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Background: A heavy burden of cardiometabolic conditions on low- and middle-
income countries like India that are rapidly undergoing urbanization remains
unaddressed. Indians are known to have high levels of triglycerides and low
levels of HDL-C along with moderately higher levels of LDL-C. The genome-
wide findings from Western populations need to be validated in an Indian context
for a better understanding of the underlying etiology of dyslipidemia in India.

Objective: We aim to validate 12 genetic variants associated with lipid levels
among rural and urban Indian populations and derive unweighted and weighted
genetic risk scores (uGRS and wGRS) for lipid levels among the Indian population.

Methods: Assuming an additivemodel of inheritance, linear regressionmodels adjusted
for all the possible covariates were run to examine the association between 12 genetic
variants and total cholesterol, triglycerides, HDL-C, LDL-C, and VLDL-C among
2,117 rural and urban Indian participants. The combined effect of validated loci was
estimated by allelic risk scores, unweighted and weighted by their effect sizes.

Results: The wGRS for triglycerides and VLDL-C was derived based on five associated
variants (rs174546 at FADS1, rs17482753 at LPL, rs2293889 at TRPS1, rs4148005 at
ABCA8, and rs4420638 at APOC1), which was associated with 36.31mg/dL of elevated
triglyceride and VLDL-C levels (β = 0.95, SE = 0.16, p < 0.001). Similarly, every unit of
combined risk score (rs2293889atTRPS1 and rs4147536atADH1B)was associatedwith
40.62mg/dL of higher total cholesterol (β= 1.01, SE =0.23, p <0.001) and 33.97mg/dL
of higher LDL-C (β= 1.03, SE=0.19, p <0.001) based on itswGRS (rs2293889 at TRPS1,
rs4147536 at ADH1B, rs4420638 at APOC1, and rs660240 at CELSR2). The wGRS
derived from five associated variants (rs174546 at FADS1, rs17482753 at LPL,
rs4148005 at ABCA8, rs4420638 at APOC1, and rs7832643 at PLEC) was associated
with 10.64mg/dL of lower HDL-C (β = −0.87, SE = 0.14, p < 0.001).

Conclusion:We confirm the role of eight genome-wide association study (GWAS) loci
related to different lipid levels in the Indian population and demonstrate the combined
effectof variants for lipid traits among Indiansbyderiving thepolygenic risk scores. Similar
studies among different populations are required to validate the GWAS loci and effect
modification of these loci by lifestyle and environmental factors related to urbanization.
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Introduction

Lipid levels are established risk factors for cardiovascular disorders
(Castelli et al., 1992; Benjamin et al., 2018) and are among the leading
causes of morbidity and mortality (Mohebi et al., 2022). Globally, high
cholesterol is estimated to cause 2.6million deaths (4.5% of total deaths)
and 29.7 million disability-adjusted life years (2.0% of total DALYs)
(Noubiap et al., 2015). Dyslipidemia in the form of increased low-
density lipoprotein cholesterol (LDL-C) levels, elevated triglyceride
(TG) levels, and lower high-density lipoprotein cholesterol (HDL-C)
levels is widely prevalent in India, with estimates ranging from 39% to
63% (Gupta et al., 2017).

Family and twin studies suggest familial aggregation of lipid
disorders and relatively high heritability of various lipid traits. The
heritability varies from ~35% to 48% for TG, ~40%–50% for LDL-C,
and ~40%–60% for HDL-C (Weiss et al., 2006). Furthermore, a
family history of hyperlipidemia/dyslipidemia is associated with a
2.5–7-fold increase in the risk of death due to premature coronary
artery disease compared to individuals without such family history
(Sanghera et al., 2019). Genome-wide scans and their meta-analysis
on different populations identified several loci associated with the
serum lipid levels. Although more than 400 loci (Teslovich et al.,
2010; Klarin et al., 2018; de Vries et al., 2019; Graff et al., 2021) have
been identified cumulatively, these loci explain a small proportion of
variances in blood lipid levels (Pilia et al., 2006). The therapeutic
potential of some of the identified genome-wide association study
(GWAS) signals in the management of dyslipidemia is widely
explored (Klarin et al., 2018).

Most of the GWAS loci were replicated in the LOLIPOP cohort of
Indian-origin people residing in the United Kingdom (Teslovich et al.,
2010). However, considerable Asian/European differences in lipid
profiles have been reported (Zhang et al., 2010). Few attempts have
been made to validate the genome-wide findings in Indian populations
previously (Braun et al., 2012; Rafiq et al., 2012; Arv et al., 2014; Walia
et al., 2014; Pranavchand and Reddy, 2017). A new genome-wide scan
among Indians living in India identified some novel loci that need
further investigations for wider utility (Bandesh et al., 2019). In the
present study, we aimed to validate some selected loci related to lipid
levels based on their biological relevance in Indian rural and urban
populations and derive polygenic risk scores for lipid levels among
Indians.

Methods

Study population

The details about the original study that aimed to examine the
20-year trend of cardiometabolic risk factors in rural and urban
areas around the National Capital Region are available in
Prabhakaran et al. (2017). Urban participants were recruited
from the Municipal Corporation of Delhi, and rural participants
were recruited from Ballabgarh Block of the adjoining state of
Haryana. For the present analyses, the follow-up blood samples
were utilized for genotyping the selected variants related to lipid
levels. Written informed consent was obtained from all the study
participants to use their de-identified stored biological samples for
future genetic research related to cardiometabolic risk factors. The

present study was approved by the Institute Ethics Committee of the
All India Institute of Medical Sciences, New Delhi and Centre for
Chronic Disease Control, New Delhi.

Phenotype data

Pre-informed written consent was obtained from each
participant before beginning data collection. The details of the
data collection have been described previously (Prabhakaran
et al., 2017). Detailed questionnaires were administered to collect
data on socio-demographic factors, medical history, and lifestyle
factors, including diet, physical activity, tobacco smoking, and
alcohol consumption. Daily fat consumption (g/day) was
estimated from the detailed food frequency questionnaire, and
the physical activity scores were categorized. The physical
measures included anthropometry for height, weight, and waist
and hip girths, along with blood pressure measurements. Fasting
blood samples were collected from the participants, and the time of
the last meal was recorded. Serum and plasma samples were used for
generating data on glycemic and lipid levels. Plasma glucose was
measured using the hexokinase method, total cholesterol was
estimated using the enzymatic cholesterol oxidase method, and
HDL-C was assayed by a direct method using PEG-modified
enzymes and dextran sulfate using kits from Roche Diagnostics,
Switzerland, on the c311 autoanalyzer (Roche). LDL-C was
estimated using the Friedewald equation (Friedewald et al., 1972).

Genotyping and quality control

The buffy coat samples were processed for the
phenol–chloroform method for DNA isolation. The isolated
DNA was then processed for genotyping of established GWAS
variants using the multiplex Sequenom MassARRAY technology.
These variants were selected based on their biological importance
and high GWAS significance levels related to lipid traits. A detailed
description of 12 genetic variants that were found in the
Hardy–Weinberg equilibrium (HWE) is listed in Table 2. The
HWE was estimated separately in rural and urban samples and
also in the combined samples at a Sidak-corrected significance value
(p < 0.0018). Power estimates were derived using Quanto software.
The present study with high-quality genotype data (≥95% call rates)
of 2,117 individuals had >80% power to estimate a 1% variation in
lipid measures with a minimum risk allele frequency of 10% and α =
0.05. We did not apply for multiple testing corrections as the
presently studied variants are established GWAS loci, and we aim
to validate these loci in our Indian population.

Statistical analysis

All analyses were performed using Stata v13.1. Depending on the
skewness of the distribution, the continuous variables were suitably
transformed and reported as mean (SD), whereas the categorical
variables were summarized as number (%). The continuous
variables were standardized (z-transformed) prior to any
association analyses to facilitate comparability between coefficients.
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Linear regression models were run for examining the association
of each genetic variant with each of the lipid traits while assuming an
additive model of inheritance. The regression model was fully
adjusted for the related lifestyle factors, including fat intake,
physical activity, BMI, alcohol consumption, smoking,
hypertension, and diabetes. To estimate the combined effect of
validated loci on each lipid level, allelic risk scores were
calculated using loci significantly associated in both the
regression models with respective lipid traits examined in the
present study. We generated both weighted and unweighted
allelic risk scores and compared the effect sizes of the two scores
for each of the lipid traits. Weighted genetic risk scores (wGRS)
weighing upon the internally derived effect sizes were calculated for
each of the lipid traits using the following equation:

Weighted Genetic Risk Score � w1 × a1( ) + . . . . + wi × ai( )( )
where w is the weight (effect size), a is the number of risk alleles, i is
the total number of genetic variants, and N is the total number of
risk alleles.

Since lipid levels are strongly associated with gender and
urbanization due to underlying lifestyle factors, stratified analyses
were also undertaken for gender and rural/urban sites while
adjusting for all the confounders, as mentioned previously. We
also examined the effect modification by gender, rural/urban sites,
BMI, diet (fat intake), and physical activity by performing
interaction analyses.

Results

The characteristics of 2,117 participants are described in
Table 1. All the variables except triglycerides and VLDL-C were
normally distributed. Hence, the two variables were log-
transformed for all subsequent analyses. The mean age of the
participants was 47.1 (12.99) years. Less than half of the study
participants (42.3%) were males. Male participants had
significantly higher levels of triglycerides, VLDL-C, fasting
plasma glucose, and blood pressure. On the other hand,
female participants had higher HDL-C levels, BMI, and self-
reported hypertension. Male participants also reported higher
levels of physical activity, alcohol consumption, and smoking
than female participants (Table 1). The rural participants had
significantly higher levels of total cholesterol, HDL-C, LDL-C,
average fat consumption, and smoking, whereas urban
participants had higher BMI, fasting plasma glucose, systolic
blood pressure, physical activity, alcohol consumption, and self-
reported diabetes and hypertension (Table 1). The details of
12 genetic variants examined to be associated with lipid levels in
the present study are listed in Table 2 along with their
chromosomal location, nature of variation, and the functional
implications of these variations. There were only three variants
located in intergenic regions, namely, rs17482753 at LPL,
rs2814944 at C6orf106, and rs4420638 at APOC1.
Furthermore, only four of them were located in intronic
regions, namely, rs2293889 at TRPS1, rs4148005 at ABCA8,
rs4147536 at ADH1B, and rs7832643 at PLEC, and there were
three 3′-UTR variants, namely, rs10773003 at SBNO1,
rs174546 at FADS1, and rs660240 at CELSR2 (Table 2). There

were only two coding sequence variants, rs1800961 at HNF4A (a
missense variant) and rs737337 at DOCK6 (a synonymous
variant) (Table 2). Of 12 examined variants, eight were
observed to be significantly associated with one or more lipid
traits in our study population (Table 3), and the absolute
standardized effect sizes (β-coefficients from linear
regression) ranged from 0.08 to 0.14.

Each copy of the minor allele of rs174546 at FADS1 was
associated with a 1.05 mg/dL increase in triglyceride and VLDL-
C levels (β = 0.11, SE = 0.04, p = 0.014), 1.21 mg/dL decrease in
HDL-C levels (β = −0.10, SE = 0.04, p = 0.025), and 3.11 mg/dL
decrease in LDL-C levels (β = −0.09, SE = 0.04, p = 0.036). The minor
allele of rs17482753 at LPL was associated with an increase of
1.10 mg/dL in triglyceride and VLDL-C levels (β = 0.21, SE =
0.06, p < 0.001) and a reduction of 1.68 mg/dL in HDL-C levels
(β = −0.14, SE = 0.06, p = 0.018). The rs2293889 at TRPS1 was
associated with a 1.04 mg/dL increase in triglyceride and VLDL-C
levels (β = 0.08, SE = 0.03, p = 0.015), 4.06 mg/dL increase in total
cholesterol (β = 0.10, SE = 0.03, p = 0.004), and 3.76 mg/dL increase
in LDL-C levels (β = 0.11, SE = 0.01, p = 0.001). The rs4148005 at
ABCA8 was associated with a 1.06 mg/dL increase in triglycerides
and VLDL-C levels (β = 0.11, SE = 0.04, p = 0.001) and 1.64 mg/dL
decrease in HDL-C levels (β = −0.13, SE = 0.03, p < 0.001). The
minor allele of rs4420638 at APOC1 was associated with 1.05 mg/dL
of elevated triglyceride and VLDL-C levels (β = 0.10, SE = 0.05, p =
0.044), 3.71 mg/dL of elevated LDL-C levels (β = 0.11, SE = 0.05, p =
0.028), and 1.85 mg/dL of reduced HDL-C levels (β = −0.15, SE =
0.05, p = 0.003). The rs4147536 at ADH1B variant was associated
with a 4.88 mg/dL increase in total cholesterol (β = 0.12, SE = 0.04,
p = 0.001), 3.44 mg/dL increase in LDL-C levels (β = 0.10, SE = 0.04,
p = 0.006), and 1.11 mg/dL increase in HDL-C levels (β = 0.09, SE =
0.04, p = 0.014). In addition, rs660240 at CELSR2 was associated
with a 2.78 mg/dL increase in LDL-C levels (β = 0.08, SE = 0.04, p =
0.020). Furthermore, rs7832643 at PLEC (β = −0.09, SE = 0.03, p =
0.004) was associated with a 1.16 mg/dL decrease in HDL-C levels
(Table 2).

The combined effect of all the variants validated for lipid
levels was than the individual effect of the variants (Table 3).
Every unit increase in the wGRS was associated with 36.31 mg/dL
of elevated triglyceride and VLDL-C levels (β = 0.95, SE = 0.16,
p < 0.001); 40.62 mg/dL of higher total cholesterol (β = 1.01, SE =
0.23, p < 0.001); 33.97 mg/dL of higher LDL-C levels (β = 1.03,
SE = 0.19, p < 0.001); and 10.64 mg/dL of lower HDL-C levels
(β = −0.87, SE = 0.14, p < 0.001). The effect sizes of the
unweighted allelic risk scores were comparatively much lower
than the weighted scores (Table 3).

For sensitivity analyses, we examined the effect of the genetic
variants stratified by gender and rural/urban location, where some of
the variants showed a significant association only in specific groups
(Supplementary Tables S1, S2). Among the eight variants validated
for various lipid traits in the present study, none showed interaction
with the examined lifestyle factors for the respective lipid traits
(Supplementary Table S3). However, some of these validated
variants showed significant interaction associations for other lipid
traits. For instance, rs174546 showed a significant interaction effect
with gender for total cholesterol (β = 0.18, SE = 0.09, p = 0.046) and
rs7832643 with obesity for total cholesterol (β = 0.10, SE = 0.03, p =
0.002) and LDL-C (β = 0.07, SE = 0.03, p = 0.030). On the other
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hand, rs4148005 showed a significant interaction effect with physical
activity for total cholesterol (β = 0.10, SE = 0.04, p = 0.022) and LDL-
C (β = 0.10, SE = 0.04, p = 0.026) and rs660240 for HDL-C
(β = −0.09, SE = 0.04, p = 0.033) levels. In addition,
rs10773003 at SBNO1 showed a significant interaction with
gender (β = −0.29, SE = 0.10, p = 0.003), site (β = −0.24, SE =
0.10, p = 0.018), and obesity (β = −0.14, SE = 0.05, p = 0.002) for
HDL-C and with fat intake for total cholesterol (β = 0.24, SE = 0.10,
p = 0.018), triglyceride, and VLDL-C levels (β = 0.23, SE = 0.10, p =
0.027). Similarly, rs2814944 at C6orf106 showed a significant
interaction with gender for LDL-C (β = 0.23, SE = 0.11,
p = 0.032) and with physical activity for total cholesterol (β =
0.15, SE = 0.07, p = 0.029). Finally, rs1800961 at HNF4A (β = 0.51,

SE = 0.23, p = 0.029) and rs737337 at DOCK6 (β = −0.24, SE = 0.09,
p = 0.009) were found to be interacting with gender for triglycerides
and VLDL-C levels.

Discussion

The overall goal of the present study was to validate the
previously reported GWAS loci in rural and urban populations
in Delhi, India. It is important to validate GWAS loci in different
populations to determine their clinical relevance for drug
therapies and preventing dyslipidemia and coronary artery
disease. In this study, we validated eight variants in Indian

TABLE 1 Characteristics of the study participants.

Characteristic Total
(N = 2,117)

Male
(N = 958)

Female
(N = 1,159)

p-value1 Urban
(N = 958)

Rural
(N = 1,159)

p-value2

Age (years) a 47.07 (12.99) 47.99 (12.94) 46.32 (12.99) 0.032c 46.68 (13.02) 47.61 (12.94) 0.104

Genderb 0.254

Male 958 (45.25) - - - 565 (26.69) 393 (18.56)

Female 1,159 (54.75) - - - 655 (30.94) 504 (23.81)

Locationb 0.254

Urban 1,220 (57.63) 565 (26.69) 655 (30.94) - - -

Rural 897 (42.37) 393 (18.56) 504 (23.81) - - -

Total cholesterol (mg/dL) a 183.68 (40.35) 183.53 (41.90) 183.79 (39.03) 0.884 181.05 (40.04) 187.37 (40.50) <0.001c

Triglyceridesa(mg/dL)d 125.96 (1.60) 136.01 (1.63) 118.23 (1.55) <0.001c 126.89 (1.62) 124.68 (1.57) 0.399

HDL cholesterol (mg/dL) a 46.97 (12.26) 44.41 (12.59) 49.07 (11.57) <0.001c 46.04 (11.65) 48.27 (12.97) <0.001c

LDL cholesterol (mg/dL) a 108.10 (33.13) 107.72 (33.72) 108.42 (32.65) 0.630 105.92 (32.56) 111.16 (33.69) <0.001c

VLDL cholesterol a (mg/dL)d 25.19 (1.60) 27.20 (1.63) 23.65 (1.55) <0.001c 25.38 (1.62) 24.94 (1.57) 0.399

BMI (kg/m2) a 24.91 (5.25) 24.16 (4.63) 25.53 (5.64) <0.001c 26.28 (5.34) 23.06 (4.50) <0.001c

Fasting plasma glucose (mg/dL) a 108.83 (38.49) 111.32 (42.66) 106.77 (34.57) 0.007c 112.82 (42.28) 103.22 (31.62) <0.001c

Systolic blood pressure (mm Hg) a 127.79 (1.63) 130.76 (20.42) 125.34 (22.29) <0.001c 130.14 (22.04) 124.62 (20.65) <0.001c

Diastolic blood pressure (mm Hg) a 82.83 (11.99) 84.60 (12.26) 81.38 (11.56) <0.001c 83.13 (12.02) 82.43 (11.94) 0.182

Average daily fat intake (g/day) a 31.09 (5.05) 29.92 (5.15) 32.06 (4.75) <0.001c 30.19 (5.44) 32.30 (4.17) <0.001c

Total physical activity/dayb <0.001c <0.001c

Inactive 219 (11.50) 91 (10.10) 128 (12.76) 91 (7.80) 128 (17.34)

Low active 1,004 (52.73) 488 (54.16) 516 (51.45) 624 (53.52) 380 (51.49)

Moderately active 481 (25.26) 190 (21.09) 291 (29.01) 329 (28.22) 152 (20.60)

Highly active 200 (10.50) 132 (14.65) 68 (6.78) 122 (10.46) 78 (10.57)

Diabetes (self-reported)b 169 (7.98) 85 (4.02) 84 (3.98) 0.170 147 (6.94) 11 (0.52) <0.001c

Hypertension (self-reported)b 400 (18.90) 152 (7.18) 248 (11.72) 0.001c 302 (14.27) 98 (4.63) <0.001c

Alcohol consumption (yes)b 506 (23.90) 498 (23.52) 8 (0.38) <0.001c 267 (12.61) 239 (11.29) 0.011c

Smoking (yes)b 498 (23.52) 377 (17.81) 121 (5.72) <0.001c 143 (2.03) 355 (16.77) <0.001c

aAll continuous variables are reported as mean (SD).
bCategorical variables are reported as n (%).
cTest of comparison (t-test and χ2 test depending on the variable) between groups; p < 0.05 signifies the groups are different for the variable.
dGeometric mean.
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populations that are involved in pathways of lipid
transportation and metabolism, fat accumulation, alcohol
metabolism, and transcription suppression. We could validate
all four intronic variants and two of the three examined variants
in the 3′-UTR region. The weighted allelic scores derived from
these validated variants were associated with 36.31 mg/dL of
elevated triglyceride and VLDL-C levels; 40.62 mg/dL of higher
total cholesterol; 33.97 mg/dL of higher LDL-C levels; and
10.64 mg/dL of lower HDL-C levels. We observed that
although the regression models of both unweighted and
weighted allelic risk scores had comparable r2 and p-values,
the effect sizes of the weighted scores were larger than those of
the unweighted scores.

ABCA8 encodes for a membrane-associated protein which
is a member of the superfamily of ATP-binding cassette (ABC)
transporters. ABC proteins transport various molecules across
extra- and intracellular membranes. The encoded protein also
regulates lipid metabolism as it is involved in the cholesterol
efflux pathway. rs4148005 at ABCA8 is an intronic downstream
transcript variant that was found to be associated with
triglyceride, VLDL-C, and HDL-C levels in the present
study. ADH1B encodes for alcohol dehydrogenase 1B
enzyme that metabolizes a wide variety of substrates,

including ethanol, retinol, other aliphatic alcohols,
hydroxysteroids, and lipid peroxidation products. It plays a
major role in ethanol catabolism and is thus known to be
strongly associated with lipid levels. rs4147536 at ADH1B is
also an intronic variant and was found to be associated with
total cholesterol and LDL-C levels in the present analysis.
TRPS1 (transcriptional repressor GATA binding 1) gene
provides instructions for the synthesis of a protein that
regulates the activity of many other genes. It encodes for a
transcription factor protein and is known to be associated with
dyslipidemia. An intronic variant rs2293889 at TRPS1 was
found to be associated with all the atherogenic lipid levels
(total cholesterol, triglycerides, LDL-C, and VLDL-C) in the
present study. PLEC encodes for plectin protein that is
produced in different tissues like skin and muscles and is
capable of interlinking different elements of the
cytoskeleton. Recently, its role in the regulation of lipid
levels has been shown. An intronic upstream transcript,
rs7832643 at PLEC, was found to be associated with only
HDL-C levels in the present study.

CELSR2 encodes for cadherin EGF LAG seven-pass G-type
receptor 2 protein, which is a part of the cadherin superfamily.
These proteins are receptors involved in contact-mediated

TABLE 2 Description of the studied genetic variants related to lipid levels.

SNV Loci Chromosomal
location

Change in
nucleotide

Functional
consequence

Minor
allele

Minor allele frequency

Combined Rural Urban GWAS MAF-
GIH

rs10773003 SBNO1 12:123290580 G→A 3′-UTR variant A 0.11 0.10 0.12 0.16 0.10

rs174546 FADS1 11:61802358 C→T 3′-UTR variant T 0.14 0.12 0.15 0.27 0.10

rs17482753 LPL 8:19975135 G→T NA T 0.08 0.08 0.07 0.11 0.09

rs1800961 HNF4A 20:44413724 C→T

Coding sequence
variant missense amino
acid change: T (Thr) >

I (Ile)

T 0.02 0.02 0.02 0.03 0.03

rs2293889 TRPS1 8:115586972 G→T Intronic variant T 0.34 0.31 0.36 0.41 0.31

rs2814944 C6orf106 6:34585020 G→A NA A 0.10 0.11 0.10 0.16 0.11

rs4147536 ADH1B 4:99317955 G→T Intronic variant T 0.22 0.20 0.24 ----- 0.30

rs4148005 ABCA8 17:68886325 A→C
Intronic variant

downstream transcript
variant

C 0.26 0.23 0.28 0.59 0.31

rs4420638 APOC1 19:44919689 A→G Downstream transcript
variant

G 0.11 0.10 0.11 0.16 -----

rs660240 CELSR2 1:109275216 G→A 3′-UTR variant A 0.24 0.21 0.21 0.21 0.25

rs737337 DOCK6 19:11236817 T→C

Coding sequence
variant synonymous
amino acid change:
(Thr) > T (Thr)

C 0.13 0.13 0.13 0.08 0.16

rs7832643 PLEC 8: 143948489 G→T Intronic variant
upstream transcript

variant

T 0.30 0.27 0.32 0.40 0.34

SNV, single-nucleotide variation.

Change in nucleotide and minor allele information is based on the study population.

Information related to functional consequences reported from the NCBI-dbSNP database; NA, no detailed functional consequence was available in the dbSNP database.
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communication. The deficiency of CELSR2 is known to suppress
lipid accumulation in hepatocytes and thus affect lipid levels.
rs660240 at CELSR2 is a 3′-UTR variant that was found to be
associated with only LDL-C levels in the present study. FADS1
encodes for fatty acid desaturase enzyme which regulates the
unsaturation of fatty acids. It is known to play a role in hepatic
lipid composition and fat accumulation and is thus associated
with lipid levels in blood. rs174546 at FADS1 is another 3′-UTR

variant in the present study that was found to be associated with
triglyceride, VLDL-C, and HDL-C levels.

APOC1 resides within the apolipoprotein gene cluster and
encodes for protein, which is a member of the apolipoprotein
C1 family. It plays a major role in HDL-C and VLDL-C
metabolisms and is also known to inhibit cholesteryl ester
transfer protein (CETP). A downstream transcript variant,
rs4420638 at APOC1, was found to be associated with all the

TABLE 3 Association of genetic variants with lipid levels in the present study.

Triglyceride Total cholesterol HDL-C LDL-C VLDL-C

β SE p-value β SE p-value β SE p-value β SE p-value β SE p-value

rs10773003 Model 1 −0.04 0.05 0.383 −0.02 0.05 0.721 0.00 0.05 0.990 −0.02 0.05 0.742 −0.04 0.05 0.383

Model 2 −0.05 0.05 0.312 0.00 0.05 0.921 0.01 0.05 0.796 −0.01 0.05 0.909 −0.05 0.05 0.312

rs174546 Model 1 0.13 0.04 0.004* −0.03 0.04 0.471 −0.11 0.04 0.010* −0.06 0.04 0.181 0.13 0.04 0.004*

Model 2 0.11 0.04 0.014* −0.06 0.05 0.191 −0.10 0.04 0.025* −0.09 0.04 0.036* 0.11 0.04 0.014*

rs17482753$ Model 1 0.19 0.06 0.001* 0.05 0.06 0.418 −0.13 0.06 0.018* 0.02 0.06 0.756 0.19 0.06 0.001*

Model 2 0.21 0.06 <0.001* 0.06 0.06 0.332 −0.14 0.06 0.018* 0.03 0.06 0.662 0.21 0.06 <0.001*

rs1800961 Model 1 −0.05 0.11 0.668 −0.23 0.11 0.038* −0.23 0.11 0.040* −0.15 0.11 0.176 −0.05 0.11 0.668

Model 2 −0.06 0.11 0.585 −0.21 0.12 0.066 −0.22 0.11 0.055 −0.13 0.12 0.260 −0.06 0.11 0.585

rs2293889 Model 1 0.08 0.03 0.023* 0.08 0.03 0.013* −0.06 0.03 0.094 0.09 0.03 0.005* 0.08 0.03 0.023*

Model 2 0.08 0.03 0.015* 0.10 0.03 0.004* −0.06 0.03 0.062 0.11 0.03 0.001* 0.08 0.03 0.015*

rs2814944 Model 1 0.05 0.05 0.370 −0.03 0.05 0.583 0.07 0.05 0.152 −0.02 0.05 0.633 0.05 0.05 0.370

Model 2 0.06 0.05 0.233 0.00 0.05 0.937 0.04 0.05 0.440 −0.06 0.05 0.235 0.06 0.05 0.233

rs4147536$ Model 1 0.04 0.04 0.259 0.10 0.04 0.004* 0.06 0.04 0.092 0.10 0.04 0.007* 0.04 0.04 0.259

Model 2 0.05 0.04 0.187 0.12 0.04 0.001* 0.09 0.04 0.014* 0.10 0.04 0.006* 0.05 0.04 0.187

rs4148005 Model 1 0.09 0.03 0.010* −0.04 0.03 0.299 −0.13 0.03 <0.001* −0.05 0.03 0.187 0.09 0.03 0.010*

Model 2 0.11 0.04 0.001* −0.01 0.04 0.814 −0.13 0.03 <0.001* −0.02 0.04 0.482 0.11 0.04 0.001*

rs4420638 Model 1 0.11 0.05 0.027* 0.08 0.05 0.123 −0.17 0.05 <0.001* 0.13 0.05 0.009* 0.11 0.05 0.027*

Model 2 0.10 0.05 0.044* 0.07 0.05 0.191 −0.15 0.05 0.003* 0.11 0.05 0.028* 0.10 0.05 0.044*

rs660240$ Model 1 −0.01 0.04 0.734 0.09 0.04 0.013* −0.01 0.04 0.734 0.12 0.04 0.001* −0.01 0.04 0.734

Model 2 0.00 0.04 0.933 0.07 0.04 0.059 −0.01 0.04 0.830 0.08 0.04 0.020* 0.00 0.04 0.933

rs737337 Model 1 0.05 0.04 0.300 −0.04 0.04 0.417 −0.08 0.04 0.068 −0.04 0.04 0.410 0.05 0.04 0.300

Model 2 0.01 0.05 0.767 −0.03 0.05 0.533 −0.06 0.05 0.188 −0.02 0.05 0.716 0.01 0.05 0.767

rs7832643 Model 1 −0.02 0.03 0.600 −0.04 0.03 0.174 −0.11 0.03 0.001* −0.01 0.03 0.761 −0.02 0.03 0.600

Model 2 −0.02 0.03 0.507 −0.04 0.03 0.279 −0.09 0.03 0.004* −0.01 0.03 0.879 −0.02 0.03 0.507

GRS Model 1 0.10 0.02 <0.001* 0.09 0.02 <0.001* −0.11 0.01 <0.001* 0.11 0.02 <0.001* 0.10 0.02 <0.001*

wGRS Model 1 0.95 0.16 <0.001* 1.01 0.23 <0.001* −0.87 0.14 <0.001* 1.03 0.19 <0.001* 0.95 0.16 <0.001*

Model 1—adjusted for age, gender, and site (urban/rural).

Model 2—adjusted for age, gender, site (urban/rural), fat intake, physical activity (inactive/low active/moderately active/highly active), BMI (kg/m2, alcohol consumption, smoking,

hypertension, and diabetes.

*—level of significance = 0.05.

$—risk allele is the major allele.

GRS and wGRS (unweighted and weighted genetic risk score; generated using variants significantly associated in both models)—TG (rs174546, rs17482753$, rs2293889, rs4148005, and

rs4420638), TC (rs2293889 and rs4147536$), HDL-C (rs174546, rs17482753$, rs4148005, rs4420638, and rs7832643); LDL-C (rs2293889, rs4147536$, rs4420638, and rs660240$), and VLDL-C

(rs174546, rs17482753$, rs2293889, rs4148005, and rs4420638).
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lipid levels in the present study, except total cholesterol. LPL encodes
for lipoprotein lipase enzyme that plays a critical role in breaking
down fat into triglycerides, which are carried by lipoproteins from
various organs to blood. It hydrolyzes triglyceride-rich particles and
affects HDL-C levels in the blood. In accordance with this biological
function, rs17482753 at LPL was found to be associated with
triglyceride, VLDL-C, and HDL-C levels, although the specific
functional consequence of this genetic variation is not well
documented.

Some of these variants (CELSR2, CETP, and LPL) emerged as
lead signals in a genome-wide study based on the Indian
population for serum lipid levels (Bandesh et al., 2019), thus
suggesting the universality of GWAS findings. They also
reported few novel loci (QKI, REEP3, TMCC2, FAM129C,
FAM241B, and LOC100506207) at a suggestive genome-wide
significance level (Bandesh et al., 2019) that need to be
examined in a larger set of samples in different populations of
India. Previous validation studies in Indian populations have also
confirmed the role of these genetic variants related to lipid levels. A
large rural–urban sibling-pair study from India examined the role
of few GWAS loci related to lipid levels and reported the role of
APOA1, APOA5, APOB, CETP, GCKR, LPL, LIPC, TRIB1, and
CELSR2–PSRC1–SORT1 loci (Rafiq et al., 2012; Walia et al., 2014).
They also reported effect modification of lipid variants with urban
location and gender in the Indian population (Walia et al., 2014).
The variants in the CELSR2-PSRC1-SORT1 gene cluster were also
observed to be associated with cholesterol and LDL-C levels among
an Asian Indian cohort in Arv et al. (2014). Similarly, variants in
the 11223.3 chromosomal region involving APOA1, APOA4,
APOA5, and APOC loci were reported to be strongly
influencing the lipid levels and dyslipidemia in studies from
northern (Braun et al., 2012) and southern India (Pranavchand
and Reddy, 2017).

It is well established that gender is strongly associated with
lipid levels due to differences in associated lifestyle factors and
metabolism, and thus, gender-specific thresholds have been
advised for clinical implications across the globe. In addition,
regional differences in dyslipidemia have been reported by
large multi-centric studies with considerable differences
among northern and southern Indian populations (Ebrahim
et al., 2010; Joshi et al., 2014). The presently examined
population belongs to the northern part of India, where
people are known to consume a high-fat diet that affects the
circulating lipid levels. Moreover, northern India experiences
extreme winter seasons that are not present in other parts of
India, which is again associated with the consumption of a
high-fat diet in winter and festive seasons. Furthermore, India
is currently undergoing urbanization, which in turn is
associated with cardiometabolic disease burden, including
dyslipidemia (Ebrahim et al., 2010; Gupta et al., 2017), and
previous studies have demonstrated the effect modification of
genetic variants of lipid traits with the urban location (Walia
et al., 2014). Therefore, we also explored the interaction of the
studied variants with gender, urban location, and related
lifestyle factors to examine the effect modification of the
validation loci. However, we did not have enough sample
size to capture moderate effect modification effects.
Nevertheless, we noticed few significant associations with

adverse lifestyle factors that need to be replicated in studies
with a larger sample size.

In conclusion, we confirm the role of eight previously
reported GWAS loci in the Indian population, as well as loci
that are involved in different lipid regulation pathways. The
weighted allelic risk scores were found to be associated with
high levels of lipids. The validated variants and allelic
risk scores are useful in further analyses where these risk
scores can be used as instruments for examining causal
relationships. The effect modification noticed for urban
location and related lifestyle factors needs to be investigated
further in a larger set of samples for a more meaningful
interpretation.
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