEO database by the following key word:
“(myelodysplastic syndrome) AND "Homo sapiens" [porgn:__
txid9606]”, then “Expression profiling by array” and “Expression
profiling by high-throughput sequencing” were selected to limit
study type. A total of 164 datasets were obtained at first search, then

FIGURE 1
The flowchart of the present study.
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we selected datasets with corresponding individual leukemic
transformation-free survival (LFS) data. Finally, GSE58831 and
GSE15061 were selected to be used in our analysis.

The expression matrix and parallel clinical/genetic information
were derived from GEO database repository (https://www.ncbi.nlm.
nih.gov/gds/) (Edgar et al., 2002). There were 176 bone marrow
CD34+ cell samples (159 MDS patients and 17 healthy controls) in
GSE58831 cohort, with attached individual diagnostic subtypes,
karyotypes, hemoglobulin level, count of neutrophils and
platelets, IPSS/WPSS scores and LFS. Due to the adequate
available individual clinical and genetic data, GSE58831 was
selected for WGCNA to draw the AML-transformation specific
gene module, which were then inputted into LASSO analysis and
establish predictive model as the training set.

GSE15061 cohort included transcriptomic data of 435 bone
marrow mononuclear cell samples in total (164 MDS patients and
69 healthy controls, on GPL570 platform), with substantial
individual diagnosis, IPSS, blast scores, cytopenia, and LFS
information. GSE15061 dataset was used to validate predictive
power of MDS15 model, by which the consistency of model
performance in CD34+ cells and unsorted bone marrow cells will
be documented.

Additionally, GSE19429 cohort constituted of 183 MDS and
17 healthy controls with expression matrix and diagnosis
information, which was used in correlation analysis between
MDS15 scores and MDS subtypes.

All 3 expression datasets (GSE58831/GSE15061/
GSE19429), used in our analysis, which were obtained from
the same microarray platform (GPL570) to reduce trans-
platform heterogeneity. All datasets used in our findings
were available from public data repository, which was last
visited on 22 Jun 2022.

WGCNA

The co-expression network was established using microarray
data of GSE58831, with ‘WGCNA’ package (Langfelder and
Horvath, 2008) and R software (version 4.2.1). The
transcriptomic outliers in samples were detected by average
linkage of hierarchical clustering (Supplementary Figure S1, 2).
Then 0.85 was defined as minimal beta in setting soft threshold
(Supplementary Figure S3). The inter-gene Pearson’s coefficients
were calculated for inputted matrix, thus establishing TOM
(topological overlap matrix). The minimal size of gene modules
was set to be 30. Then whole genome was divided into co-expression
gene modules by average linkage hierarchical clustering, in which
modules with TOM-based dissimilarity less than 0.30 were merged.
Module eigengene were defined as the principal component of
individual co-expression modules. MM (Module membership,
referring to Pearson’s correlation coefficients between individual
gene and eigengene in the same module), and GS (gene significance,
referring to Pearson’s coefficients between gene expression and
clinical/genetic variables) were calculated to elucidate clinical
significance of gene clusters. Correlation between target markers
(leukemic transformation, etc.) and modules eigengenes, was
analyzed to discern the leukemic transformation specific gene
cluster (with greatest correlation coefficient).

Gene enrichment analysis of genes in the
selected module

Gene enrichment analysis was performed to demonstrate the
possible involved biological process (BP), molecular function (MF),
and cell component for leukemic transformation specific gene
module, based on DAVID (Huang et al., 2009) (Database for
Annotation, Visualization and Integrated Discovery) (https://
david.ncifcrf.gov/). The pathways with local FDR adjusted
p-value (q value) less 0.05, were referred to be significantly
enriched by the gene module.

Prognostic model for leukemia free survival

The detail mathematic transformation of LASSO was described
in the original work by Monica M. Vasquez et al. (Vasquez et al.,
2016). Normalized expression matrix of brown module within
GSE58831 MDS patients, was inputted into LASSO analysis with
glmnet package. Then we performed the regression analysis in
dimension reduction for inputted variables, and obtained the
prediction model consisting of variables with non-zero
coefficients after 50,000 times of iteration, which was named as
MDS15 due to included gene count. A bootstrap aggregation
approach was performed with 10-fold cross validation to fit a
binomial regression model, using ‘glmnet’ package.
GSE58831 was used as a training set and GSE15061 as a testing
set. Then, risk scores of individual patients were calculated to add up
weighted expression value of gene variables with non-zero
coefficients, which constituted MDS15 model (15 genes
included). The cutoff value of low and high-risk groups was
determined with function ‘surv_cutpoint’ within package
‘survminer’. Kaplan-Meier analysis on LFS and time-dependent
ROC were performed with ‘survival’ and ‘survivalROC’ packages
in R software. To investigate the relationship of MDS15 risk scores
and traditional disease markers, MDS patients was grouped by
diagnostic subgroups, with or without cytopenia, IPSS/WPSS
category, based on GSE58831/GSE15061/GSE19429 cohorts,
respectively. Then MDS15 scores were compared across different
subgroups.

Furthermore, the independent prognostic value of
MDS15 scores was validated by univariate and multivariate Cox
analysis along with other possible prognostic factors (age, gender,
MDS subtype, counts of blood cells and blasts, serum ferritin,
karyotype scores, IPSS and WPSS).

Genome-wide expression profile associated
with MDS15 scores

To elucidate the associated gene expression signature and
pathway profile, genome-wide expression correlation analysis was
implemented. Pearson’s coefficients were calculated between
MDS15 risk score and expression value of each gene within the
genome. R software (version 4.0.2) and ‘stats’ package was utilized
for the calculation. Then, GSEA was used to interpret the result of
genome-scale correlation analysis for MDS15 score, based on the
Pearson’s coefficient of individual gene in the specific sets
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(pathways) of MSigDB database (Mootha et al., 2003; Subramanian
et al., 2005; Dweep et al., 2013). (http://software.broadinstitute.org/
gsea/msigdb). The MDS15 related pathways were identified as |NES
(normalized enrichment score) | > 1 and q value (FDR adjusted
p-value) < 0.05.

Statistical analysis

After download from database, ‘normalizeBetweenArrays’
function of ‘limma’ package was implemented to normalize gene
expression data for the following analysis (R software, version 4.2.1).
Continuous variables of subgroups were compared by two-side
Wilcoxon’s test (N = 2), or Kruskal–Wallis’s test (N > 2). LFS
difference between subgroups was discerned by Kaplan-Meier
plotter and log-rank test.

Results

WGCNA

The clinical and genetic characteristics of GSE58831 cohort were
previously described (Mills et al., 2009). Among the
GSE58831 cohort, 7 patients with AML transformation at
baseline (blast % > 20%) and 7 patients with CMML were
excluded in WGCNA. 1 patient (GSE1420528) was excluded by
outlier detection (Supplementary Figure S1, 2). A total of 144 MDS
patients were included in the WGCNA, consisting of 13 MDS-RA,
6 5q-syndrome, 49 MDS-RCMD, 20 MDS-RARS and 56 MDS-
RAEB patients.

The minimal soft threshold power was 7, by which the scale
topology model fit R2 > 0.85 (Supplementary Figure S3). The
argument ‘mergeCutHeight’ was set to be 0.30, which merged the
modules with TOM-based dissimilarity <30%. Finally, 68 gene
clusters/modules were derived (Supplementary Figure S4). The
relationship of clinical variables and gene module eigengenes
were shown in Figure 2, by which the brown module was
recognized as AML transformation specific module (R2 = 0.23,
p = 0.005). Notably, brown module was negatively associated
with RARS subtype, neutrophil, and platelet count, while
positively associated with RAEB subtype, hemoglobulin and blast
percentage in bone marrow (p < 0.05, Figure 2). The MM and GS of
individual genes in brownmodule were significantly correlated (R2 =
0.31, p = 2e-30, Supplementary Figure S5).

Over-representation analysis for the brown
module

The brown module included 1,301 genes, including ASXL1
(Gelsi-Boyer et al., 2009; Mills et al., 2009), ASXL2 (Li et al.,
2017), ATR (Nguyen et al., 2018), CUX1 (An et al., 2018; Aly
et al., 2019), DNMT3A (Walter et al., 2011), FLT3 (Daver et al.,
2019), HOXA7 (Drabkin et al., 2002) and WT1 (Rautenberg et al.,
2019), which are dysregulated and/or prognostic in MDS or AML.
The results of ORA for genes in the ‘brown’ module demonstrated

FIGURE 2
The relationship of module eigengenes and clinical variables. The
heatmap displays various modules (represented by distinct colors) on the
X-axis, juxtaposed against the evaluated variables on the Y-axis. Each cell
withintheheatmapprovidestwokeymetrics:thetopnumberdenotes
the Pearson’s correlation coefficient between module eigengenes and
evaluatedvariables,while thebottom indicates thecorrespondingp-value.
The color gradient serves to visually convey the correlation’s strength and
direction. A shift towards red implies a strongerpositive correlation,while a
move towards blue denotes a stronger negative correlation.
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enriched pathways in Figure 3. Biological processes were
significantly enriched, such as covalent chromatin modification,
histone modification, methylation histone methylation, etc. And

protein acetyltransferase complex was enriched cell component for
brown module genes. Moreover, GO analysis on molecular function
enrichment, indicated the ‘brown’ module genes were enriched in
transcription coregulator activity, DNA-binding transcription
repressor activity, histone binding, etc. The above results
suggested the brown module were predominantly involved in
transcriptional regulation by epigenetic mechanisms.

LASSO analysis and MDS15 model

LASSO penalized regression analysis fitted LFS of individual
patients to establish prediction model, by inputting expression level
of brown module genes. GSE58831 was used as the training cohort,
including 121 patients with sufficient LFS data. And GSE15061 was
used as the testing cohort, including 132 patients with sufficient
LFS data.

After 50,000-times iteration, an optimized model of 15 gene with
non-zero coefficient were derived, balanced predictive power in both
training and testing cohorts. The prediction model (MDS15) was
included 15 genes and matched coefficients (listed in Table 1). The
risk scores were calculated by summation of individual weighted
gene expression value.

Prediction power of MDS15 model on
leukemic transformation

The cohort-specific cut-off risk score was calculated for training
and testing cohorts respectively by “surv_cutoff” function of
“survminer” package, which stratified the training cohort (low-
risk N = 107, high-risk N = 14) and testing cohort (low-risk N =

TABLE 1 The arguments of MDS15 model, including the gene symbols and
corresponding coefficients.

Gene symbol Coefficient

NEAT1 0.309795

LYSMD2 0.370893

SLC4A1AP 0.404787

KMT2A 0.468553

PHC1 0.219551

ADHFE1 0.093212

TFAP2E 0.532325

TPBG 0.032962

TRIP11 0.00916

GAS6.AS1 0.342155

KCNMB4 −0.71229

ZNF225 −0.08073

LOC100506730 −0.1886

WT1 0.213879

STARD9 −0.23934

FIGURE 3
Results of ORA for transformation-specific gene module. The
dotplot of enriched pathways. The size of dots represented the count
of genes involved in the pathway. while the color of dots correlated
with the -log10 (q value). It is indicated that the brown module
genes mainly implicated in epigenetic regulation.
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FIGURE 4
The Sankey plot illustrating the relative precision of prediction by MDS15 model (left column) vs. IPSS (right column) based on GSE15061 dataset,
which showed superior predictive power of MDS15 model.

FIGURE 5
Leukemia-free survival analysis based on MDS15 model by Kaplan-Meier plotter, for the training set (GSE58831, (A) and testing set (GSE15061, (B).
The MDS15 low-risk group exhibited markedly prolonged survival compared to the MDS15 high-risk group.
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96, high-risk N = 36). The Sankey plots demonstrated that the
capability of current prognostic systems (IPSS/WPSS), was inferior
to that of MDS15 model (Figure 4; Supplementary Figure S6A, B). A
subset of actually high-risk patients was ignored and classified as
very low risk or low risk group in IPSS/WPSS, while the majority of
very high-risk group (defined by IPSS/WPSS) had not progressed
into AML (Figure 4, Supplementary Figure S6A, B).

The Kaplan-Meier plotter on LFS of MDS15-high and low risk
groups were depicted in Figure 5A&B for training and testing
cohorts, respectively, which indicated that the MDS15-high risk
groups had significantly shorter LFS than that of MDS15-low risk
group (p < 0.001 in both cohorts). MDS15 risk stratification well
recognized a group of virtually low-risk patients, the median LFS of
which was not reached in both cohorts. Moreover, time dependent
ROC analysis revealed 12/24/36-month AUC of MDS15 model in
training cohort was 0.759/0.792/0.792 (Figure 6A), and that of testing
cohort was 0.838/0.835/0.819 (Figure 6B), respectively. The
distribution of survival and risk profile was visually exhibited in
Figures 7, 8 for the training/testing cohorts, which demonstrated the
consistency of MDS15 risk scores and LFS distribution.

Notably, to compare the prediction power of MDS15 model and
traditional MDS risk stratification system, multi-ROC analysis was
implemented. The results indicated that AUC and C-index (Harrel’s
C statistic) of MDS15 model was superior to karyotype, IPSS and
WPSS, validated in the training and testing cohorts (Figures 9A, B).

The association of MDS15 model with
traditional disease markers of MDS
transformation

The correlation analysis indicated transformed MDS patients
had higher baseline MDS15 scores than that of non-transformed
MDS patients (Figure 10A, B). Moreover, other negative disease
markers (RAEB phenotype, cytopenia, higher IPSS/WPSS risk

category, higher blast scores, etc.) was also associated with
MDS15 risk scores (Supplementary Figure S7A–K), based on
3 independent cohorts (GSE15061/58831/19429).

Univariate and multivariate cox analysis

The univariate Cox analysis screened 5 variables associated with
LFS (p < 0.10), to input into sequential multivariate analysis,
including diagnosis, count of platelets, IPSS, WPSS and
MDS15 risk scores. Then, multivariable Cox analysis
demonstrated MDS15 risk score to be the only independent
prognostic factor for LFS of MDS patients (Figure 11, 12).

Results of genome-wide correlation
analysis

The significantly enriched pathways relating with MDS15 scores
were illustrated in Figure 13. The activated pathways consisted of
MYC (Myc proto-oncogene protein) targets, E2F (Transcription
factor E2F1) targets, Oxidative Phosphorylation and DNA repair
pathways, etc., significantly suppressed pathways constituted
apoptosis, IL6-JAK-STAT3 pathway, IL2-STAT5 pathway,
Interferon alpha response pathway, apoptosis and p53 pathway, etc.

Discussion

The transcriptomic features have been widely investigated for
bone marrow samples of MDS patients, to link the mRNA
expression signature with clinical outcomes or eligibility of target
therapy (Pellagatti et al., 2006; Pellagatti et al., 2010; Kondo et al.,
2011; Heinrichs et al., 2013; Xu et al., 2016; Huang et al., 2019). The
updated analytic methods have provided new clues on the ‘old data’.

FIGURE 6
Time-dependent ROC analysis of MDS15 model, based on training set (A) and testing set (B).
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WGCNA has been used in digging from omics data of hematological
malignancies (Fu et al., 2020; Liu et al., 2020; Adebayo et al., 2022;
Chen et al., 2022). In comparison with traditional differential
expression analysis, WGCNA focused on the interplay of co-
expressed modules based on scale-free network theory, so that
the gene clusters instead of individual genes were investigated to
establish complicated, but robust correlation with clinical variables.

The current MDS risk stratification systems profiling survival
and leukemic transformation, were challenge by emerging omics
data, including genomics, epigenetics (methylation or chromosomal
accessibility), transcriptomic, and proteomics. The omics data
profiled the actual MDS cell status and further predict prognosis
or discern therapeutic targets. In the present study, the co-expressed
gene modules were recognized, among which the brownmodule was
identified as the key gene cluster associating with AML
transformation and high-risk clinical factors (RAEB phenotype,
etc.. 1,301 genes constituting brown module (Supplementary
Table S1), was demonstrated to be predominantly enriched in

epigenetic regulating pathways, by biological process (BP)
analysis based on GO database. One node of this pathway in
brown module, KMT2A gene encodes histone methyltransferase,
which plays an essential role in hematopoiesis (Nakamura et al.,
2002; Dou et al., 2005; Patel et al., 2009; Avdic et al., 2011),
rearrangement or abnormal expression of which had been linked
to poor prognosis (Tsai et al., 2022). Other histone methylating
genes, such as KMT5B/EZH1/KMT2D/KMT2E/SETD5, were also
included in brown module, and related to pathological process or
prognosis of myeloid neoplasms (MDS/AML) (Mochizuki-Kashio
et al., 2015; Jin et al., 2020; Liquori et al., 2020; Janusz et al., 2021; Lin
et al., 2021; Zhong et al., 2021).

MDS15 model was derived from LASSO analysis based on
expression signature of brown module, and greatly improved the
prediction of leukemic transformation (Figure 3). For GSE15061,
only 3.09% (3/97) MDS15 low-risk patients transformed eventually,
while 9.09% (6/66) of IPSS low-risk group, 24.39% (10/41) of IPSS
int-1 group, progressed into AML eventually. Moreover, 57.14%

FIGURE 7
(A) The distribution and cut-off value of MDS15 risk scores in the
training set. (B) The survival time and status of the training set
corresponding to risk scores. The left half, separated by a line of
dashes, included low-risk group, while the right part included
high-risk group. (C) The heatmap and hierarchical clustering of the
MDS15 model for the training set. The symbols of genes are displayed
on the right longitudinal axis; the clustering dendrogram of genes are
displayed on the left longitudinal axis. The relative expression level of
genes is indicated by gradient color from blue (−1) to red (1).

FIGURE 8
(A) The distribution and cut-off value of MDS15 risk scores in the
testing set. (B) The survival time and status of the training set
corresponding to risk scores. The left half, separated by a line of
dashes, included low-risk group, while the right part included
high-risk group. (C) The heatmap and hierarchical clustering of the
MDS15 model for the testing set. The symbols of genes are displayed
on the right longitudinal axis; the clustering dendrogram of genes are
displayed on the left longitudinal axis. The relative expression level of
genes is indicated by gradient color from blue (−1) to red (1).
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(20/25) patients in MDS15 high-risk group finally transformed,
superior to the result of IPSS (26.32% and 33.33% transformation
rate in IPSS int-2 and high-risk group, respectively). Identical results
were found in GSE58831, irrespective of MDS15 vs. IPSS

(Supplementary Figure S6A) or MDS15 vs. WPSS
(Supplementary Figure S6B). The demonstratable advantage in
distinguishing actually risky patients in Kaplan-Meier analysis
(Figure 5A, B) confirmed prognostic value of MDS15 model.

FIGURE 9
Multi-ROC analysis comparing predictive power (AUC and Harrison’s C index) between MDS15 model and previously used prognostic systems, in
training set (A) and testing set (B). The parameters of the MDS15 model surpassed those of traditional prognostic systems.

FIGURE 10
The dot plot illustrates a comparison between the baselineMDS15 risk scores of patients who underwent transformation versus thosewho did not, in
GSE58831 (A) and GSE15061 (B). Significant difference in risk scores was revealed in both sets.
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Time-dependent ROC analysis revealed 12/24/36-month AUC
were 0.759/0.792/0.792 for training set, and 0.838/0.835/0.819 for
testing set, respectively (Figure 6A, B). The riskscore-survival curves
were steady, continuous, and well-fitted in both sets. Notably,
GSE58831 and GSE15061 were not only sampled from
independent cohorts, but also from different cell origins
(GSE58831 derived from CD34+ bone marrow cells,
GSE15061 from unsorted bone marrow cells). Robust and
comparable predictive power was exhibited by both datasets,
suggesting MDS15 model bridged between CD34+ sorted and
unsorted samples. Since only unsorted samples were available in
most hospitals or clinics, MDS15 is a promising risk system in
clinical practice. In comparison with traditional prognostic scoring
systems, superior predictive power (AUC and Harrison’s C index) of
this model was discerned by both training and testing set (Figures
9A, B). Transformed patients had significantly higher baseline
MDS15 scores (Figure 10A, B). Moreover, the independent
prognostic variables were screened in covariate Cox analysis, in
which diagnostic subtype, IPSS, WPSS and MDS15 scores were
identified to be significant prognostic factors. While only
MDS15 scores were demonstrated to be an independent
prognostic factor by multi-Cox analysis. The abovementioned
results elucidated the prognostic power and future potential in
clinical practice.

In spite of the rapid advancement of omics techniques in the
realm of myeloid neoplasms, including RNAseq andmicroarray, few
findings have been integrated into clinical practice owing to the
prohibitive costs and laboratory requirements. The MDS15 model
offers precise prognostic predictions and reduces costs by
incorporating fewer variables, rendering it practical for clinical
applications.

Moreover, the whole-genome expression analysis profiled cell
signaling pathways in relation with MDS15 scores, combining with
GSEA. The transcript factors, such as MYC and E2F signaling was
activated along with ascending MDS15 scores (core enrichment of
which included MYC, TRAF6 and EZH2) (Figure 14).
Overexpression of MYC was associated with early AML
progression in MDS patients (Gajzer et al., 2021). One of the
MYC regulating genes in both core enrichment and brown

module, TRAF6 (TNF receptor-associated factor 6 protein) is
generally overexpressed in MDS and was attributed to
hematopoietic progenitor cell defects, but its expression declined
and dysfunction in a subset of AML patients (Muto et al., 2022).
Further investigation indicated TRAF6 mediates ubiquitination of
MYC protein and plays a role of tumor suppressor in myeloid
neoplasms (Muto et al., 2022), suggesting the decreasing gradient of
TRAF6 expression was related to leukemic transformation risk.
Consistent with this result, expression of TRAF6 was significantly
negatively correlated with MDS15 risk scores (p = 0.02, Pearson’s
coefficient = −0.21, Supplementary Figure S8).

EZH2 is a downstream target of E2F signaling (Bracken et al.,
2003; He et al., 2019), the loss-of-function mutation of which is an
independent prognostic factor for MDS. Despite of
EZH2 expression declines in loss of 7q karyotype, EZH2 or
SFSR2 mutant patients (Nagata and Maciejewski, 2019; Sakhdari
et al., 2022), the expression profile in general MDS patients had not
been investigated. After we dichotomized GSE58831 cohort into
EZH2-high and EZH2-low expression subgroups by the median
expression level, a trend toward LFS difference was found in Kaplan-
Meier plot (log-rank p = 0089, Supplementary Figure S9A).
Considering that harboring 7q abnormality (−7 or del7q) is an
independent prognostic factor and lead to haplo-insufficiency of
EZH2 (located in 7q36), 5 such cases were then excluded in LFS
analysis, resulting a significant LFS difference between EZH2-high
and EZH2-low subgroups (log-rank p = 0.0017, Supplementary
Figure S6B). The expression of EZH2 was also correlated with
MDS15 risk scores (p = 0.003). Abovementioned results indicated
the transcriptomic signature of oncogenic signaling (e.g., MYC/
E2F), associating with MDS15 scores, contributed to tumor cell
proliferation and disease progression.

Notably, inflammatory signaling pathways (interferon alpha/
gamma signaling, TNF alpha signaling via NF-kB, inflammatory
response, etc.) were suppressed when the risk score increased
(Figures 13, 14). The interplay between inflammatory cytokines
and MDS stem cells was complicated and paradoxical (Hemmati
et al., 2017). Both interferon alpha and gamma induce apoptosis
and cell growth inhibition in hematopoietic cells (Snoeck et al.,
1994; Mayer et al., 2001). TNF alpha was reported to be
upregulated in bone marrow plasma and positively correlated
with cell apoptosis in low-risk MDS (Kerbauy and Deeg, 2007).

FIGURE 11
univariable Cox regression analysis for LFS in MDS.

FIGURE 12
multivariable Cox regression analysis for LFS, including variables
with p < 0.1 in univariable Cox analysis.
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While inflammation signaling (e.g., TLR signaling) is specific in
low-risk MDS, which promotes tumor cell death (Paracatu and
Schuettpelz, 2020). These results suggested that suppression of

inflammatory signaling attenuated cell death in MDS, which was
in favor of leukemic transformation. MYD88 and TLR2, in the
core enrichment gene list of inflammatory response signaling,

FIGURE 13
The dotplot of GSEA results associating withMDS15 scores. The size of dots represented the count of genes involved in the corresponding pathways.
while the color of dots correlated with the -log10 (adjusted p-value).

FIGURE 14
The curves of running enrichment score for MDS15-related pathways, for MYC targets (A), E2F targets (B), and inflammatory response (C).
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was previously reported to be associated with low-risk MDS,
while downregulated in high-risk MDS (Dimicoli et al., 2013; Wei
et al., 2013). MYD88 is a downstream mediator following Toll-
like receptor activation, the mRNA of which was reported to be
over-expressed in CD34+ cells of low-risk MDS compared to
healthy donors in previous investigation, inhibition of which
restored erythroid colony formatting capacity of HSPC.
Nevertheless, higher expression level of MYD88 was displayed
in high-risk MDS than that in low-risk MDS (Dimicoli et al.,
2013). Consistently, expression of MYD88 was significantly
negatively correlated with MDS15 risk scores (p = 2.15e-3,
Pearson’s coefficient = −0.28, Supplementary Figure S10),
suggesting the association of MDS15 model with dysregulated
immunome. The signaling analysis shed light on potential
therapeutic targets for MDS transformation, paving the way
for future drug development.

The primary innovation of the MDS15 lies in its enhanced
prognostic accuracy compared to traditional systems like IPSS and
WPSS. This enhanced precision can assist clinicians in identifying
truly high-risk patients, enabling them to implement more proactive
measures such as increased monitoring or interventions that can
alter the disease’s natural progression, such as demethylating agents.
Furthermore, by incorporating fewer variables in the MDS15, costs
can be significantly reduced in contrast to comprehensive genome
transcriptome analyses. Despite our study’s insights, there are
limitations. The patient populations from GSE15061 and
GSE58831 displayed heterogeneity in terms of age, diagnostic
subtype, and various clinical and genetic variables (Mills et al.,
2009; Gerstung et al., 2015). And the treatment profile was not
described in both sets, which may produce potential bias. Moving
forward, it will be imperative to develop a refined model that
incorporates individualized patient information, and this should
be validated using larger cohort studies.

Conclusion

By the updated transcriptomic analysis method, WGCNA,
leukemic transformation correlated gene cluster was identified,
and a novel prediction model (MDS15) was established by
LASSO. Then, the predictive power was shown to be superior to
that of traditional prognostic systems (IPSS, WPSS, etc.), which was
validated by datasets derived from different cell origins and
independent cohorts. Moreover, disrupted MYC/E2F signaling,
and inflammatory pathway were demonstrated to be associating
with MDS15 risk scores.
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