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Antimicrobial peptides are present ubiquitously in intra- and extra-biological
environments and display considerable antibacterial and antifungal activities.
Clinically, it has shown good antibacterial effect in the treatment of diabetic
foot and its complications. However, the discovery and screening of antimicrobial
peptides primarily rely on wet lab experiments, which are inefficient. This study
endeavors to create a precise and efficient method of predicting antimicrobial
peptides by incorporating novel machine learning technologies. We proposed a
deep learning strategy named AMP-EBiLSTM to accurately predict them, and
compared its performance with ensemble learning and baseline models. We
utilized Binary Profile Feature (BPF) and Pseudo Amino Acid Composition
(PSEAAC) for effective local sequence capture and amino acid information
extraction, respectively, in deep learning and ensemble learning. Each model
was cross-validated and externally tested independently. The results demonstrate
that the Enhanced Bi-directional Long Short-Term Memory (EBiLSTM) deep
learning model outperformed others with an accuracy of 92.39% and AUC
value of 0.9771 on the test set. On the other hand, the ensemble learning
models demonstrated cost-effectiveness in terms of training time on a
T4 server equipped with 16 GB of GPU memory and 8 vCPUs, with training
durations varying from 0 to 30 s. Therefore, the strategy we propose is
expected to predict antimicrobial peptides more accurately in the future.
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1 Introduction

Antimicrobial peptides are a class of small peptide molecules widely present both inside
and outside of organisms, possessing strong antibacterial and antifungal properties (Zasloff,
2002). Their mechanism of action primarily involves disrupting microbial cell membranes,
leading to cell death (Brogden, 2005). The biological structure of antimicrobial peptides
usually encompasses various amino acids, offering a broader antimicrobial spectrum and
lower resistance than traditional antibiotics (Hancock and Sahl, 2006; Mahlapuu et al., 2016).
This makes them promising candidates for applications in biomedical, food preservation,
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cosmetic antimicrobial, and environmental protection (Axel et al.,
2016; Kumar et al., 2018; Yoon et al., 2018) fields. For instance, in the
medical domain, antimicrobial peptides serve as topical anti-
infective drugs, treating skin and soft tissue infections and
preventing and treating hospital-acquired infections (Omardien
et al., 2016; Nakatsuji et al., 2017; Lázár et al., 2018). They are
also extensively employed in medical device applications, such as
coatings on pacemakers, artificial joints, and dental implants, to
prevent the formation of bacterial biofilms and reduce device-related
infection risks (Melo et al., 2009). In clinical therapy, antimicrobial
peptides have gradually attracted attention as potential alternative
antibiotic treatments, demonstrating promising potential in wound
healing, infectious disease treatment, and antitumor therapy (Costa
et al., 2011; Hilchie et al., 2013; Mansour et al., 2014). Additionally,
antimicrobial peptides have gradually attracted people’s attention as
a potential alternative to antibiotic therapy and to promote the
formation of new blood vessels. For example, in the clinical practice
of vascular surgery, some antimicrobial peptides have been
successfully used in the treatment of diabetic feet, such as LL
-37 and hBDs, both of which exhibit good anti-bacterial and
wound healing effects (Lázár et al., 2018; Da et al., 2021). At the
same time, some studies have found that antimicrobial peptides can
regulate the function of endothelial cells, pro-mote the formation of
new blood vessels, and improve blood flow in the feet, thereby
positively affecting the vascular lesions of diabetic feet (Xing et al.,
2023).

Traditional screening methods for antimicrobial peptides
include biochemical methods and molecular dynamics simulation
techniques. Biochemical methods typically involve extracting
peptide segments from biological samples and screening them
through antimicrobial activity tests, such as the agar diffusion
test and minimum inhibitory concentration determination
(Hancock and Diamond, 2000; Wimley, 2010). Molecular
dynamics simulations, as a bioinformatics approach, offer a new
perspective for antimicrobial peptide screening. By simulating the
interactions between antimicrobial peptides and bacterial target
molecules, researchers can gain deeper insights into the
mechanism of action of antimicrobial peptides, thereby
optimizing their design and screening. Molecular dynamics
simulation technology can assist researchers in screening peptide
segments with higher antimicrobial activity, thereby enhancing the
efficiency of antimicrobial peptide re-search and applications
(Haney et al., 2017; Ulmschneider and Ulmschneider, 2018).

However, the development and screening of antimicrobial
peptides currently face a series of challenges. Firstly, traditional
biochemical methods are costly and have lengthy development
cycles. These methods require laboratory screening of numerous
peptide segments, which can consume substantial time and
resources. Furthermore, due to experimental condition
constraints, false-positive or false-negative results may be
generated, thereby reducing the accuracy of the screening.
Although molecular dynamics simulations, as a bioinformatics
approach, have somewhat improved screening efficiency, they
still present shortcomings. The simulation process might be con-
strained by computational resources, resulting in less accurate
results. Moreover, the variety of antimicrobial peptides screened
might be limited, and their stability may not be sufficient to meet
practical application requirements. Consequently, the development

of an efficient, precise, and convenient screening strategy is crucial.
Such a strategy should overcome the limitations of current screening
methods, enhance screening efficiency and accuracy, and reduce
research and development costs.

With the rapid advancement of AI technology and
computational power, an in-creasing number of researchers have
begun to focus on the identification of small functional peptides.
These small peptides have shorter amino acid sequences, typically
containing between 5 and 50 amino acid residues (Al-Khdhairawi
et al., 2023). These short peptides play various crucial functions in
biological systems, including antimicrobial, antiviral,
immunoregulatory, and cellular signal transduction roles
(Hancock et al., 2016). Optimized machine learning algorithms
can enhance the accuracy and efficiency of identifying and
predicting functional peptides, deepening our understanding of
their roles in biological systems and providing robust support for
related field research. Over the past few years, significant progress
has been made in peptide recognition work. Meher et al. improved
the accuracy of antimicrobial peptide prediction by integrating
compositional, physicochemical, and structural features into the
Pseudo Amino Acid Composition (PSEAAC) (Chou, 2001; Meher
et al., 2017). Veltri et al. improved antimicrobial peptide
identification in their research using deep learning methods
(Veltri et al., 2018). Manavalan et al. enhanced prediction
accuracy by using ma-chine learning and ensemble learning
methods to predict cell-penetrating peptides and their
engulfment efficiency (Manavalan et al., 2018). Hasan et al.
proposed an improved and robust method for predicting
hemolytic peptides and their activity—HLPpred-Fuse. They
enhanced prediction performance by fusing various feature
representations, such as amino acid composition, dihedral angles,
amino acid sequence, and PSEAAC, and used a random forest (RF)
for model training (Hasan et al., 2020). Although existing research
has made some break-throughs in identifying antimicrobial
peptides, the precision of prediction and the efficiency of
screening still need improvement. These methods might
encounter low computational efficiency and high time costs when
handling large-scale datasets. While existing methods have
contributed significantly to the identification of these peptides,
there’s a need for more versatile approaches that can rapidly
adapt to diverse identification requirements. Furthermore, some
models’ generalization capability on new datasets needs to be
strengthened. Hence, our work presents a new approach that
addresses this gap, by developing a prediction model that offers
flexibility and efficiency in identifying antimicrobial peptides under
diverse conditions.

The aim of this study is to develop an accurate and efficient
antimicrobial peptide screening strategy using novel deep learning
models. We constructed two datasets: the first for training and five-
fold cross-validation, and the second for external independent
testing. We proposed the Enhanced Bi-directional Long Short-
Term Memory (EBiLSTM) deep learning model and compared it
with mainstream ensemble learning and baseline models. In
particular, our model incorporates feature fusion strategies to
combine different feature types and extract comprehensive
characteristics from the peptide sequences. Additionally, a multi-
scale convolutional layer is used to capture peptide sequence features
at various scales. These modifications aim to improve the model’s
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ability to recognize various features within peptide sequences,
thereby enhancing its predictive performance for identifying
antimicrobial peptides. For ensemble learning, we utilized

Adaptive Boosting (AdaBoost), Light Gradient Boosting Machine
(LightGBM), and Extreme Gradient Boosting (XGBoost). In terms
of deep learning, in addition to EBiLSTM, two classic deep learning

FIGURE 1
Schematic showing experimental workflow.
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models were also selected to participate in the work. Additionally, we
employed three baseline machine learning models for comparison
with the aforementioned six types. These models were tested on an
external dataset to evaluate their performance. The specific
workflow of this study is illustrated in Figure 1.

In summary, the main contributions of this study are as follows.

• This study is the first to propose EBiLSTM models for
antimicrobial peptides prediction. In detail, we made
suitable modifications based on the BiLSTM network
structure to enhance prediction performance.

• Regarding the dataset, we independently constructed two
antimicrobial peptide datasets: one for cross-validation and
another for independent verification. This provides a reliable
foundation for evaluating and comparing the performance of
different models.

• Considering the characteristics of different models, we
separately adopted two feature extraction methods:
PSEAAC and Binary Profile Feature of k-spaced Amino
Acid Pairs (BPF) (Chen et al., 2016). These methods are
designed to maximize the potential of each model in
antimicrobial peptide prediction tasks.

2 Materials and methods

2.1 Data collection

The antimicrobial peptide data used in this study are all sourced
from multiple public databases, including: APD3 (https://aps.unmc.
edu/about), PlantPepDB (http://14.139.61.8/PlantPepDB/index.
php), BaAMPs (https://www.baamps.it/), Bio-PepDB (https://bis.
zju.edu.cn/biopepdbr/), CAMP (https://webs.iiitd.edu.in/raghava/
satpdb/catalogs/camp/), DBAASP (https://dbaasp.org/home),
DRAMP (https://dramp.cpu-bioinfor.org/), LAMP (https://ngdc.
cncb.ac.cn/databasecommons/database/id/4562). After screening,
we obtained 5605 and 1119 antimicrobial peptide samples from
these databases, respectively. Simultaneously, to construct a
comparable proportion of negative samples to the antimicrobial
peptide samples, we referred to previous studies (Tyagi et al., 2013;
Kumar et al., 2015) and randomly selected the corresponding
number of peptide sequences from the UniProt database. These
negative samples primarily included peptides that are non-
antimicrobial. We aimed to ensure a balance with our positive
samples, and therefore, additional criteria were considered in
their selection. We ensured that these samples were similar to
our positive samples in terms of length, to prevent the length
from becoming a distinguishing feature. We also took into
account the amino acid composition, ensuring that the negative
samples did not exhibit any uncommon composition that could
introduce bias. Peptide sequences were added to two datasets, which
we named AMP-11053 and AMP-2211. The AMP-11053 dataset
was used for model training and internal validation (i.e., five-fold
cross-validation), while the AMP-2211 dataset was used for external
independent testing to evaluate the model’s generalization
performance. After the construction of the datasets, we ensured
that there were no duplicate peptide sequences within or between

the two datasets through careful verification. This procedure helps to
ensure the reliability of model training and evaluation.

2.2 Peptide sequence feature representation

To fully tap into the potential of different models for
antimicrobial peptide identification tasks, we adopted a variety of
model types in this study. Considering the characteristics of each
type of model, we chose different feature extraction methods to
match their respective applicability. Specifically, for ensemble
learning and traditional machine learning models, we utilized the
PSEAAC feature extraction method, which has demonstrated
commendable performance in many bioinformatics problems.
For deep learning models, we selected the BPF feature extraction
method. This method effectively captures the local features of
sequences, thereby enhancing the performance of the models.

2.2.1 Binary profile feature of k-spaced amino acid
pairs

BPF is a feature extraction method used to characterize
protein sequences. It con-siders the binary representation of
amino acid pairs with k intervals in the amino acid sequence,
thereby capturing the relationship between locally adjacent
amino acids. After determining the value of k, the BPF
algorithm constructs a binary matrix with 20 × 20 rows and
columns equivalent to the sequence length minus k. The matrix is
populated based on the occurrence of amino acid pairs in the
sequence. If a specific pair appears in the sequence, the
corresponding position in the matrix is filled with 1;
otherwise, it is filled with 0. The binary matrix is then
flattened into a feature vector for subsequent analysis.

To determine the appropriate value of k, we extracted 15% of the
data from the AMP-11053 dataset as a pre-experimental dataset and
conducted pre-experiments with k set to 0, 1, 2, 3, 4, and 5,
respectively. The average AUC value was calculated through five-
fold cross-validation, and the AUC curve was plotted. The results
showed that the AUC value was highest when k = 3, so we selected
k = 3 as the parameter for the BPF method in this study.
Subsequently, the AMP-11053 and AMP-2211 datasets processed
using the BPF method were used as inputs for the deep learning
models.

2.2.2 Pseudo amino acid composition
PSEAAC is a feature extraction method widely applied in the

field of bioinformatics, primarily used to represent protein
sequences. This method integrates both local and global
features of amino acid sequences to generate a feature vector
of fixed length. Any peptide sequence can be represented as
shown in Equation 1, with the specific calculation formula xμ

for different subscripts as given in Equation 2. Here, the integer λ
represents the highest order of sequence correlation, and ω is a
weight coefficient between 0 and 1. fi(i � 1, 2, ...20) represents
the frequency of occurrence of the 20 natural amino acids in the
peptide, and θj(j � 1, 2, ..., λ) denotes the correlation factor of
order j, which is defined as shown in Equation 3. The correlation
function is calculated according to Equation 4, where X1(Ri),
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X2(Ri), . . .Xn(Ri) represent the physicochemical properties of Ri

(Ge et al., 2020).

P � x1, x2, ...x20, x20+1, ...x20+λ[ ] (1)

xμ �

fμ

∑20
i�1
fi + ω∑λ

j�1
θj

1≤ μ≤ 20( )

ωθμ−20

∑20
i�1
fi + ω∑λ

j�1
θj

20 + 1≤ μ≤ 20 + λ( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

θj � 1
L − j

∑
L−j

i�1
Θ Ri, Ri+j( ) 1≤ j≤ λ( ) (3)

Θ Ri, Rj( ) � 1
n
{ X1 Ri( ) −X1 Rj( )[ ]2 + X2 Ri( ) −X2 Rj( )[ ]2
+... + Xn Ri( ) −Xn Rj( )[ ]2} (4)

PSEAAC has two types: Type 1 and Type 2. In this study, we
employed the Type 2 PSEAAC approach and selected six
physicochemical properties, namely, ‘Hydrophobicity,’
‘Hydrophilicity,’ ‘Mass,’ ‘pK1’ (acid dissociation constant), ‘pK2’
(base dissociation constant), and ‘pI’ (isoelectric point). In the
experiment, the weight was set to 0.05, and the sequence interval
(lambda) was set to 2. The processed features were then in-putted
into ensemble learning models and baseline machine learning
models for further analysis.

2.3 Deep learning model construction

2.3.1 Enhancing bidirectional long short-term
memory

BiLSTM is a unique variant of LSTM networks designed to
consider both forward and backward information in an input
sequence (Schuster and Paliwal, 1997). Traditional LSTM
networks process sequence data in a forward manner, unable to
capture information from future elements. However, BiLSTM
enhances this by adding a parallel LSTM layer to the original,
which processes the input sequence in reverse order. This
bidirectional characteristic empowers the model to grasp the
context of both preceding and subsequent sequences at any given
point, furnishing a more comprehensive apprehension of the
sequence context. Such a feature makes BiLSTM superior to
traditional LSTM in tasks with bidirectional dependencies, such
as part-of-speech tagging, named entity recognition, semantic role
labeling, and more, offering significant advantages in the
identification of antimicrobial peptides.

In this study, we designed an EBiLSTM model composed of
three BiLSTM net-works, as illustrated in Figure 2. Our model
accepts input of size (100, 20), corresponding to sequence data with
a length of 100 and feature dimension of 20. Themodel begins with a
bidirectional LSTM layer containing 128 units and a dropout ratio of
0.5, followed by a dropout layer of 0.3. Subsequent bidirectional
LSTM layers with 64 and 32 units, each followed by dropout layers,

FIGURE 2
Structure of the EBiLSTM model.
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form a structure that reduces lay-er-by-layer and helps prevent
overfitting. Finally, the model ends with two fully connected layers.
The first layer contains 32 nodes and uses the ‘relu’ activation
function, while the latter has 2 nodes and uses the ‘sigmoid’
activation function to predict the probability for each category. A
dropout layer is also placed between these two layers. The model has
proven to perform exceptionally, boasting high classification
accuracy and robust performance.

2.3.2 Long short term memory
Long Short-Term Memory (LSTM) is a unique form of

recurrent neural network proposed by Hochreiter and
Schmidhuber. It exhibits a remarkable memory capacity and is
particularly adept at handling long sequence data, effectively
sidestepping is-sues of “gradient vanishing” or “gradient
explosion” (Hochreiter and Schmidhuber, 1997). In antimicrobial
peptide recognition, LSTM has been proven to be a potent tool. For
instance, Wang et al. utilized a parallel combination of
Convolutional Neural Networks (CNN) and LSTM to identify
anticancer peptides (Wang H. et al., 2021), and Christina Wang
and colleagues employed LSTM to design short novel AMP
sequences with potential antimicrobial activity (Wang C. et al.,
2021). In this study, our network comprises multiple LSTM
layers, which transmit outputs layer by layer to take full
advantage of the depth of the model. To prevent overfitting, we
introduced a dropout layer after each LSTM layer with a dropout
rate set at 0.3. The network finally employs a fully connected layer
with a sigmoid activation function to output the prediction results.
Adam was chosen as the optimizer, with a learning rate set at 0.01,
and a fixed random seed value of 50 was used to ensure consistency.

2.3.3 Gate recurrent unit
The Gated Recurrent Unit (GRU) is an improved variant of the

Recurrent Neural Network (RNN) proposed by Cho et al., in 2014 (Cho
et al., 2014). By introducing two novel gating mechanisms - the update
and reset gates, GRU effectively retains long-term dependency
information and enhances model performance. Compared to
LSTM’s four types of gates, the GRU’s structure is more concise,
with fewer parameters and higher computational efficiency, yet its
performance in various tasks is not inferior to LSTM’s. For instance, a
model developed by Choi et al., which is based on GRU, successfully
predicted patient diagnoses, drug prescriptions, and future disease risks
(Choi et al., 2016). In designing the GRU deep learning network for this
study, we followed design principles similar to those used with LSTM,
ensuring that the model maintains high computational efficiency and
robust performance when handling complex tasks. In our preliminary
trials, these three models, each showcasing distinct strengths in
managing sequence data, emerged as the superior performers in
predicting antimicrobial peptides. Consequently, we selected them
for our research.

2.4 Ensemble learning model construction

2.4.1 Adaptive boosting
AdaBoost is a powerful ensemble learning technique, central to

which is the concept of integrating multiple weak classifiers to
enhance model performance (Freund and Schapire, 1997). In

bioinformatics, as shown in research by Haoyi Fu et al.,
AdaBoost has been successfully applied to identify the structure
and physicochemical properties of antimicrobial pep-tides (Fu et al.,
2020). We chose Adaboost for its remarkable capability to
concentrate on challenging-to-classify instances by progressively
emphasizing the data misclassified by the preceding classifier. In
this study, we used a decision tree as the base classifier, set an
iteration limit of 200 to avoid overfitting, controlled the step size of
the training process with a learning rate of 0.05, and selected
‘SAMME.R’ as the algorithm scheme to achieve genuine boosting
effects. To ensure the consistency of the experimental results, we set
a fixed random seed value of 50. These settings allowed our
AdaBoost classifier to achieve a good balance in terms of
robustness and stability.

2.4.2 Light gradient boosting machine
LightGBM, developed by Microsoft Research (Ke et al., 2017),

is an efficient and accurate gradient boosting decision tree
algorithm characterized by its rapid training speed and low
memory usage. It employs a histogram-based gradient
boosting technique and a leaf-wise growth strategy, effectively
enhancing training speed and optimizing the handling of
imbalanced data, it is also recognized for its superior accuracy,
a critical attribute essential for our study. In our study, key
parameters were set as follows: ‘num_leaves’ was set to 20 to
control model complexity and prevent overfitting; ‘min_data_in_
leaf’ was also set to 20 to further guard against overfitting; the
depth of the decision tree was unrestricted; the learning rate was
set at 0.3 to ensure a balance between training speed and
performance; 100 trees were used for fitting; a binary loss
function was selected; the traditional gradient boosting
decision tree method was employed; and the random seed was
set to 40 to ensure the reproducibility of the experiment.

2.4.3 Extreme gradient boosting
XGBoost is an advanced algorithm centered around gradient

boosting decision trees, developed by Chen et al. (Chen and
Guestrin, 2016). It is highly acclaimed for its superior predictive
power and efficient computational speed. By using the second-order
derivative information of the objective function and a regularization
term, XGBoost optimizes predictive accuracy. Furthermore, by
introducing column block data storage and performing parallel
and distributed optimizations, it greatly enhances computational
efficiency. By utilizing a more regularized model formulation to curb
overfitting, it demonstrates superior performance over other models
across a range of datasets. XGBoost has also been applied in the
medical field; for instance, Junjie Huang et al. utilized it in their
machine learning pipeline to identify potent antimicrobial peptides
across the entire peptide sequence space (Huang et al., 2023). In our
study, the CART tree was chosen as the base learner, and the
maximum depth of weak learners and the maximum number of
trees were set to 6 and 10, respectively, to prevent overfitting. The
learning rate was set to 0.1 to control the step size of iterative
updates, and the subsample ratio was set to 0.2 to enhance the
model’s generalization ability. Additionally, the random seed value
was set to 50 to enhance model stability. These settings enabled the
XGBoost model to achieve excellent results in terms of predictive
performance and stability.
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2.5 Baseline model

To comprehensively evaluate the performance of our models, we
chose to com-pare them against traditional machine learning
models often used in small peptide screening, such as the
Support Vector Machine (SVM), Naive Bayes Classifier (NBC),
and K-Nearest Neighbors (KNN) (Manavalan et al., 2017;
Khabbaz et al., 2021; Wani et al., 2021; Jiang et al., 2022). For
SVM, we employed the Gaussian radial basis function kernel to
address non-linear classification problems, set the C parameter to
1.0 to balance misclassification penalties, enabled the probability
option to output prediction probabilities, and allowed the model to
optimize the gamma parameter automatically. We used Gaussian
Naive Bayes as it assumes that the continuous features follow a
Gaussian distribution. For KNN, we set the number of neighbors, k,
to 5 to balance bias and variance and used Euclidean distance as the
metric. By comparing these traditional models, we further validated
the performance and robustness of our deep learning and ensemble
learning models.

2.6 Experiment

In this study, we adopted the widely accepted method of five-
fold cross-validation for model training on the AMP-11053 dataset.
This approach divides the dataset into five portions, with four of
them being used for training and the remaining one for validation.
By alternating the training and validation sets, five rounds of
training and validation were conducted, with the final model
performance evaluation result being the average of the five
validation results. Throughout the model training process, we
performed parameter optimization on all models to achieve
optimal performance. On the AMP-2211 dataset, we carried out
independent testing to further validate the models’ generalization
capability. The experimental environment was configured as follows:
we used a T4 server with 16 GB of GPU memory and 8 vCPUs,
equipped with 32 GB of RAM, running on a Linux operating system.
We utilized the Python 3.8 programming language for model
writing and training, relying on machine learning libraries such
as Tensorflow 2.2.0 and Scikit-learn 1.2.2 for the construction of
deep learning models and implementation of traditional machine
learning models. This setup strikes a balance between abundant
computational resources and the use of common, easily accessible
hardware devices, aiming to ensure the replicability of our study’s
results.

2.7 Model evaluation

To comprehensively assess model performance, we adopted
metrics such as Ac-curacy, Recall, Specificity, Precision, F1-Score,
and AUC value, and also plotted ROC curves (Bradley, 1997;
Sokolova and Lapalme, 2009; Powers, 2020). TP, TN, FP, FN in
the confusion matrix are the primary evaluation parameters,
representing true positives, true negatives, false positives, and
false negatives. Accuracy calculates the proportion of samples
that the model correctly predicts, Precision measures the
proportion of true positive samples in those predicted as positive,

while Specificity reflects the proportion of true negative samples that
were correctly predicted. The F1-score is the harmonic mean of
precision and recall. Through the ROC curve, we can see the
classifier’s performance under all possible classification
thresholds, and the area under the curve (AUC) quantifies the
overall performance of the classifier. The closer the AUC value is
to 1, the better the model performance. In detail:

Accuracy � TP + TN

TP + TN + FP + FN
(5)

Precision � TP

TP + FP
(6)

Specificity � TN

TN + FP
(7)

Recall � TP

TP + FN
(8)

F1 − score � 2 × Precision × Recall

Precision + Recall
(9)

3 Results

3.1 Statistical results of amino acids in the
dataset

The two research datasets, AMP-11053 and AMP-2211,
encompass amino acid sequences of AMPs and non-
antimicrobial peptides, incorporating 20 common natural amino
acids. Figure 3A depicts the distribution of amino acid frequencies in
AMPs and non-AMPs across both datasets. Upon close inspection,
we can observe a degree of similarity in the distribution of amino
acid frequencies between AMPs and non-AMPs, which not only
reflects the complexity of the classification task but also underscores
the challenges and value of this research. Furthermore, the analysis
of sequence length distribution between AMPs and non-AMPs is
shown in Figure 3B, with most AMP sequence lengths falling
between 5 and 50 amino acids. Similarly, non-AMP sequences
also have a rich distribution within this length range.

3.2 Deep learning model results

In the experiments conducted on the AMP-11053 dataset, we
utilized LSTM, GRU, and EBiLSTM as models for training. During
the training process, each model was trained 500 times. We
employed multi-class logarithmic loss as the loss function, and
the accuracy served as the evaluation standard. The training
strategy involved five-fold cross-validation to ensure more stable
and reliable model evaluations. We implemented an early
termination criterion which stops the training process if there’s
no improvement in the validation set performance over a defined
number of epochs. This strategy not only conserves computational
resources, but also aids in preventing the model from assimilating
noise present in the training data. Simultaneously, we also computed
the evaluation metrics mentioned in Section 3.1. The training
results, which include the values of each evaluation metric, the
AUC curve, and the ROC values, are shown in Table 1 and
Figure 4A. Similarly, we tested the models’ generalization
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capabilities on an additional external dataset, AMP-2211. The
testing results are presented in Table 2 and Figure 4B. It is not
difficult to find that the proposed EBiLSTM has the most excellent
performance both in the training set and the external test set.

While our models achieved excellent performance on the AMP-
11053 dataset, as evidenced by the evaluation metrics, AUC curve,
and ROC values in Table 1 and Figure 4A, the performance on the
external dataset AMP-2211, depicted in Table 2 and Figure 4B, was
marginally lower. It is crucial to note that this dip in performance,
while important to acknowledge, is not entirely unexpected. When
applying a model trained on one dataset (AMP-11053) to a different
dataset (AMP-2211), it is common to see some decrease in
performance. This is due to the inherent differences between the
datasets, which might include variations in complexity, distribution
of data, or the amount and type of noise present. Essentially, the
AMP-2211 dataset presents previously unseen scenarios for the
model, and it is natural that the model will not perform as
effectively on this new data as on the data it was trained on.
However, this difference in performance can actually be seen as a
positive. If our model performed identically on both datasets, it
would raise concerns about overfitting. Overfitting occurs when a
model learns the training data too well, to the point where it is too
specialized to the training data and performs poorly on new, unseen
data. The fact that our model’s performance decreases slightly on the

external AMP-2211 dataset suggests that our model is not overfitted
and is capable of generalizing to new data.

3.3 Ensemble learning model results

In the case of the AMP-11053 dataset, we trained using Adaboost,
LightGBM, and XGBoost, employing a five-fold cross-validation
method. We calculated five main evaluation metrics: accuracy, recall,
specificity, precision, and F1-Score. During the process of evaluating
model performance, to accurately assess model capabilities, we also
calculated the 95% confidence interval for these metrics. Specific details
are shown in Table 3, while the AUC curves derived from the three
types of models are depicted in Figure 5A. To further validate the
models’ generalization capabilities, we employed an additional external
dataset, AMP-2211, to test the models. In the testing process, we
calculated the aforementioned five evaluation metrics and drew the
AUC curve. Test results are displayed in Table 4 and Figure 5B. These
results provide us with a comprehensive and in-depth understanding,
allowing us to assess and compare the performance of different models
on multiple levels. The results above indicate that while ensemble
learning demonstrates considerable accuracy in identifying
antimicrobial peptides, its performance is still not on par with that
of deep learning, especially EBiLSTM.

FIGURE 3
Features of peptide chains from two datasets.(A) Frequency distribution ratio of various amino acids in peptides.(B) Distribution of peptide lengths.

TABLE 1 Performance of the deep learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

EBILSTM 0.9685 ± 0.0408 0.9619 ± 0.0426 0.9654 ± 0.0388 0.9663 ± 0.0376 0.9699 ± 0.0401

LSTM 0.9383 ± 0.0329 0.9139 ± 0.0472 0.9558 ± 0.0207 0.95640 ± 0.0213 0.9375 ± 0.0334

GRU 0.927 ± 0.0512 0.9489 ± 0.0097 0.9043 ± 0.1004 0.912 ± 0.0768 0.9265 ± 0.0440
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3.4 Baseline model results

To comprehensively validate the performance of our models, we
used traditional machine learning models, SVM, NBC, and KNN, as

benchmarks for comparison with the two categories of models
mentioned earlier. On the AMP-11053 dataset, the results from
the five-fold cross-validation of the traditional models are shown in
Table 5, with the specific AUC curves and ROC values illustrated in

FIGURE 4
Performance of the deep learning models on datasets. (A) ROC curves and AUC values of EBiLSTM, LSTM, and GRU after 5-fold cross-validation on
the AMP-11053 dataset. (B) ROC curves and AUC values of EBiLSTM, LSTM, and GRU on the validation set AMP-2211.

TABLE 2 Results derived from the independent external validation set, AMP-2211.

AMP-2211 Accuracy Recall Specificity Precision F1-score

EBILSTM 0.9239 0.9186 0.9294 0.9303 0.9244

LSTM 0.9099 0.8971 0.9132 0.9217 0.9189

GRU 0.9018 0.9045 0.8846 0.8907 0.9044

TABLE 3 Performance of the ensemble learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

AdaBoost 0.8432 ± 0.0095 0.8493 ± 0.0118 0.8366 ± 0.0173 0.8425 ± 0.0145 0.8459 ± 0.0108

LightGBM 0.8912 ± 0.0062 0.9058 ± 0.0089 0.8759 ± 0.0153 0.8826 ± 0.0118 0.8940 ± 0.0061

Xgboost 0.8932 ± 0.0086 0.9033 ± 0.0081 0.8824 ± 0.0123 0.8879 ± 0.0064 0.8955 ± 0.0070

Notes: The above results show the average value of each indicator and the corresponding 95% confidence interval.
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Figure 6A. We also evaluated the generalization capabilities of each
model on an external dataset, AMP-2211. The results of these
external validations are listed in Table 6 and depicted in

Figure 6B. Among them, K-NN performs the best, but its
performance is still not as good as the prediction strategy
proposed above.

FIGURE 5
Performance of the ensemble learningmodels on datasets. (A) ROC curves and AUC values of Adaboost, LightGBM, and XGBoost after 5-fold cross-
validation on the AMP-11053 dataset. (B) ROC curves and AUC values of Adaboost, LightGBM, and XGBoost on the validation set AMP-2211.

TABLE 4 Performance of the ensemble learning models on AMP-11053.

AMP-2211 Accuracy Recall Specificity Precision F1-score

AdaBoost 0.8408 0.8365 0.8452 0.8471 0.8417

LightGBM 0.8996 0.9097 0.8892 0.8938 0.9017

Xgboost 0.9032 0.9133 0.8929 0.8973 0.9052

TABLE 5 Performance of the traditional machine learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

SVM 0.7663 ± 0.0071 0.7309 ± 0.0057 0.8030 ± 0.0139 0.7919 ± 0.0277 0.7601 ± 0.0140

NBC 0.7167 ± 0.0160 0.5617 ± 0.0173 0.8763 ± 0.0088 0.8234 ± 0.0211 0.6678 ± 0.0169

KNN 0.8749 ± 0.0066 0.8997 ± 0.0068 0.8494 ± 0.0066 0.8597 ± 0.0154 0.8792 ± 0.0097
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4 Discussion

In this study, we have focused on finding accurate strategies for
antimicrobial peptide screening. With an emphasis on ensemble
learning and deep learning methods, we constructed two datasets
which were applied for model training, cross-validation, and
independent external testing. This ensured rigorous and impartial
model evaluation. By comparing various evaluation metrics, we
analyzed the performance of the ensemble learning and deep
learning models in prediction tasks. The results revealed that our
custom-built EBiLSTM model had the highest accuracy, nearly 98%
on the test set, demonstrating its significant predictive power in this
prediction tasks. In further analyses, our EBiLSTM model was not

only effective in peptide screening, but also efficient, significantly
reducing the time and resources needed for conventional
experimental methods. These results illustrate the potential utility
of ensemble learning and deep learning methods in biomolecular
studies. The success of the EBiLSTM model underscores the power
of these algorithms in handling complex biological data and has
promising implications for accelerating antimicrobial peptide
discovery. Going forward, we plan to improve this model by
integrating additional features and refining hyperparameters to
further enhance its predictive capacity. Our ultimate aim is to
contribute to effective solutions against antibiotic resistance.

Deep learning outperforms both traditional machine learning
and ensemble learning models in terms of accuracy. To understand

FIGURE 6
Performance of traditional machine learning models on datasets. (A) ROC curves and AUC values of SVM, KNN, and NBC after 5-fold cross-
validation on the AMP-11053 dataset. (B) ROC curves and AUC values of SVM, KNN, and NBC on the validation set AMP-2211.

TABLE 6 Evaluation outcomes from the external standalone validation dataset, AMP-2211.

AMP-2211 Accuracy Recall Specificity Precision F1-score

SVM 0.7698 0.7623 0.7775 0.7783 0.7702

NBC 0.7092 0.5416 0.881 0.8234 0.6534

KNN 0.8806 0.9044 0.8562 0.8657 0.8846
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why the EBiLSTM model exhibits optimal performance, it is
necessary to analyze the network architecture. Firstly, from a
design perspective, the model incorporates three BiLSTM layers
and four dropout layers. The multi-layer network structure equips
the model with sufficient capacity to learn complex patterns in the
sequence. An appropriate dropout rate (the optimal value of 0.3,
chosen after numerous experiments) plays a key role in preventing
over-fitting and enhancing the model’s generalization capability. In
the final fully connect-ed layer, the network adopts a ReLU
activation function. ReLU alleviates the vanishing gradient
problem, thereby enhancing the model’s learning ability.
Concurrently, the number of neurons in each BiLSTM layer is
judiciously halved, maintaining sufficient model complexity while
avoiding the issue of low computational efficiency. Examining
model specifics, most operations in the EBiLSTM are point-wise,
such as the activation functions of various gates and the update of
cell states. The advantage of these point-wise operations is their high
degree of parallelism, enabling the model to effectively utilize the
parallel computational capabilities of modern hardware, thus
achieving high efficiency in practical applications.

Ensemble learning models and traditional machine learning
models have been used extensively in various applications due to
their simplicity and interpretability. However, when it comes to
predicting AMPs, these models have several limitations. Firstly, they
typically operate on a feature-engineering basis, where appropriate
features need to be manually extracted from the peptide sequences.
This can often be a time-consuming process and may overlook
complex patterns or dependencies in the data that could be critical to
accurate prediction. Secondly, these models usually treat sequences
as fixed-length inputs and lose valuable information when sequences
are of variable lengths. This is a significant challenge as peptides can
have different lengths, and disregarding this variation can lead to
sub-optimal predictions. Finally, these models lack the capacity to
automatically learn and improve from data in the same way that
deep learning models can. They do not adapt their structure and
parameters based on the complexity of the task at hand, which can
lead to lower prediction accuracy. In contrast, deep learning models,
like our proposed AMP-EBiLSTM, can automatically extract
features, accommodate variable-length sequences, and improve
over time by learning intricate data patterns. As such, they can
often outperform ensemble and traditional machine learningmodels
in complex predictive tasks such as AMP prediction.

Training cost is a key consideration in the application of
machine learning and deep learning. Compared to deep learning
models, baseline machine learning and ensemble learning models
have lower training costs. Ensemble learning and baseline models
exhibit low costs in terms of training time, with the training time
ranging from 0 to 30 s on our equipment. From the perspective of
the number of model parameters, baseline machine learning and
ensemble learning models usually have significantly fewer
parameters than deep learning models. Secondly, in terms of
the training process, baseline machine learning models are
typically more concise and efficient. Specifically, SVM is based
on the solution of convex optimization problems, NBC is
grounded in statistical theory of conditional probability, KNN
is based on distance measurement, while Adaboost, LightGBM,
and XGboost are implemented through the iterative optimization
of a series of weak learners. These processes are typically more

efficient than complex training procedures in deep learning, such
as backpropagation and gradient descent. Accurate prediction
ability and low training cost may provide strong support for the
early promotion of antimicrobial peptides to clinical practice. For
example, the challenges faced by the application of antimicrobial
peptides in clinical diseases such as diabetic foot are high
production cost, poor stability, and toxicity problems. Peptides
are widely used in clinical departments such as vascular surgery
to provide support.

While our study presents promising outcomes, certain
limitations need to be acknowledged, and potential avenues for
future research should be highlighted. Firstly, despite the
comprehensive dataset employed for model training and
validation in this study, future research would benefit from the
expansion of these datasets. To further ascertain the robustness and
generalizability of our approach, it would be beneficial to accumulate
more data pertaining to antimicrobial peptides and validate our
models on datasets of larger scale and diversity. Secondly, although
deep learning models demonstrated superior predictive
performance in our study, their substantial training costs pose a
challenge. Future efforts should be concentrated on refining these
models to lessen training costs whilst sustaining their high predictive
accuracy. This might necessitate intensive research and exploration
into model architecture, training strategies, and optimization
algorithms, among other aspects. Lastly, the current study has
primarily focused on the theoretical screening of antimicrobial
peptides. An exciting direction for future research would involve
integrating our approach with wet lab experiments to provide a
more precise validation of the screening results. Such empirical
validation could not only further substantiate the effectiveness of our
screening strategy but also assist us in comprehending and
enhancing our model’s predictive out-comes, thereby bolstering
the precision and efficiency of antimicrobial peptide screening. In
conclusion, these identified avenues for future research will facilitate
a deeper understanding and application of machine learning and
deep learning in antimicrobial peptide screening. These
advancements will undoubtedly contribute to bolstering the
research and development of antimicrobial peptides.

5 Conclusion

In this study, we explored the application of deep learning
techniques in con-structing models for the identification of
antimicrobial peptides, aiming to strike an effective balance
between wet lab experimental methods and computational
predictions. We proposed a novel deep learning model-
EBiLSTM, and conducted meticulous parameter tuning and
comprehensive performance evaluations. The results
demonstrated that although this model bore a relatively high
training cost, it achieved an ac-curacy of 92.39% on the test set,
with an AUC value nearing 0.98, showcasing its superior predictive
performance. Our study offers fresh perspectives and possibilities for
antimicrobial peptide prediction and screening. It showcases the
advantages of deep learning and ensemble learning in addressing
practical needs and resource conditions with flexibility, providing
new research directions and tools for future studies on antimicrobial
peptides.
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