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Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four
famous indigenous breeds in China, is characterized by high fat content. The
underlying gene expression pattern in different developmental periods of backfat
tissue remains unclear, and the purpose of this investigation is to explore the potential
molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue
(three samples for each stage) was initially collected from different developmental
stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and
RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of
transcript per million (FPKM) method was used to qualify gene expressions, and
differentially expressed genes (DEGs) were identified. Furthermore, strongly co-
expressed genes in modules, which were named by color, were clustered by
Weighted gene co-expression network analysis (WGCNA) based on dynamic tree
cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) enrichment were subsequently implemented, and hub genes
were described in each module. Finally, QPCR analysis was employed to validate
RNA-seq data. The results showed that adipocyte area increased and adipocyte
number decreased with development of backfat tissue. A total of 1,024 DEGs were
identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days,
240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The
turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the
highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days
developmental stage, while the tan, black and turquoise module had strong
relationship with backfat thickness, adipocyte area, and adipocyte number,
respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1,
COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized.
ACSL1 andACOX1might perform function in the early developmental stage of backfat
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tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1
have unignorable position in backfat tissue around 120 days developmental stage.
Besides, hub genes SELP and DNM1 in modules significantly associated with backfat
thickness and adipocyte area might be involved in the process of backfat tissue
development. These findings contribute to understand the integrated mechanism
underlying backfat tissue development and promote the progress of genetic
improvement in Ningxiang pigs.

KEYWORDS

Ningxiang pig, backfat tissue, different developmental stage, WGCNA, hub gene, lipid
metabolism

Introduction

Pigs are not only a major source of meat worldwide, but also
have been used in biomedical studies because of the similarity to
human in physiology (Miao et al., 2018). Ningxiang pig, one of the
four famous indigenous pig breeds in China, is native to Hunan
province and is characterized by high fat content, delicious meat,
strong adaptability to the local environment, and stronger disease
resistance (Li et al., 2021). Adipose tissue secretes a variety of
proteins that impact a number of physiological and metabolic
processes (Hausman et al., 2007). Adipose tissue in pigs is an
important trait, which influences meat quality and fattening
efficiency (Stachowiak et al., 2016), and backfat deposition greatly
influences porcine growth performance, carcass, meat production
and final farming profit (Davoli et al., 2018).

Weighted gene co-expression network analysis (WGCNA) is a
bioinformatics algorithm method that has been widely utilized to
explore highly correlated gene clusters related to biological traits
(Wang et al., 2022; Wu et al., 2022; Xu et al., 2022). Instead of
focusing on a single gene, WGCNA intends to extract hub genes
from co-expression networks to preferably investigate the biological
regulations. Recently, WGCNA method was popularly applied, and
mounting genes were found to participate in various lipid related
processes, including obesity, adipogenic differentiation of stem cell,
polyunsaturated fatty acid (Han et al., 2020; Liu et al., 2021; Xiao
et al., 2022; Zhang et al., 2022). Although the study on gene profiles
in subcutaneous adipose tissue at four developmental stages in
Ningxiang pigs has been reported (Gong et al., 2021), the
underlying molecular mechanism of subcutaneous adipose tissue
development in different periods is still unclear.

In view of the important role of adipose tissue, the present
study collected backfat tissue across six postnatal developmental
stages (60, 120, 180, 240, 300, and 360 days after birth, hereafter
referred to as 60, 120, 180, 240, 300, and 360 days, respectively) in
Ningxiang pigs. These time points cover major morphological
and physiological changes in pig growth and development due to
the fact that backfat tissue development in pigs is varying
according to their age (Mersmann et al., 1973; Hood and
Allen, 1977).

Here, backfat tissue was subjected to histological analysis and RNA-
sequencing (RNA-seq). The genes profiles in backfat tissue from six
developmental stages were investigated, and differentially expressed
genes (DEGs) in five comparison groups were identified. Furthermore,
WGCNAwas performed to analyze the gene expression profile, and the
key modules and hub genes with strong correlation with developmental

stages and traits were explored, respectively. In addition, RNA-seq result
was validated by quantitative real-time polymerase chain reaction
(QPCR) experiment. These findings unprecedentedly depicted the
gene co-expression network for backfat tissue development at each
period in Ningxiang pigs, which not only helps to understand the
integrated mechanism underlying lipid metabolism, but also promotes
the progress of genetic improvement in pigs.

Materials and methods

Experimental animal and sample preparation

Eighteen castrated male Ningxiang pigs in six developmental
stages (60, 120, 180, 240, 300, and 360 days) were used in this
study. Six groups of pigs were half-sibs, and the three samples in
each developmental stage were full-sibs. All the experimental pigs
were reared under the standard environmental conditions in
Hunan Liushahe Ecological Animal Husbandry Co., Ltd. Three
healthy individuals with similar body weight were selected for
slaughtering in each developmental stage. The carcass was split
longitudinally after removing the head, feet, tail, and viscera,
except for the suet and kidneys, and then the left side of carcass
was hung upside down. The midline backfat thickness at the
position of the thickest point in shoulder, last rib and
lumbosacral junction was separately measured, and the average
value was calculated. Furthermore, the backfat tissue at the
position of the thickest point in shoulder were collected within
30 min after slaughter, and each sample was divided into two parts.
One part was fixed in 10% paraformaldehyde for histological
analysis, and the other part was immediately frozen in liquid
nitrogen and stored in −80°C refrigerator for RNA extraction.

Histological analysis of backfat tissue

The histological analysis of backfat tissue was measured by
hematoxylin and eosin (HE) staining. Briefly, the paraformaldehyde-
fixed backfat samples were subjected to dehydration and embedding in
paraffin. Three serial tissue sections of each sample were obtained using
Leica cryostat (RM2016, Germany) and then stainedwith hematoxylin/
eosin. Adipocyte area and adipocyte number were calculated according
to four randomly selected fields from each section using Caseviewer
software. The sections were viewed at ×200 magnification using 3D
digital scanner (Pannoramic 250, Hungary).
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RNA exaction, library construction and data
processing

Total RNA was isolated using Trizol reagent (Invitrogen,
United States) following the manufacturer’s protocol. The purity
and integrity of total RNA for each sample were assessed using ND-
1000 (NanoDrop, United States) and bioanalyzer 2100 (Agilent,
United States) with RIN number >7.0, and confirmed by
electrophoresis with denaturing agarose gel. And then mRNA
library was constructed. In brief, approximately 5 μg of total
RNA was used to eliminate ribosomal RNA according to the
Ribo-Zero™ rRNA removal Kit (Illumina, United States), and the
ribo-minus RNA was fragmented into small pieces. Finally, the 2 ×
150 bp paired-end sequencing (PE150) was executed on an Illumina
Novaseq™ 6000 (LC-Bio Technology Co., Ltd., China).
Furthermore, Cutadapt (V1.9, default) (Martin, 2011) was
initially applied to obtain valid data by removing the reads that
contained adapter contamination, low quality bases (the number of
bases with quality score ≤10 accounts for more than 20% of reads)
and undetermined bases (the number of bases with undetermined
information accounts for more than 5% of reads). Then sequence
quality was verified using FastQC (V0.11.9, default) (Brown et al.,
2017). Hisat2 software (V2.0.4, default) (Kim et al., 2019) was used
to map valid reads to the Sus scrofa reference genome (V11.1,
Ensembl V96), and the mapped reads were assembled using
StringTie (V1.3.4, default) (Pertea et al., 2015).

Identification and functional enrichment of
DEGs

The expression levels of genes were estimated by calculating
fragments per kilobase of transcript per million (FPKM) (Trapnell
et al., 2010) through StringTie. The DEGs were selected with | log2
(fold change) | ≥ 1 and FDR adjusted p-value (q value) (Benjamini-
Hochberg method) ≤ 0.05 by R package edgeR (Robinson et al.,
2010). The volcano plot was drawn using ggplot2 package (Ito and
Murphy, 2013), while the heatmap was drawn by pheatmap package
(Hu, 2021). To assess the potential biological functions of DEGs,
gene ontology (GO) (Ashburner et al., 2000) and kyoto encyclopedia
of genes and genomes (KEGG) (Kanehisa et al., 2012) enrichment
analysis were performed by DAVID software (https://david.ncifcrf.
gov/). GO terms and KEGG pathways with p-value ≤0.05 were
considered significantly enriched.

WGCNA

Co-expression analysis was performed using WGCNA package
in R (Langfelder and Horvath, 2008) under the guidelines of the
published tutorials. Genes with FPKM <1 in all samples were
filtered. Hierarchical clustering of the eighteen samples was
conducted based on Euclidean distance computed on gene
expression data. Network topology analysis ensured a scale-free
topology network with the defined soft-thresholding power of 9. A
total of 41modules were identified based on the dynamic tree cutting
algorithm with the parameters of minModuleSize at 30 and
mergeCutHeight at 0.25. For each module, the eigengene (the

first component expression of genes in module) was determined,
and the correlations of eigengenes with backfat thickness, adipocyte
area, and adipocyte number were then subsequently calculated.
Genes with high connectivity in the respective modules were
considered hub genes. The co-expression relationships in
modules were analyzed and visualized by Cytoscape (V3.8.2)
(Shannon et al., 2003).

QPCR analysis

To validate the gene expression levels, total RNA was extracted
from backfat tissue in six developmental stages using Trizol reagent
(Invitrogen, United States). cDNA was synthesized using
RevertAid™ first strand cDNA synthesis kit (K1622, Fermentas)
according to the manufacturer’s instructions. QPCR analysis was
performed using SYBR Green Supermix (Biomed) on
CFX96 machine (Bio-Rad, United States). Porcine β-actin was
used as endogenous control. Each QPCR reaction was performed
in triplicate, and the relative expression level of gene was calculated
using the 2−ΔΔCT method. The sequences of QPCR primers were
listed in Supplementary Table S1.

Results

Histological analysis of backfat tissue

With development of backfat tissue in Ningxiang pigs, the average
backfat thickness in 60 and 120 days were significantly lower than that
in other stages (p < 0.01), and there were remarkable differences in the
average backfat thickness between 180 and 240 days (p < 0.05), 180 and
300 days (p < 0.01), 180 and 360 days (p < 0.01), 240 and 360 days (p <
0.01), respectively (Figure 1A). Additionally, obvious differences in
adipocyte phenotype were examined by HE staining (Figure 1B).
Adipocyte area gradually increased, and adipocyte number showed a
progressive downward trend. Adipocyte area in 60 days was notably
smaller than that in other stages, and 300 days (p < 0.05) and 360 days
(p < 0.01) had larger adipocyte area than 120 days. Meanwhile, the
adipocyte number in 60 days was markedly higher (p < 0.01) that than
in other stages except for 120days, and the adipocyte numbers in 240,
300, and 360 days were lower (p< 0.05) comparedwith that in 120 days.
These results displayed the intelligible features during development of
backfat tissue in Ningxiang pigs.

Overview of RNA-seq data

A total of eighteen libraries were constructed using backfat tissue
from the developmental stage of 60, 120, 180, 240, 300, and 360 days.
We obtained 89,249,470–97,751,248 raw reads and
81,225,086–90,086,352 valid reads with Q30 ratio of 97.56%–
97.99% and GC content of 45.50%–51.50%. Moreover, 87.35%–
91.85% of valid reads was mapped to the Sus scrofa reference
genome. After assembly, 56,294–57,783 transcripts and
23,416–24,057 genes were obtained (Supplementary Table S2). In
addition, a total of 27,883 genes were identified from the eighteen
libraries, including 19,755 known genes and 8,128 novel genes.
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Identification of DEGs

Five comparison groups (120 days vs. 60days, 180 days vs.
120days, 240 days vs. 180days, 300 days vs. 240 days, and
360 days vs. 300 days) were established. A total of 1,024 DEGs
were recognized (Table 1), and the DEGs among these groups
were visualized as heatmap (Figure 2A) and volcano plot

(Figure 2B), respectively. The detailed information about these
DEGs was documented in Supplementary Table S3.

WGCNA

A cut-off of R2 = 0.85 was utilized to select the soft-threshold β, and
β = 9 was selected for network construction (Figure 3A). Strongly co-
expressed genes in modules were clustered with different colors, while
the genes not clustered were grouped into the grey module (Figure 3B).
The detailed information about modules was shown in Supplementary
Table S4. The correlation in module-stage relationship was displayed as
a heatmap (Figure 3C). Among these modules, turquoise (0.95, p = 6e-
09), red (0.87, p = 6e-06), pink (0.64, p = 0.006), paleturquoise (0.58, p =
0.02), darkorange (0.59, p = 0.01), and darkgreen (0.68, p = 0.003)
module had the highest correlation coefficient with 60, 120, 180, 240,
300, and 360 days, respectively. Meanwhile, the correlation of modules
with traits was presented in Figure 3D, and tan (0.77, p = 3e-04), black
(0.71, p = 0.001) and turquoise (0.80, p = 1e-04) had strong correlation
with backfat thickness, adipocyte area, and adipocyte number,
respectively.

FIGURE 1
Histological analysis of backfat tissue from the six developmental stages in Ningxiang pigs. (A) Average backfat thickness of experimental pigs. (B)
Representative images of HE staining of backfat tissue (magnification: ×200, scale bar = 50 μm). (C) Adipocyte area and (D) adipocyte number of backfat
tissue. Statistical analysis of the data from backfat thickness, adipocyte area, and adipocyte number were performed by one-way analysis of variance
programwith SPSS 20.0 software. All results were expressed asmean values and standard error. Different lowercase letters above columns indicated
statistical differences (p ≤ 0.05), and values with different uppercase letters were significantly different (p ≤ 0.01).

TABLE 1 The number of DEGs in five comparison groups.

Comparison group Number of DEGs

Upregulation Downregulation Total

120 days vs. 60 days 325 152 477

180 days vs. 120 days 91 208 299

240 days vs. 180 days 111 37 148

300 days vs. 240 days 10 17 27

360 days vs. 300 days 28 45 73

Total 565 459 1,024
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FIGURE 2
The heatmap and volcano plot of 1,024 DEGs in different developmental stages. (A) The heatmap of DEGs in six developmental stages. Each row
indicated a gene, and each column indicated a sample. (B) The volcano plot of DEGs in 120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days,
300 days vs. 240 days, and 360 days vs. 300 days comparison groups. The X-axis represented log2 value of fold change, and the Y-axis
represented–log10 value of q value for each gene. The red dots demonstrated the significantly upregulated genes while the blue dots demonstrated
the significantly downregulated genes, and the grey dots demonstrated the genes with no significant differential expression. The top 20 DEGs with
significant difference were noted.

FIGURE 3
Weighted gene co-expression network construction. (A) Determination of best soft-threshold β for WGCNA. The red line corresponding to 0.85.
Nine is selected based on the consideration of both scale independence and mean connectivity. SFT means scale free topology. (B) Clustering tree
(dendrogram) defined by WGCNA representing the co-expression modules. Branches of the dendrogram correspond to gene modules labeled with
different colors (C) Heatmap of correlation coefficient between genes modules and developmental stages. (D) Heatmap of correlation coefficient
between genes modules and traits. Thickness: backfat thickness; Area: adipocyte area; Number: adipocyte number. Red indicated a strong positive
association, and blue indicated a strong negative correlation. The numbers in brackets represent the p-value between gene module and developmental
stage/trait.
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Functional enrichment of genes in modules

The GO analysis and KEGG enrichment were performed for the
genes in the turquoise, red, pink, paleturquoise, darkorange and

darkgreen modules in module-stage relationship, respectively. The
result of GO analysis was illustrated in Figure S1; Supplementary
Table S5. The comprehensive content about the KEGG enriched
pathways was exhibited in Supplementary Table S6, and the top

FIGURE 4
The top 20 significantly enriched KEGG pathways in developmental stage related and trait related modules. (A) Turquoise module. (B) Red module.
(C) Pink module. (D) Paleturquoise module. (E) Darkorange module. (F) Darkgreen module. (G) Tan module. (H) Black module.
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20 significantly enriched pathways were shown in Figures 4A–F,
respectively. The turquoise module, which was related to 60 days,
was enriched with 306 pathways, of which 245 pathways were
noticeably enriched, such as fatty acid degradation, glycerolipid
metabolism, glycerophospholipid metabolism, fatty acid
elongation, biosynthesis of unsaturated fatty acids, ether lipid
metabolism, alpha-linolenic acid metabolism, sphingolipid
signaling pathway, non-alcoholic fatty liver disease, fat digestion
and absorption, adipocytokine signaling pathway, regulation of
lipolysis in adipocyte, bile secretion, and cholesterol metabolism.
A total of 121 terms were distinctly enriched in red module, and the
KEGG pathways included glycerolipid metabolism,
glycerophospholipid metabolism, ether lipid metabolism,
sphingolipid metabolism, arachidonic acid metabolism, and
regulation of lipolysis in adipocyte. The pink module correlated
to 180 days were enriched in 152 significant pathways. For example,
sphingolipid metabolism, sphingolipid signaling pathway, non-
alcoholic fatty liver disease, and adipocytokine signaling pathway
were all connected with lipid metabolism. There were 60 KEGG
pathways in the paleturquoise module, of which 30 were remarkably
enriched, including steroid hormone biosynthesis and arachidonic
acid metabolism. The darkorange module correlated to 300 days was
strikingly enriched in 50 terms, of which fatty acid biosynthesis,
sphingolipid metabolism, steroid hormone biosynthesis, and
sphingolipid signaling pathway were detected. The darkgreen
module was enriched with 127 pathways, of which 50 pathways
were significantly enriched, such as sphingolipid metabolism, fatty
acid degradation, fatty acid biosynthesis, primary bile acid
biosynthesis, steroid biosynthesis, sphingolipid signaling pathway,
and adipocytokine signaling pathway.

Furthermore, the GO analysis (Supplementary Figure S1;
Supplementary Table S5) and KEGG enrichment of genes in
module-trait relationship were also carried out. As exhibited in
Figure 4; Supplementary Table S7, in the notably KEGG enriched
pathways related to lipid metabolism, the tan module (Figure 4G)
was involved in sphingolipid signaling pathway, regulation of
lipolysis in adipocytes and adipocytokine signaling pathway; the
black module (Figure 4H) were associated with glycerophospholipid
metabolism, arachidonic acid metabolism, fatty acid degradation,
glycerolipid metabolism, fatty acid elongation, adipocytokine
signaling pathway, and regulation of lipolysis in adipocytes; the
turquoise module (Figure 4A) was the same as that in module-stage
relationship.

Network analysis and hub genes
identification

In order to research the interaction of genes in each module
based on module-stage and module-trait relationship, the gene
co-expression network was constructed by cytoscape software.
And the connectivity between genes in each module was listed in
Supplementary Table S8. The gene co-expression network with
364 nodes and 741 edges, 470 nodes and 1,100 edges, 380 nodes
and 1,051 edges, 27 nodes and 21 edges, 40 nodes and 35 edges,
and 54 nodes and 56 edges in turquoise, red, pink, paleturquoise,
darkorange, and darkgreen module, respectively. In addition, the
gene co-expression network with 238 nodes and 557 edges and

498 nodes and 1,427 edges in tan and black module. After
removing the isolated nodes and node pairs, the gene co-
expression network in module was visualized. The top 10%
connectivity genes in turquoise, red and pink module and all
connectivity genes in paleturquoise, darkorange and darkgreen
module with the greatest number of edges were considered as hub
genes (Figures 5A–F). And the top 10% connectivity genes in tan
and black module with the greatest number of edges were also
regarded as hub genes (Figure 6).

QPCR validation of DEGs and hub genes

Thirteen DEGs and hub genes from 8 modules were selected for
validation by QPCR analysis, including ACSL1, ACOX1, FN1, DCN,
CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3,
DNM1, and SELP. The expression trend of all these genes showed
strong consistency with RNA-seq data (Figure 7), manifesting the
reliability and accuracy of our study.

Discussion

This study aimed at identifying 1,024 DEGs across five
comparison groups during backfat tissue development in
Ningxiang pigs. The WGCNA results depicted that six and three
modules were predominantly associated with developmental stages
and traits (backfat thickness, adipocyte area, and adipocyte
number), respectively, and thirteen DEGs and hub genes were
recognized for the first time.

The turquoise module was remarkably associated with the
60 days developmental stage. Enrichment analysis of this module
revealed the significance of Acyl-CoA synthetase long chain family
member 1 (ACSL1) and Acyl-CoA oxidase 1 (ACOX1), which are
involved in the peroxisome, PPAR signaling pathway, fatty acid
degradation, and biosynthesis of unsaturated fatty acids in the early
developmental stage of backfat tissue. ACSL1 plays a crucial role in
lipid metabolism; it converts long chain fatty acids to fatty acyl-
CoAs by esterification, and ACSL1 level is prominently elevated
during the early stage of porcine preadipocyte differentiation (Shan
et al., 2022). Additionally, ACSL1 overexpression suppresses
lipolysis and fatty acid β-oxidation and upregulates
polyunsaturated fatty acid synthesis, triglyceride accumulation,
and lipid droplet aggregation (Li et al., 2020a; Zhao et al., 2020;
Shan et al., 2022). ACOX1, the first rate-limiting enzyme involved in
peroxisomal fatty acid β-oxidation, is predominantly associated with
lipid homeostasis and preadipocyte adipogenesis. Prior research
depicted that hepatic ACOX1 deficiency substantially lowers
triglyceride accumulation in mice (He et al., 2020), and gain-of-
function and loss-of-function assays demonstrated that ACOX1,
governed by transcription factors C/EBPα and miR-25-3p,
stimulates the adipogenesis of bovine intramuscular preadipocyte
(Zhang et al., 2021). However, a recent study documented that
ACOX1 inhibition promotes triglyceride accumulation in mouse
hepatocytes (Yang et al., 2023). The discrepancy in these findings
may be attributed to specific experimental conditions and different
cell sources. The present study exhibited considerably higher levels
of ACSL1 and ACOX1 expression in 60 days, implying a conceivable
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action in the early developmental stage of backfat tissue in
Ningxiang pigs.

Analysis of the red module, which was distinctly related to the
120 days developmental stage, revealed enrichment of the PI3K-Akt

signaling pathway, extracellular matrix (ECM)-receptor interaction,
protein digestion and absorption, and focal adhesion. FN1, DCN,
CHST13, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1were
further selected as the DEGs and hub genes. Intriguingly, these genes

FIGURE 5
Gene co-expression networks and hub genes in developmental stage related modules. (A)Network (left) and hub genes (right) in turquoise module.
(B)Network (left) and hub genes (right) in red module. (C)Network (left) and hub genes (right) in pink module. (D) hub genes in paleturquoise module. (E)
hub genes in darkorange module. (F) hub genes in darkgreen module. The yellow rectangles represented DEGs.
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displayed similar expression trends in expression in backfat tissue
across the six developmental stages, with the highest expression
observed in 120 days.

Fibronectin (FN), one of the major fibrillary components of the
ECM and an adipocyte-specific dysregulated gene product in obese
adipose tissue, plays a vital role in tissue development, cell
morphology, and mesenchymal stem cell differentiation (Wang
et al., 2019; Yu et al., 2022). FN1 knockout adversely affects the
adipogenic differentiation of induced human infrapatellar fat pad-
derived stem cells, as evidenced by remarkably low adipogenic gene
expressions and lipid droplets (Wang et al., 2019). Our findings were
corroborated by KEGG and protein-protein interaction network

analysis, which presented FN1 as a hub gene in subcutaneous
adipose tissue derived adipocyte of obese patients; consequently,
FN1 and its associated signaling pathways could be rendered
potential targets in treating obesity (Yu et al., 2022). Decorin
(DCN), a small leucine rich proteoglycan component of the ECM
in various tissues, is overexpressed in adipose tissue, binds to a
variety of collagens, and contributes to collagen fibril formation
(Meissburger et al., 2016; Svärd et al., 2019). The expression of
glycanation site deficient DCN in 3T3-L1 cells promotes
proliferation but suppresses lipid accumulation upon adipogenic
induction (Daquinag et al., 2011). Another study suggested that the
prevalence of DCN in murine visceral preadipocyte correlates with

FIGURE 6
Gene co-expression networks and hub genes in trait related modules. (A) Network (left) and hub genes (right) in tan module. (B) Network (left) and
hub genes (right) in black module. The yellow rectangles represented DEGs.
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the reduced propensity of these cells to undergo adipogenic
differentiation (Meissburger et al., 2016). Considering the
essential functions of fibronectin and different types of collagen
in adipocyte differentiation, the detrimental impact of DCN on
adipogenesis may at least be partly attributable to alterations in ECM
formation. These observations indicated a crucial role for DCN in

adipogenesis. Carbohydrate sulfotransferase 13 (CHST13), a
member of the carbohydrate sulfotransferase gene family,
encodes a chondroitin sulfating and chondroitin sulfate
synthesizing enzyme. Previous researches suggested that CHST13
is prominently associated with several biological processes,
including liver injury, cell invasion, and cancer (Ryanto et al.,

FIGURE 7
QPCR validation of DEGs and hub genes in backfat tissue. (A) The heatmap of DEGs and hub genes. (B)QPCR validation of DEGs and hub genes. The
X-axis represented the developmental stages of Ningxiang pigs. QPCR result was exhibited as green column labeled on the Y-axis on the left, and β-actin
was used as endogenous control. The data from RNA-seq result was displayed as red line labeled on the Y-axis on the right, and the expression was
normalized as FPKM. Statistical analysis of the data from QPCR assay were performed by one-way analysis of variance program with SPSS
20.0 software, and the results were expressed asmean values and standard error. Differences were considered to be significant at p ≤ 0.05 (* p ≤ 0.05 and
** p ≤ 0.01).

FIGURE 8
Proposed model of DEGs and hub genes during developmental stage of backfat tissue in Ningxiang pigs. The upper row of figures represented the
developmental trend of backfat tissue, and the size of figures exemplified backfat thickness. The lower row of figuresmanifested adipocyte area in backfat
tissue. Additionally, the green rectangles represented genes are closely associated with adipogenesis and lipid metabolism which have been validated
previously, while the orange rectangles represented genes might involve in adipogenesis and lipid metabolism which warrants further investigation.
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2020; Wang et al., 2022; Southekal et al., 2023); however, the
correlation between CHST13 and adipose deposition remains
largely unexplored and warrants further research.

Collagens expressed by adipose tissue, namely COL1A1,
COL1A2, COL5A1, COL6A3, and COL14A1 (Ullah et al., 2013;
Côté et al., 2017; Yu et al., 2022), are key constituents of the ECM
and play crucial roles in regulating stem cell stemness, preadipocyte
differentiation and adipose tissue expandability (Berger et al., 2015;
Wang et al., 2019; Johnston and Abbott, 2022).

COL1A1 is a major ECM gene in adipose tissue that is
overexpressed following weight loss or reduction in obese adipose
tissue (Berger et al., 2015). COL1A2 is an adipogenic marker in
multipotent antler stem cells, and any drastic change in distinct
adipocyte morphology and accumulated lipid droplets is paralleled
by a 2.5-fold upregulation of COL1A2 expression (Berg et al., 2007).
Additionally, COL1A1 andCOL1A2 have been identified as hub genes
in obesity-induced cardiac fibrosis (Pan et al., 2022). COL5A1 is
differentially expressed before and after bariatric surgery andmay be a
novel candidate gene for modulating adipose tissue function (Dankel
et al., 2010). In PLXND1 gene deficient zebrafish visceral adipose
tissue, the induction of COL5A1 promotes adipocyte proliferation and
differentiation, culminating in hyperplastic visceral adipose tissue
morphology and reduced lipid accumulation (Minchin et al.,
2015). Moreover, COL5A1 has been deemed a hub gene associated
with bovine subcutaneous adipose tissue by WGCNA, which is
consistent with our results (Sheng et al., 2022). Increasing evidence
suggests that COL6A3 expression is distinctly correlated with adipose
tissue mass, adipocyte size, weight gain or loss, insulin resistance, and
inflammation (Pasarica et al., 2009; Dankel et al., 2014; McCulloch
et al., 2015). COL6A3 knockdown elevates the expression of
adipogenic genes and triglyceride content in human adipocyte
(Gesta et al., 2016). COL14 is a fibril-associated collagen that is
predominantly expressed in well differentiated tissues, and it could
potentially trigger the differentiation of 3T3-L1 preadipocyte into
adipocyte, as evidenced by lipid accumulation (Ruehl et al., 2005).
Bioinformatic analysis revealed thatCOL14A1 is downregulated in the
ECM of adipogenically differentiated mesenchymal stem cells (Ullah
et al., 2013), indicating its significance in adipose tissue development.

Recent investigations have verified that the COL1 network is the
last to form and remains well organized during the later stage of
adipocyte differentiation, and the extracellular network of COL5 and
COL6 is formed in the middle stage of adipocyte differentiation and
maintained until the late stage of adipocyte differentiation (Sheng
et al., 2022). Another study has designated COL1A2, COL5A1,
COL6A3 as DEGs in obese and healthy adipocyte excised from
subcutaneous tissue in humans. GO analysis demonstrated that
these three DEGs are enriched in ECM organization in biological
process; in ECM and collagen trimer in cellular component. KEGG
pathway enrichment further revealed that the aforementioned three
DEGs are primarily involved in ECM-receptor interaction, protein
digestion and absorption, and PI3K-Akt signaling pathway (Yu et al.,
2022). These results are in accordance with those of our investigation,
although the functional relevance of COL1A1, COL1A2, COL5A1,
COL6A3, and adipogenesis needs to be further elucidated.

The pink, paleturquoise, darkorange, and darkgreenmodule had
the highest correlation coefficient with 180, 240, 300, and 360 days
developmental stage, respectively. Besides, tan, black and turquoise
module had strong relationship with backfat thickness, adipocyte

area and adipocyte number in turn. OAZ3, SELP, and DNM1 were
apprehended as DEGs and hub genes in the pink, tan, and black
module, respectively. Ornithine decarboxylase antizyme 3 (OAZ3) is
a member of the antizyme gene family, and its mRNA is exclusively
expressed in post-meiotic male germ cells (Ruan et al., 2011). OAZ3
evidently aids in the regulation of polyamine concentration during
spermiogenesis and contributes to sperm function and fertility
(Gòdia et al., 2020; Sarkar et al., 2022). P-selectin (SELP) belongs
to the selectin proteins family and is primarily expressed in platelets,
endothelial cells, and immune cells (Wang et al., 2023). SELP
modulates thrombus formation through platelets activation, and
a positive correlation has been observed between age and SELP
expression in hyperlipidemia and thrombosis related diseases
(Koyama et al., 2003; Yeini and Satchi-Fainaro, 2022).
Nevertheless, few investigations have reported the relationship
between OAZ3, SELP and adipogenic differentiation and
adipogenesis, to date. This study provides novel mechanistic
insights into the regulation of adipogenesis. Dynamin 1 (DNM1),
a member of the dynamin superfamily of proteins, plays a central
role in mitochondrial and peroxisomal distribution and fission
processes (Koch et al., 2003; Tamura et al., 2011) and has
displayed functionality in brown and white adipose tissue. It has
been reported that the lipid droplets in adipose tissue of adipose
tissue-specific DNM1 knockout mice exhibit more unilocular
morphology with larger sizes, with DNM1 deficiency effecting
abnormal retention of nascent micro-lipid droplets in
endoplasmic reticulum, decreased lipolysis, and accumulation of
unhealthy adipocyte in adipose tissue. In contrast, the retention of
lipid droplets in endoplasmic reticulum can be rescued by DNM1
overexpression in adipocyte (Li. et al., 2020). Furthermore, DNM1 is
overexpressed in brown adipose tissue, and its level escalates during
beige and brown adipocyte differentiation. Inhibition of DNM1
expression was confirmed to mitigate beige adipocyte
differentiation, thereby validating its essential role in beige and
brown adipogenesis (Mooli et al., 2020).

Conclusion

Taken together, a total of thirteen DEGs and hub genes were
recognized from six developmental stages related modules and three
trait related modules in backfat tissue in Ningxiang pigs, among which,
ACSL1 and ACOX1, well known biomarkers of adipogenesis, might
perform function in the early developmental stage of backfat tissue
(60 days). Other DEGs and hub genes in modules, such as FN1, DCN,
COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1, play regulatory
roles in cell adipogenic differentiation, lipid droplet accumulation,
triglyceride content, and adipose tissue mass, illustrating their
unignorable position around 120 days developmental stage of backfat
tissue in Ningxiang pigs (Figure 8). In addition,OAZ3, SELP andDNM1
were also identified as hub genes, and the functional relevance associated
with the lipid metabolism requires further elucidation.
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