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Objective: Ferroptosis, a novel form of cell death, is closely associated with
excessive iron accumulated within the substantia nigra in Parkinson’s disease
(PD). Despite extensive research, the underlying molecular mechanisms driving
ferroptosis in PD remain elusive. Here, we employed a bioinformatics andmachine
learning approach to predict the genes associated with ferroptosis in PD and
investigate the interactions between natural products and their active ingredients
with these genes.

Methods:We comprehensively analyzed differentially expressed genes (DEGs) for
ferroptosis associated with PD (PDFerDEGs) by pairing 3 datasets (GSE7621,
GSE20146, and GSE202665) from the NCBI GEO database and the FerrDb
V2 database. A machine learning approach was then used to screen
PDFerDEGs for signature genes. We mined the interacted natural product
components based on screened signature genes. Finally, we mapped a
network combined with ingredients and signature genes, then carried out
molecular docking validation of core ingredients and targets to uncover
potential therapeutic targets and ingredients for PD.

Results: We identified 109 PDFerDEGs that were significantly enriched in
biological processes and KEGG pathways associated with ferroptosis (including
iron ion homeostasis, iron ion transport and ferroptosis, etc.). We obtained
29 overlapping genes and identified 6 hub genes (TLR4, IL6, ADIPOQ, PTGS2,
ATG7, and FADS2) by screening with two machine learning algorithms. Based on
this, we screened 263 natural product components and subsequently mapped the
“Overlapping Genes-Ingredients” network. According to the network, top 5 core
active ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and
tocopherol) weremolecularly docked to hub genes to reveal their potential role in
the treatment of ferroptosis in PD.

Conclusion: Our findings suggested that PDFerDEGs are associated with
ferroptosis and play a role in the progression of PD. Taken together, core
ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and
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tocopherol) bind well to hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7, and FADS2),
highlighting novel biomarkers for PD.
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Parkinson’s disease, ferroptosis, transcriptomics, machine learning, natural product,
ingredient

1 Introduction

Parkinson’s disease (PD) is a prevalent and progressive
neurodegenerative disorder characterized by resting tremors, stiffness,
bradykinesia, and postural instability, its incidence and prevalence rise
with age (Hayes et al., 2019; Bloem et al., 2021). Epidemiological studies
reveal that young-onset PD (onset age <40 years) is on the rise in China
and Europe, posing a serious threat to human health (Jankovic, 2008).
The pathological mechanism of PD is multifactorial, involving the death
of dopaminergic neurons resulting from complex interactions between
abnormal α-synuclein aggregation, mitochondrial and lysosomal
dysfunction, and neuroinflammation (Bloem et al., 2021; Wang et al.,
2022). Normally, dopaminergic neurons in the substantia nigra transmit
dopamine to the striatum via the substantia nigra-striatum pathway,
which is antagonistic to acetylcholine and participates in the regulation
of motor function in the basal ganglia. In PD, the degeneration and loss
of dopaminergic neurons in the substantia nigra lead to a significant
reduction in dopamine levels in the striatum, resulting in relative
hyperfunction of the acetylcholine system and clinical symptoms
such as increased muscle tone and bradykinesia (Belarbi et al., 2020).
Currently, there is no cure for PD, and available treatments only alleviate
symptoms. Thus, it is crucial to identify new targets to improve the
diagnosis and treatment of PD patients.

Ferroptosis is a novel form of iron-dependent and reactive oxygen
species (ROS)-dependent cell death, which is distinct from apoptosis,
necrosis, and autophagy. Although the exact pathogenesis of
Parkinson’s disease (PD) remains elusive, the imbalance of iron
homeostasis and lipid peroxidation have long been implicated as
potential contributing factors in PD pathology (Yan et al., 2021).
Moreover, mounting evidence strongly suggested that ferroptosis
plays a significant role in the PD-related neurodegeneration. For
instance, several mutations in ferroptosis genes are associated with
PD, including the key regulator of ferroptosis DJ-1, autosomal
recessive PD gene PARK7 and PLA2G6 (Cao et al., 2020).
Additionally, the features of ferroptosis induction are highly
consistent with the pathological changes observed in PD patients,
including iron overload (Ayton et al., 2015), reduced GSH levels (Li
et al., 1997), and reduced CoQ10 (Bersuker et al., 2019).

Transcriptomics, which involves studying the complete sequence
information of RNA, is a potent tool for investigating potential gene
regulation mechanisms related to complex traits and exploring the
pathogenesis of PD. (Borrageiro et al., 2018; Sertbas and Ulgen, 2018).
High-throughput sequencing technology, also known as next-
generation sequencing (NGS), is an important tool for detecting
differentially expressed genes from two or more samples, offering
fast monitoring, high accuracy, and wide coverage (Borrageiro et al.,
2018; Sertbas and Ulgen, 2018; Bersuker et al., 2019). In clinical
settings, NGS technology is used to enhance the detection of
pathogenic genes (Schilter et al., 2023; Yigit et al., 2023). For
instance, high-throughput technology can be employed to identify

rare variants and candidate genes linked to familial and sporadic PD
(Kim J. Y. et al., 2023; Qin et al., 2023). NGS has yielded promising
results in the diagnosis of neurodegenerative diseases. However, there
are still several challenges, including technical limitations, high costs,
lack of standardization of methods and data analysis, which require
further investigation.

Natural products have been utilized for centuries for the
treatment and prevention of human diseases, with a particular
emphasis on plants and traditional Chinese medicines in China.
Fumarate, peiminine, and aconitine alkaloids are examples of
compounds extracted from natural products that have been
utilized for the treatment of various ailments (Shen and Hao,
2020). Recent research has demonstrated that natural products
have potential anti-Parkinson’s disease (PD) effects, attributable
to their antioxidant and anti-inflammatory properties, as well as
their ability to inhibit iron accumulation and maintain proteasome
degradation and mitochondrial homeostasis (Solayman et al., 2017;
Zhang et al., 2017). While a variety of small molecules and natural
products with anti-PD activity have been identified, including
flavonoid and polyphenol compounds, phenylpropanoid
(coumarin) compounds, quinone compounds, saponin
compounds, alkaloid compounds, and terpenoid compounds,
none of them are capable of completely curing PD (Solayman
et al., 2017). Therefore, it is imperative to utilize modern
technologies, such as high-throughput sequencing combined with
machine learning, to identify additional natural product
components with anti-PD effects.

This article presents an integrated approach to analyze
transcriptome data from the substantia nigra of the brain using
machine learning techniques to identify potential key genes involved
in the pathogenesis of PD ferroptosis. Furthermore, we aim to
identify natural products that can potentially treat PD. Our study
provides a valuable reference for the exploration of novel therapeutic
targets and natural product-based interventions for PD.

2 Materials and methods

2.1 Microarray data retrieval

The PD dataset was obtained from the public repository NCBI
GEO (http://www.ncbi.nlm.nih.gov/geo) (Barrett et al., 2013) using
“Parkinson’s disease” or “Parkinson” as keywords for the search.
Further screening was performed based on sequencing type
(transcriptomics), species (HOMO Sapiens), and sample size
(≥10). Finally, GSE7621, GSE20146, and GSE202665 were
obtained. GSE7621 (Lesnick et al., 2007) [(HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array] was generated
on the GPL570 platform. This dataset analyzed the brain substantia
nigra tissue of 9 normal samples and 16 PD samples after death.
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GSE20146 (Zheng et al., 2010) [(HG-U133_Plus_2) Affymetrix
Human Genome U133 Plus 2.0 Array] was also generated on the
GPL570 platform. This dataset consisted of 20 substantia nigra
samples, including 10 PD samples and 10 control samples.
GSE202665 (Diener et al., 2023) [Agilent-072363 SurePrint
G3 Human GE v3 8 × 60 K Microarray 039494 (Feature Number
Version)] was generated on the GPL20844 platform and consisted of
5 serum samples from PD stages 1–4, and 5 control samples.

2.2 Acquisition of microarray data and
identification of differentially expressed
genes (DEGs)

Microarray data for each GEO dataset can be obtained using R
package “GEOquery”. Differential gene expression analysis to identify

DEGs can be performed with R package “limma” (Ritchie et al., 2015).
The identified DEGs must meet the criteria of adj. p < 0.05 and
|log2(Fold-change)| > 1. The resulting DEGs were visualized using R
packages “ggplot2” (Gustavsson et al., 2022) and “pheatmap” (Diao
et al., 2018). Subsequently, we used the R package “sva” to remove batch
effects, resulting in 49 control samples and 55 PD samples.

2.3 Identification of DEGs related to
ferroptosis in Parkinson’s disease
(PDFerDEGs)

FerrDb V2 (http://www.zhounan.org/ferrdb/current/) (Zhou
et al., 2023) is a dedicated database for ferroptosis regulators and
ferroptosis-disease associations. The database includes two
categories of ferroptosis regulators: gene regulators (drivers,

FIGURE 1
Flow chart of machine learning strategy to screen PD ferroptosis signature genes and mining potential therapeutic drugs.
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suppressors, markers, and unclassified regulators) and substance
regulators. We downloaded the driver, suppressor, and marker
regulator genes from the database and identified the DEGs and
their expression levels related to ferroptosis gene regulators in the
three datasets using the R package “limma” (Ritchie et al., 2015),
based on sample expression levels after batch effect removal. The
differentially expressed genes in PD-Ferroptosis-DEGs were filtered
based on a significance level of p < 0.05.

2.4 Fitting generalized linear model and
support vector machine recursive feature
elimination for screening feature genes of
ferroptosis

A generalized linear model was fitted using lasso regression to
screen and predict feature genes of ferroptosis. The R package
“glmnet” (Friedman et al., 2010), developed by the lasso regressor
Trevor Hastie of Stanford University, was used. This package is
characterized by fitting a range of different λ values to each previous
fit, resulting in significant improvements in operational efficiency.
The model loss function was set to a log-likelihood of -2-fold, and
10-fold cross-validation was performed by specifying “nfolds”.

The support vector machine (SVM) is a supervised learning
algorithm used for dichotomous variables. The SVM recursive
feature elimination (SVM-RFE) algorithm trains samples through
a model, ranks the scores for each feature, removes the feature with
the smallest score, trains the model again with the remaining
features, performs the next iteration, and finally selects the
optimal number of features. In this study, we used the R package
“e1071” (version 1.6–8; https://cran.r-project.org/web/packages/
e1071) to generate two training and testing datasets to screen the
DEGs for key genes associated with ferroptosis.

To assess the performance of the selected genes, we plotted a
receiver operating characteristic (ROC) curve, which shows the
trade-off between specificity and sensitivity, and calculated the
area under the curve (AUC) using the R package “pROC” (Robin
et al., 2011). We used the intersection genes identified by both the
lasso regression and SVM-RFE methods and considered genes with
an AUC greater than 0.7 as accurate diagnostic markers for
ferroptosis.

2.5 PDFerDEGs logFC functional enrichment
analysis

The Gene Ontology (GO) is a widely-used tool for defining
and describing gene product functions, including biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a comprehensive database that integrates
genomic, chemical, and functional information. To perform GO
and KEGG enrichment analysis of the intersection genes, we
utilized version 3.18.1 of the R package “clusterProfiler” (Yu
et al., 2012), with a p-value threshold of less than 0.05.
Furthermore, we calculated the Z-score for each item using
the R package “Goplot” (Walter et al., 2015).

2.6 Analysis of protein–protein interactions
(PPI) and identification of hub genes

We also downloaded the string database (https://string-db.org/),
which was used to filter protein-protein interactions (PPIs) between
the intersection genes of the machine learning model, with the
minimum required interaction score set to 0.4 and hidden
connected nodes in the network. After analysis of internode
relationships in the string network diagram using Perl imported
into Cytoscape v3.7.1, the intersecting genes were calculated with the
built-in cytoHubba plugin. After the computational results were
exported, the R package “UpSetR” (Conway et al., 2017) was used to
score hub genes and finally obtain the core intersection genes.
Visualization of core intersecting genes was performed using the
R package “pheatmap” (Diao et al., 2018).

2.7 Identification of intersecting genes
related to active ingredients and the
construction of an “Overlapping Genes-
Ingredients” network

The HERB (http://herb.ac.cn/) (Fang et al., 2021) database is a
natural medicine database platform that integrates high-throughput
experimental data and reference mining data. The database provides
functions such as browsing, searching, viewing and downloading of
TCM, TCM active ingredients, target genes, diseases, high-
throughput experimental and reference mining data. The
obtained intersection gene targets were uploaded to this database
to deduce the active ingredients by reverse, then the “Overlapping
Genes-Ingredients” network was constructed. Using the
computational tools integrated into Cytoscape, we calculated the
topology values of individual nodes in the network, including
degree, closeness, and betweenness.

2.8 Molecular docking

Molecular docking is a widely used computational technique in
drug discovery and drug design that enables the study of the
interaction and recognition of receptors and ligands. It is a
theoretical simulation method for studying intermolecular
interactions, predicting their binding modes and affinities (Chen
et al., 2020). In this study, we employed molecular docking to
investigate whether the top five ingredients, ranked by degree in
the “Overlapping Genes-Ingredients” network, are capable of
binding to the hub genes. The specific operation flow was as follows.

1) Protein receptor file preparation: The 3D structures of the target
proteins were retrieved from the Protein Data Bank (PDB) based
on the hub genes identified using the cytoHubba plugin (http://
www.rcsb.org/) (Berman et al., 2000). The PDB format files of
these proteins were downloaded and prepared using AutoDock
Vina 1.2.0 (Eberhardt et al., 2021). This involved removing any
water molecules present in the protein structures and replacing
them with hydrogens. The altered protein structures were then
saved in the PDBQT format.
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2) The preparation of drug receptor documents involved retrieving
drug molecular structures from TCMSP and PubChem (https://
pubchem.ncbi.nlm.nih.gov/) databases (Ru et al., 2014; Kim S.
et al., 2023). The resulting structures were processed using
AutoDock Vina, which involved the addition of hydrogen
atoms and detection of torsion tree root, followed by selection
of the detected torsions. The final output consisted of ligand files
in PDBQT format.

3) Defining docking parameters: We imported the protein receptors
and small molecule receptors separately into AutoDock Vina to

determine the scope of molecular docking. We set the protein
acceptor as the grid’s center and adjusted the center coordinates
(center X/Y/Z) and box size (size X/Y/Z) parameters to
ensure that the protein was fully enclosed by the grid’s box.
After this step, we exported the docking result file in Vina Config
format.

4) Molecular docking and visualization were carried out using the
AutoDock Vina functional module. The resulting pdqbt docking
result files were imported into PyMOL (https://pymol.org/2/),
which was used to visualize the docking results with the best

FIGURE 2
The result of eliminating batch effects. (A) before batch correction; (B) after batch correction.

TABLE 1 The datasets used in this study.

GEO datasets Platform Method Tissue PD samples NC samples

GSE7621 GPL570 microarray substantia nigra 16 9

GSE20146 GPL570 microarray substantia nigra 10 10

GSE202665 GPL20844 microarray substantia nigra 29 30
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binding energies and export them as PDB files. Detailed docking
information was visualized using igplot + v.2.1 (Ye et al., 2021).

3 Results

3.1 Identification of PD DEGs and
PDFerDEGs

The overall analysis strategy is shown in the flow chart in
Figure 1. After eliminating the batch effect (Figure 2), three PD-
related GEO datasets, GSE7621, GSE20146, and GSE202665,
were obtained for analysis. There were 317 DEGs in the
GSE7621 dataset, including 144 upregulated and
173 downregulated genes. There were 433 DEGs in the
GSE20146 dataset, of which 197 were upregulated genes, and
236 were downregulated genes. There were 189 DEGs in the
GSE202665 dataset, of which 115 were upregulated genes, and
74 were downregulated genes. The DEGs were visualized by
volcano plots and heatmaps (Figures 3A–F). After eliminating
batch effects across datasets, the three datasets were merged to
obtain a total of 55 PD samples and 49 normal control samples
(Table 1).

To investigate the potential link between ferroptosis and PD, we
initially retrieved iron-related genes from the ferrdb V2 (http://
www.zhounan.org/ferrdb/current/) database, which compiles
drivers, suppressors, and markers associated with ferroptosis,

resulting in a total of 728 ferroptosis-related genes. Subsequently,
we identified 398 ferroptosis-associated genes that were expressed in
the three datasets. Finally, as depicted in Figure 4, we obtained
109 differentially expressed ferroptosis genes in PD. Of these,
61 were upregulated genes, and 48 were downregulated genes
(Supplementary Table S1).

3.2 Enrichment analysis of PDFerDEGs

Integrated with the logFC values of the 109 DEGs, enrichment
analysis of the differentially expressed genes was performed. GO
enrichment analysis yielded a total of 891 biological process (BP),
26 cellular component (CC) and 39 molecular function (MF) in the BP
for a total of 891 biological process (BP), 26 molecular function (CC)
and 39 molecular function (MF) for a total of 21 genes (IREB2,
HMOX1, NCOA4, ACO1, SLC39A14, SLC11A2, FTL, CP, TF,
ATG5, LGMN, PTGS2, NFE2L2, NQO1, HSPA5, CDH1, NEDD4L,
G6PD, PRKAA2, SMPD1, and IREB2) involved in 11 ferroptosis
processes or transport of metal ions or transport of metal ions,
respectively (Table 2;Figure 5; Supplementary Table S2).In addition,
33 pathways were obtained from KEGG enrichment. Among them,
11 genes (HMOX1, ATG5, NCOA4, SLC39A14, SLC11A2, SLC7A11,
ACSL3, FTL, CP, TF, and ATG7) are involved in the ferroptosis
(hsa04216) pathway (Supplementary Table S3). Ferroptosis is able to
participate in cell growth and death, as well as in the regulation of
neurodegenerative diseases (Conrad et al., 2016).

FIGURE 3
PD transcriptome dataset differential analysis. (A–C) volcano plot DEGs in GSE7621, GSE20146, and GSE202665; (D–F) Clustered heatmap of DEGs
in GSE7621, GSE20146, and GSE202665.
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3.3 Machine learning models to predict
ferroptosis feature genes

LASSO regression was used to analyze the resulting 109 binary
discrete variables, resulting in 31 feature genes (Supplementary Table
S4). Support vector machine recursive feature elimination was
performed after scoring the 109 differential genes, and machine
learning automatically selected the 105 feature genes with the
smallest error (Supplementary Table S5). As shown in Figure 6, we
screened the overlapping targets of the two prediction results by
constructing a Venn diagram, resulting in a total of 29 intersecting
genes. After using receiver operating characteristic (ROC) evaluation,
we found that among the above intersecting genes, DUOX2, ATG7,
TLR4, DNAJB6, IL6, SLC11A2, CIRBP, FADS2, PTGS2, AIFM2,
PROM2, CHMP6, FZD7, SOX2, and ENO3 had an area under the
curve >0.7, suggesting that the above 7 target genes have high predictive
value in PD induced by the progression of ferroptosis.

3.4 Acquisition results of hub genes for
overlapping genes and PPI network
construction

In the STRING database, we first set the species as “Homo
sapiens” and subsequently imported 29 intersecting genes to obtain
the PPI network (Figure 7A), which involved 27 nodes and 24 edges.
The obtained TSV files were imported into Cytoscape software
(v3.7.1) for further analysis and visualization (Figure 7B). To
obtain the hub genes in the intersection genes, based on the PPI
network described above, we used the cytoHubba plug-in of
Cytoscape, which currently contains 12 topological analysis
methods. We ranked them according to MCC, DMNC, MNC,
Degree, BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness and Stress scoring (Table 3). As shown in
Figure 7C, six hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7,
and FADS2) were finally obtained.

FIGURE 4
Clustered heatmap of differentially expressed ferroptosis genes in PD.
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3.5 Identification of overlapping genes-
related compounds and construction of the
“Overlapping Genes-Ingredients” network

After uploading 29 overlapping genes to HERB (http://herb.ac.
cn/), we obtained the ingredients associated with Overlapping Gene.
After identification, 24 genes had corresponding ingredients
(Supplementary Table S6). Finally, a total of 363 ingredients
related to 24 genes that were characterized after machine
learning model screening were obtained (Supplementary Table
S7). Although PTGS2 also had related ingredients, the number
was more than three thousand, and we thought that too many
ingredients were not beneficial to this study, so we did not include
the ingredients related to this gene.

We imported the correspondence between ingredients and
overlapping genes into Cytoscape v3.7.1 to build the “Overlapping
Genes-Ingredients” network (Figure 8A). The topological values of the
nodes in the networkwere then calculated using its built-in calculation

tool (Supplementary Table S8). We filtered ingredient nodes
(Figure 8A) based on the median value and took with a median
value greater than 1 (Figure 8B). Besides, the top five core ingredients
were obtained according to calculation result. They were quercetin
(Ingredient ID:HBIN041721), 17-beta-estradiol (Ingredient ID:
HBIN001991), glycerin (Ingredient ID:HBIN028102), trans-
resveratrol (Ingredient ID:HBIN046831) and tocopherol
(Ingredient ID:HBIN046506) (Table 4).

3.6 Molecular docking

We subjected the top five core ingredients of the “Overlapping
Genes-Ingredients” network screening to molecular docking with
the 6 hub genes TLR4 (PDB ID:2Z62), IL6 (PDB ID:1ALU),
ADIPOQ (PDB ID:4DOU), PTGS2 (PDB ID:5F19), ATG7 (PDB
ID:3RUI), and FADS2 (PDB ID:AF_AFO95864F1) calculated by
cytoHubba. The docking results of compounds with proteins are

TABLE 2 PDFerDEGs logFC enrichment analysis.

Items ID Description P-value p.adjust Z-score

BP GO:0006879 cellular iron ion homeostasis 1.06E-10 1.202E-07 2.333333333

BP GO:0010038 response to metal ion 1.05464E-09 5.36885E-07 1.807392228

BP GO:0055072 iron ion homeostasis 1.08025E-09 5.36885E-07 2.333333333

BP GO:0046916 cellular transition metal ion homeostasis 1.60677E-08 5.15024E-06 2.333333333

BP GO:0010039 response to iron ion 1.72711E-08 5.15024E-06 0.816496581

BP GO:0055076 transition metal ion homeostasis 8.38227E-08 1.92276E-05 2.333333333

BP GO:0071248 cellular response to metal ion 1.15731E-07 2.46508E-05 1.264911064

BP GO:0006826 iron ion transport 9.31365E-07 0.000118257 1.632993162

BP GO:0000041 transition metal ion transport 2.16779E-05 0.001154347 1.632993162

BP GO:0033212 iron import into cell 0.001966123 0.021014265 1.414213562

BP GO:0034755 iron ion transmembrane transport 0.00663564 0.039894113 1.414213562

CC GO:0005741 mitochondrial outer membrane 0.000872969 0.02717116 2.449489743

CC GO:0043020 NADPH oxidase complex 0.00252859 0.062961882 1.414213562

CC GO:1990204 oxidoreductase complex 0.004111446 0.065790644 0

CC GO:0005777 peroxisome 0.007245422 0.090205503 −1

MF GO:0008199 ferric iron binding 3.19692E-07 5.21097E-05 −1

MF GO:0016651 oxidoreductase activity, acting on NAD(P)H 6.97082E-07 7.57495E-05 1.133893419

MF GO:0005506 iron ion binding 0.000227497 0.006742194 −0.816496581

MF GO:0051536 iron-sulfur cluster binding 0.000581096 0.011143367 1

MF GO:0005381 iron ion transmembrane transporter activity 0.001407298 0.020117929 1.414213562

MF GO:0008198 ferrous iron binding 0.009577712 0.082166686 0

KEGG hsa04216 Ferroptosis 9.80556E-14 1.95131E-11 2.110579412

KEGG hsa03320 PPAR signaling pathway 0.000804276 0.030074846 1.341640786

KEGG hsa04217 Necroptosis 0.000898564 0.030074846 1.133893419

KEGG hsa04146 Peroxisome 0.008388734 0.064206081 −1
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shown in Figures 9A–E. Figures 9F–J shows the amino acid residue
information versus hydrogen bonding distance for the docking of
each compound to proteins.

As a result (Table 5), the top five ingredients could all interact
with the six hub genes. Quercitin has the smallest binding energy to
FADS2. Figure 9F shows that quercetin formed 1 hydrogen bond

FIGURE 5
PDFerDEGs logFC functional enrichment. (A–C) functional enrichment of GO; (D) result of KEGG; (E) Sankey diagram combinedwith GO and KEGG;
(F) overall result of GO related to ferroptosis.

Frontiers in Genetics frontiersin.org09

Wang et al. 10.3389/fgene.2023.1231707

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1231707


with Asn124, Pro77 and Thr390, and 2 hydrogen bonds with
Leu185 in FADS2. 17 beta estradio has the smallest binding
energy to Atg7. Figure 9G shows that 17 beta estradio formed
1 hydrogen bond with Leu503 in ATG7. Glycerin has the
smallest binding energy to PTGS2. Figure 9H shows that glycerin
formed 2 hydrogen bonds with Gln241, Gly235 and Arg333 in
PTGS2. Trans resveratrol has the smallest binding energy to PTGS2.
Figure 9I shows that trans resveratrol formed 1 hydrogen bond with
Tyr373 and Gln374 in PTGS2. Tocopherol had the smallest binding
energy to ADIPOQ but could not exhibit its hydrogen bond, so we
selected the docking results of PTGS2 for visualization. Figure 9J
shows that tocopherol formed 1 hydrogen bond with Glu524 in
PTGS2.

The binding energy results of the docking between each
compound and hub genes are shown as a heatmap (Figure 10),
and it can be seen that the binding energy ranged from −3.7 kca/mol

to −11.5 kca/mol, indicating that these compounds may be potential
therapeutic ingredients for hub genes.

4 Discussion

High-throughput can help us better understand the
complexity and diversity of biological systems, gives us a
clearer understanding of gene expression profiles in living
organisms. Machine learning, a branch of artificial
intelligence, is a process of learning from experience. It can
train a model with a large amount of data, which enables the
prediction and classification of unknown data. Currently,
although there are individual bioinformatics reports and
studies on ferroptosis in PD, the development of compound
prediction based on machine learning has not been reported

FIGURE 6
Prediction of PD ferroptosis signature genes. (A) lasso regression analysis; (B) number of features predicted by SVM-RFE; (C) Venn diagramof LASSO
and SVM-RFE; (D) ROC evaluation of intersecting genes.
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FIGURE 7
Network of PD ferroptosis signature genes. (A) protein-protein interaction network; (B) topology characteristic of each node (arranging fromhighest
to lowest according to node degree value); (C) hub genes calculated by plugin cytoHubba.

TABLE 3 Hub genes of the Overlapping Gene PPI network.

Gene MCC DMNC MNC Degree Bottle neck Ec centricity Closeness Radiality Betweenness Stress

TLR4 10 0.37893 4 6 10 0.20833 9.41667 4.70238 60 70

IL6 10 0.37893 4 6 15 0.27778 9.66667 4.82143 96 106

ADIPOQ 7 0.46346 3 4 3 0.20833 8.41667 4.58333 48 56

PTGS2 7 0.46346 3 4 2 0.20833 8.25 4.52381 26 30

ATG7 3 0.30779 2 3 2 0.20833 7.5 4.34524 26 36

FADS2 2 0 1 2 2 0.16667 6.2 3.92857 26 30
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(Moni et al., 2019; Falchetti et al., 2020; Jian et al., 2022). This
study is the first to integrate bioinformatics analysis methods,
machine learning model prediction classification, and data

mining-based inverse derivation of active ingredients, screen
core compounds of feature gene action derived from machine
learning predictions, and validate using molecular docking.

FIGURE 8
“Overlapping Genes-Ingredients” network. Red circles represent overlapping genes between LASSO and SVM-RFE; orange diamond represents
active ingredient. (A) no median value node removed; (B) after removing the median value node.

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2023.1231707

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1231707


In this study, we first integrated the transcriptome datasets of
three human brain substantia nigra tissues from the GEO database,
combined with the targets included in the public ferroptosis
database, bioinformatically analyzed the expression of ferroptosis-
related genes in the three datasets, and finally obtained 103 genes
that were differentially regulated in ferroptosis. Ferroptosis DEGs
functional enrichment found that 11 BP items were directly related
to ferroptosis or metal ion transport processes such as cellular iron
ion homeostasis, iron ion transport, and transport metal ion
transport. In addition, KEGG enrichment was supported by the
ferroptosis (hsa04216) pathway. This illustrates that ferroptosis may
contribute to the onset and progression of PD. Subsequently, to
further predict the ferroptosis feature genes for PD, we predicted and
classified 109 ferroptosis differential genes using two machine
learning models, Lasso regression and SVM-RFE. The
intersection of the genes obtained from the two prediction
models was used to obtain 29 ferroptosis feature genes after
machine learning. A total of 363 related compounds were derived
from feature genes. According to the correspondence between
compounds and targets, we constructed the “Overlapping Genes-
Ingredients” network, and after calculating the values of node
topology, the top five core ingredients were obtained, namely,
quercetin, 17 beta estradiol, glycerin, trans resveratrol, and
tocopherol. In addition, PPI network node topology analysis
revealed 6 hub genes among the 29 characterized genes,
i.e., TLR4, IL6, ADIPOQ, PTGS2, Atg7, and FADS2.

A total of 109 ferroptosis DEGs were used for functional
enrichment analysis, including BP, CC, MP, and KEGG. Cellular
iron ion homeostasis, iron ion transport, and cellular response to
oxidative stress were significantly enriched in biological processes.
Cellular iron homeostasis is tightly regulated to maximize iron
supply in times of cellular iron deficiency and to limit iron
supply and facilitate storage when cellular iron is adequate.
Cellular iron ion homeostasis (Anderson and Frazer, 2017) refers
to the process of maintaining the internal steady state of iron ions at
the cellular level. Iron ions, as one of the metals whose homeostasis is
essential for the physiological function of the brain, perturbed
homeostasis, may be responsible for causing specific local cell
death. It has been found that substantia nigra pars compacta iron
levels are significantly elevated in PD disease progression. Elevated
iron concentrations predispose the brain to oxidative stress. Iron ion
transport (Anderson and Frazer, 2017) refers to the directed
movement of iron ions into and out of the cell either within or
between cells via transporters or other transport vehicles. Metal ion
transporters are involved in maintaining the required levels of
various metal ions in the cell (Bowers and Srai, 2018). Thus,

increased iron levels in the substantia nigra pars compacta are
associated with the transport of ferric ions. Cellular response to
oxidative stress refers to any process that changes cell state or
activity due to oxidative stress, usually caused by exposure to
high levels of reactive oxygen species, such as superoxide anions,
hydrogen peroxide (H2O2), and hydroxyl radicals. Iron in nigral
neurons is primarily bound to the biopolymer neuromelanin (NM)
(Zecca et al., 2001), and this binding may provide a degree of
antioxidant defense (Belaidi and Bush, 2016). However, an
imbalance in iron homeostasis, such that free iron exerts toxic
effects, catalyzes the Fenton reaction and produces damaging
reactive free radicals, causing oxidative stress and, ultimately,
dopaminergic neurons (Ganz, 2003). The above three biological
processes suggested that the enriched genes were associated with the
imbalance of intracellular iron homeostasis in dopaminergic
neurons and caused oxidative stress, which ultimately led to
neuronal cell damage.

Pathways related to ferroptosis were significantly enriched in
KEGG pathway analysis, including ferroptosis, PPAR signaling
pathway, peroxisome, necroptosis and Toll-like receptor
signaling pathway. Ferroptosis is considered a novel form of
regulated cell death resulting from severe lipid peroxidation and
depends on reactive oxygen species (ROS) production and iron
overload (Dixon et al., 2012; Do Van et al., 2016). As nuclear
receptors, PPAR signaling pathways (PPARs) are expressed in
neurons and astrocytes of the central nervous system, and studies
have confirmed that PPARs can play a neuroprotective role
against oxidative damage, apoptosis, and neuroinflammation
during the progression of PD (Heneka and Landreth, 2007;
Iranpour et al., 2016). The peroxisome is an important
organelle in this signaling pathway, and its biogenesis starts
from the early peroxidase pex3, which can participate in key
processes such as free radical detoxification (Wanders and
Waterham, 2006). Increased levels of free iron lead to the
formation of reactive hydroxyl radicals, resulting in an
oxidative stress response that accelerates dopaminergic
neuronal death, and pex3 can antagonize neuronal injury by
free radical detoxification (Ganz, 2003). Necroptosis, a form of
programmed necrosis, is crucial in nervous system inflammation
and can be caused by Toll-like receptors (Zhang et al., 2019).
Inflammatory responses mediated by Toll-like receptor signaling
pathways can result from engagement of the TLR4 (included
among the significantly enriched pathways) with associated
ligands, allowing inflammatory factors to be released and
causing inflammation (Kagan et al., 2008; Netea et al., 2009).
In addition, proinflammatory cytokines released by microglia

TABLE 4 Top 5 Information of core active ingredients.

Ingredient ID Ingredient name Degree Betweenness centrality Closeness centrality

HBIN041721 quercetin 12 0.04846784 0.47201946

HBIN001991 17-beta-estradiol 11 0.04676318 0.41810345

HBIN028102 glycerin 10 0.03825909 0.44090909

HBIN046831 trans-resveratrol 10 0.03825909 0.44090909

HBIN046506 tocopherol 7 0.01554602 0.38719212
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exacerbate neuronal iron deposition, increase neurologic iron
overload, and ultimately exacerbate ferroptosis in dopaminergic
neurons (Healy et al., 2016; Dachert et al., 2020). These findings

demonstrate that 109 DEGs can be involved in ferroptosis-related
processes, demonstrating the potential of these target genes as
research targets.

FIGURE 9
Visualization of molecular docking. (A,F) quercetin and FADS2, binding energy = −7.9 kca/mol; (B,G) 17-beta-estradiol and ATG7, binding
energy = −8.8 kca/mol; (C,H) glycerin and PTGS2, binding energy = −4.2 kca/mol; (D,I) trans-resveratrol and PTGS2, binding energy = −7.2 kca/mol; (E,J)
tocopherol and PTGS2, binding energy = −6.9 kca/mol.
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The hub genes obtained from machine learning postscreening
provide references for further exploring the core target genes of PD
ferroptosis pathogenesis progression. TLR4 is one of the key targets
of inflammasomes triggered by the Toll-like receptor signaling
pathway in the KEGG pathway, which not only participates in
neuroinflammation but also induces necroptosis (Netea et al., 2009).
Misfolded α-synuclein activates microglia to release IL6 and
promote intracellular iron accumulation in neurons (Sterling
et al., 2022). Furthermore, it was found that when organotypic
hippocampal cultures were exposed to ferrous ammonium sulfate,
ferric ammonium citrate (FAC), or ferrocene, microglial activation
became evident, as evidenced by increased ferritin expression in
microglia, as well as IL6 proinflammatory factor release (Wang et al.,
2013; Healy et al., 2016). IL6 is involved in the inflammatory
response and the progression of iron accumulation in neuronal
cells. ADIPOQ is an adipokine that acts as a metabolic controller

involved in the metabolism of fatty acids (Yamauchi et al., 2002) and
has antioxidant and anti-inflammatory effects (Liu et al., 2015). The
activity of ADIPOQ involved in metabolism is induced by its three
receptors, namely, T-cadherin, ADIPOQR1 and ADIPOQR2, but
also by PPAR γ- α of the signaling cascade (Thundyil et al., 2012).
ADIPOQR1 and ADIPOQR2 have been reported to be expressed in
primary human astrocytes (Hillenbrand et al., 2012), which can
mediate proinflammatory signaling in astrocytes by elevating IL6
(Wan et al., 2014). Investigation of this coding gene in PD has not
been reported, which deserves our attention. Prostaglandin-
endoperoxide synthase (PTGS) is also known as cyclooxygenase
(Hla and Neilson, 1992). PTGS2 (COX2), a neuroinflammatory
marker (NMS), plays a role in the occurrence of neurodegenerative
diseases (Hoozemans et al., 2008). COX2 is induced in cells
undergoing ferroptosis (Li et al., 2017). Therefore, COX2 can be
considered one of the crucial markers of ferroptosis (Zuo et al.,

TABLE 5 Molecular docking binding energy.

Ligand Binding energy (kcal/mol)

1alu 2z62 3rui 4dou 5f19 AF_O95864_F1

17-beta-estradiol −6.5 −7.2 −8.8 −8.6 −8.3 −7.9

glycerin −3.8 −3.8 −4.1 −3.7 −4.2 −3.9

quercitin −6.4 −6.6 −7.7 −7.3 −7.7 −7.9

trans-resveratrol −5.8 −6 −6.9 −6.2 −7.2 −6.7

tocopherol −5.6 −5.1 −5.4 −7.2 −6.9 −6.1

FIGURE 10
Heatmap of molecular docking binding energy between core ingredients and hub genes.
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2021). The ATG7 gene encodes an E1-like activating enzyme
implicated in the regulation of organismal mitophagy
(Barrientos-Riosalido et al., 2023). Studies have shown that
silencing ATG7 expression can slow the proinflammatory
response of microglia, thereby slowing the progression of
inflammation-mediated neurotoxicity during PD (Burguillos
et al., 2011; Friess et al., 2021). FADS2 is a fatty acid desaturase
(FADS) gene family member. Its long-chain polyunsaturated fatty
acids (PUFAs), which are involved in biosynthesis, are most highly
expressed in the brain and play an essential role in inflammatory
processes (Park et al., 2011; Fagerberg et al., 2014). Notably, the
involvement of FADS2 in the progression of PD pathogenesis has
not been reported, and this gene provides a potential target for
investigation in our future studies.

Molecular docking results showed that quercetin (QCT) and
17 beta estradiol (E2) had high binding energies to all the hub genes
(Table 5). QCT is a flavonoid with anti-inflammatory, antioxidant and
anti-ferritin functions (Boots et al., 2008; Tang et al., 2020). In addition,
it ameliorates mitochondrial dysfunction, one of the hallmarks of
ferroptosis (Dixon et al., 2012; de Oliveira et al., 2016). The
mechanism of QCT is to protect neurons by inhibiting microglial
activation (Han et al., 2021). E2 has protective effects against many
neurodegenerative diseases and mediates its effects through dopamine
receptors (Brann et al., 2007; Varmazyar et al., 2019). A study has shown
that E2 can activate autophagy by regulating the expression of UKL1,
thereby preventing the α-abnormal accumulation of synuclein and
exerting a neuronal protective effect (Varmazyar et al., 2019). This
suggests thatQCT andE2may serve as potent ingredients to explore the
regulatory impact on the pathogenesis of ferroptosis in PD.

Despite the identification of ferroptosis feature genes and hub
genes related to PD by machine learning model screening, this study
has some limitations that need to be addressed. The lack of in vivo and
in vitro experiments to validate the regulatory relationship between
the feature genes derived from the screen and natural products against
ferroptosis in PD is a noteworthy limitation. Additionally, the
potential therapeutic agents identified in this study require further
comprehensive and detailed experimental analysis. Nevertheless, our
study provides valuable insights into the exploration of PD ferroptosis
feature genes and therapeutic agents by combining transcriptome data
with the ferroptosis database. The machine learning model prediction
was used to identify the feature genes, which were then combined with
natural products of traditional Chinese medicine to explore potential
therapeutic agents. These findings might pave the way for future
research in this area.

5 Conclusion

As neurodegenerative disease, PD has a slowly progressive
course and positive correlation between incidence and age. It has
attracted increasing attention with the arrival of the global aging
society. Ferroptosis, a regulated iron-dependent cell death pathway
involving the fatal accumulation of lipid peroxides, shares several
features with the pathophysiology of PD. Machine learning is
becoming more widely applied to predicting and deciding new
data. In the present study, we analyzed 3 integrated
transcriptome datasets and found 109 DEGs related to ferroptosis
in PD, and the related pathways were identified by GO and KEGG

analyses. Subsequently, 29 feature genes were predicted after
screening by machine learning. PPI network topology value
analysis of feature genes found that TLR4, IL6, ADIPOQ,
PTGS2, Atg7, and FADS2 may be hub genes in the progression
of PD ferroptosis. Notably, we performed data mining based on
reverse derivation for natural products related to the 29 feature
genes and clarified the top 5 core active ingredients according to the
“Overlapping Genes-Ingredients” network, followed by molecular
docking for validation, suggesting that quercetin, 17-beta-estradiol,
glycerin, trans-resveratrol, and tocopherol might serve as potential
therapeutic agents against the ferroptosis process of PD.
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