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Stomach Adenocarcinoma (STAD) is a leading cause of death worldwide. Somatic
Copy Number Alterations (SCNAs), which result in Homologous recombination
(HR) deficiency in double-strand break repair, are associated with the progression
of STAD. However, the landscape of frequent breakpoints of SCNAs (hotspots) and
their functional impacts remain poorly understood. In this study, we aimed to
explore the frequency and impact of these hotspots in 332 STAD patients and
1,043 cancer cells using data from the Cancer Genome Atlas (TCGA) and Cancer
Cell Line Encyclopedia (CCLE). We studied the rates of DSB (Double-Strand
Breaks) loci in STAD patients by employing the Non-Homogeneous Poisson
Distribution (λ), based on which we identified 145 DSB-hotspots with genes
affected. We further verified DNA cytosine deamination as a critical process
underlying the burden of DSB in STAD. Finally, we illustrated the clinical impact
of the significant biological processes. Our findings highlighted the relationship
between DNA cytosine deamination and SCNA in cancer was associated with
recurrent Somatic Copy Number Alterations in STAD.
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Introduction

STAD is ranked as the fifth most commonly diagnosed cancer in 2020 and is the third
leading cause of cancer-related deaths worldwide (Zhou et al., 2020). China has the highest
incidence rate of STAD, accounting for 49.9% of global cases, with approximately
498,000 deaths in 2019 (Zhu et al., 2019). In general, external mutagens, such as
smoking, and alterations of certain biological functions, such as deficiencies in DSB
repair mechanism and APOBEC enzymatic activities, would result in specific mutational
signatures (Guo et al., 2021). Recent studies also highlighted the involvement of
Microsatellite Instability, Tumor Mutation Burden, and SCNAs in the progression of
Gastric Cancer (Chen et al., 2022). Filaggrin (FLG) mutation led to increased gastric
cancer sensitivity to 24 chemotherapeutic drugs, suggesting a potential protective factor
(Yicheng et al., 2022). GLP2R knockdown was shown to significantly inhibit the proliferation
and migration of gastric cancer cells in virto (Fu et al., 2022). Despite extensive research in
STAD, the underlying pathogenesis and etiology of the disease remained elusive. Mutagenic
processes only partially accounted for observed mutational signatures in cancer patients
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(Watkins et al., 2020). Therefore, further investigation into frequent
SCNAs in STADs was crucial.

SCNAs resulted in multiple copy gains or losses of specific DNA
fragments on homologous chromosomes (Hovhannisyan et al., 2019).
They arose from inter-related processes of replication stress, spindle
multipolarity, mitotic errors, and breakage–fusion–bridge cycles

(Steele et al., 2022). Genome doubling and ongoing dynamic
chromosomal instability resulted in the evolution of driver SCNAs
(Jamal-Hanjani et al., 2017). HR, an evolutionary-conserved
mechanism, playing a role in a subtle balance between genome
stability and diversity, was a DNA repair pathway (Carr and
Lambert, 2013). HR deficiency underlying the DSB-repair

FIGURE 1
Flowcharts of the procedure. (A) The schematic view of this study. In this study, we classified SCNAs in terms of width. Excluding chromosome X and
Y, we divided genome into parts and simulated the Poisson Distribution to calculate λ in each window to find out hotspots. Then relevant genes were
found, GO analysis was done after modification of gene list and top 10 terms were listed. At last relationship between some relevant genes and SCNA
burden was illustrated by T-test and survival analysis was made. (B) Flowchart of calculating λ in different positions of genome. We set a window on
genome and calculate the λ in this window. The calculation lasts until the end of the genome.
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FIGURE 2
Histogram of log2(λ), Manhattan plot of λ in Set1 and Top 10 terms of GO analysis in two sets of experiments. (A) Histogram of log2(λ) in Set1 for
TCGA data set. (B) Histogram of log2(λ) in Set2 for TCGA data set. (C) Histogram of log2(λ) in Set1 for CCLE data set. (D) Histogram of log2(λ) in Set2 for
CCLE data set. (E) Manhattan plot of λ in Set1 for TCGA data set. The red points which are larger than other colorful points below are λ values that are
considered as hotspots in each chromosome. The corresponding hotspots containing APOBEC genes have a relative low value of λ than other λ of
hotspots. The red arrows represent the values of λ of hotspots which contain genes relative to DNA cytosine deamination found in GO analysis. (F)
Manhattan plot of λ in Set1 for TCGA data set. The red points which are larger than other colorful points below are λ values that are considered as hotspots
in each chromosome. The corresponding hotspots containing APOBEC genes have a relative low value of λ than other λ of hotspots. The red arrows
represent the values of λ of hotspots which contain genes relative to DNA cytosine deamination found in GO analysis. (G) Top 10 terms of GO analysis in
Set1 and Set2 for TCGA data set. (H) Top 10 terms of GO analysis in Set1 and Set2 for CCLE data set.

Frontiers in Genetics frontiersin.org03

Shi and Shen 10.3389/fgene.2023.1231415

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1231415


FIGURE 3
Significant violin plots that illustrate relationship between expression of APOBEC family genes and SCNA burden, DSB points affecting APOBEC
genes and SCNA burden. The expression of APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H have relationship with SCNA burden. The DSB
points affecting APOBEC3D have relationship with SCNA burden. (A) The violin plot of APOBEC3C for TCGA data set. (B) The violin plot of APOBEC3D for
TCGA data set. (C) The violin plot of APOBEC3F for TCGA data set. (D) The violin plot of APOBEC3G for TCGA data set. (E) The violin plot of
APOBEC3H for TCGA data set. (F) The violin plot of SCNA burden versus whether DSB points happened in APOBEC3D for TCGA data set. (G) The violin
plot of APOBEC3D for CCLE data set. (H) The violin plot of APOBEC3F for CCLE data set. (I) The violin plot of APOBEC3G for CCLE data set. (J) The violin
plot of APOBEC3H for CCLE data set.
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mechanism has been identified as a major cause of SCNAs in cancer
cells (Hastings et al., 2009). Recent Studies demonstrated a strong
correlation between large Somatic Copy Number Alterations
(SCNAs) and the development of developmental disorders and
cancer (Macé et al., 2018). In particular, SCNAs in STAD have
been found to exhibit various signatures involving cancer-related
genes such as TP53, PIK3CA, and ARID1A. These signatures
include Diploid with zero whole-genome doublings,
chromothripsis amplification, and loss of heterozygosity. The
drivers of some signatures of SCNAs in STAD have been
identified as MDM2, EGFR, CCNE1, MYC, and ERBB2
(Hovhannisyan et al., 2019). A computational method applied to
characterize aneuploidy in samples of tumors according to
coordinated aberrations in the expression of genes in each
chromosomal region has been developed (Carter et al., 2006).
However, the specific genes and their functions within SCNA
hotspots remain unknown. Therefore, it is crucial to identify

relevant genes within hotspots of SCNAs to investigate their
functions.

Here, we analyzed the distribution of the DSB points of
179166 SNCA events across 332 STADs from TCGA and
872216 SCNA events across 1,043 cancer cells from CCLE. We
identified 145 hotspots of recurrent DSB in STAD and found that
DNA Cytosine Deamination was associated with the load of SCNAs in
STADs and the corresponding clinical outcome. The schematic view of
this study and methods of calculating λ were provided (Figures 1A, B).

Material and methods

Raw data

The data on SCNAs in STAD patients, overall survival of
STAD patients, gene expression in STAD patients, and locations

FIGURE 4
The Kaplan–Meier curve of patients of three groups and histogramof SCNA burden, histogramof log2 (expression of APOBEC3C). The patients were
grouped in “SCNA burden low”, “SCNA burden median”, “SCNA burden high” and “Expression low”, “Expression median”, “Expression high” according to
the expression of APOBEC genes, respectively. The result showed that patients with more SCNA tended to have better overall survival. Patients with
median expression of APOBEC3C tended to have better overall survival. (A) The Kaplan–Meier curve of patients grouped in “SCNA burden low”,
“SCNA burden median”, “SCNA burden high”. (B) Histogram of SCNA burden. (C) The Kaplan–Meier curve of patients grouped in “Expression low”,
“Expression median”, “Expression high”. (D) Histogram of log2 (expression of APOBEC3C).
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of genes were obtained from TCGA (https://tcga-data-secure.
nci.nih.gov/tcgafiles/tcga4yeo/tumor/prad/cgcc/broad.mit.edu/
genome_wide_snp_6/snp/). The data was available in appendices.
The version of the genome was hg19 (https://genome.ucsc.
edu/cgi-bin/hgTracks?db=hg19&lastVirtModeType=default&last
VirtModeExtraState=&virtModeType=default&virtMode=0&non
VirtPosition=&position=chr2%3A25383722%2D25391559&hgsid=
1653852260_7skZ6eFcyA94KTIXSNz9IEKYP60J). The data of SCNAs
in STAD cell lines and expressions of relevant genes were obtained from
CCLE (https://depmap.org/portal/download/all/). The two sets of data
were analyzed separately.

Classification of SCNAs

The data was imported into RStudio 4.2.2 and classified into two
sets: large-scale SCNAs with a width >100 kb and SCNAs with a
width≤100 kb (McCarroll et al., 2008). They were analyzed
separately to better understand their characteristics and
implications. For ease of reference, SCNAs with a width >100 kb
and SCNAs with a width≤100 kb were called Set1 and Set2,
respectively (Table 1). See supporting material.

Calculation of λ

We hypothesized that the rate of DSB follows a Poisson
Distribution with the parameter λ. To obtain λ based on the
number of DSB events in each locus, a log-likelihood function
was utilized to estimate λ values, taking into account the
deviation from a perfect Poisson Distribution observed in the
data (van Opheusden et al., 2020).

The study analyzed two datasets to determine the burden of
SCNAs in specific genomic regions. The SCNA burden, defined as
the number of SCNAs, was calculated for each patient within 1 Mb
windows along the chromosomes.

To determine whether an SCNA fell within a window, the
following criteria were applied: if the start point of the SCNA
was smaller than the endpoint of the window, and the endpoint
was larger than the start point of the window, then the SCNA was
counted within the window.

Using RStudio, λwas estimated for each window. The parameter
λ, representing the average occurrence of SCNAs within a window,
was calculated using log-likelihood functions. It was observed that
the distribution of λ within the windows did not perfectly match the
Standard Poisson Distribution models.

To visually represent the distribution of λ, histograms of log2(λ)
were plotted. Additionally, Manhattan plots were generated, using a
threshold value approximately equal to the minimum value of λ
observed in the hotspots, to illustrate the hotspots.

Identification of hotspots

Hotspots were determined based on the top 5% of the λ
values, as this threshold was considered statistically significant.
The information regarding the hotspots in both sets of
experiments can be found in the appendices, which include
details such as the location of the hotspot and the corresponding
λ value. We also identified the relevant genes located within
these hotspots.

Gene lists modification

Before doing the GO analysis, hyper-polymorphic genes
such as genes in OR, TAS, IGH, IGK, IGL, HLA family, and
genes in the list of HLA (See appendix) were excluded from the
analysis. Odor genes and taste receptor (TAS) (Keller et al.,
2007; Carrai et al., 2017), HLA molecules (Dendrou et al.,
2018), IGK rearrangements (Jackson et al., 2012), IgH class
switching (Stavnezer and Schrader, 2014), Immunoglobulin
light (IgL) chains (Edholm et al., 2011) were proven to be
highly variable in all individuals. Their variability could
potentially interfere with the GO analysis. By excluding
these genes, we aimed to focus on identifying less variable
but significant genes associated with the progression of stomach
adenocarcinoma (STAD) and determining corresponding significant
functional terms.

Enrichment analysis of differentially
expressed genes

After modification, GO analysis was performed on GProfiler
(Raudvere et al., 2019). The website was available at: https://biit.cs.
ut.ee/gprofiler/gost. We tested the statistical enrichment of
expression genes related to hotspots in the KEGG path. The
ratio of intersection size to term size was calculated. Terms
with the top 10 ratio value were selected to be graphed in a
bubble graph. The adjusted p-value of all terms was smaller
than 0.05, which illustrated that the terms were significantly
enriched by expressed genes.

Statistical analysis

Violin plots visualized the relationships between the expression
of significant genes identified in GO analysis and SCNA burden. The
patients were divided into two groups, namely, “High” and “Low”,
based on their median SCNA burdens. Both consisted of an equal
number of patients. In addition, T-tests demonstrated the
relationship between the APOBEC family copy number statuses
and SCNA burden. If the start point of the SCNA was smaller than
the endpoint of the analyzed APOBEC gene, and the endpoint of the
SCNA exceeded the start of the APOBEC gene, patients with this
SCNA were classified as “Mutant”, while the other patients were
classified as ‘Wild’. T-tests with p-values less than 0.05 were
considered statistically significant, and corresponding genes were
deemed significant.

TABLE 1 Convenient code for two sets of experiments. Convenient code for two
sets of experiments.

Set of experiment Procedure of experiment

Set1 Analyzing SCNAs with width> 100 kb

Set2 Analyzing SCNAs with width =< 100 kb
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Survival analysis

To explore the relationship between SCNA burden and overall
survival, we utilized the R packages survival (version 3.4-0) and
survminer (version 0.4.9) to generate Kaplan-Meier curves.
Furthermore, patients were categorized based on the expression
of APOBEC genes for survival analysis. Each survival analysis
comprised three groups: Low, Median, and High. Results with
p-values smaller than 0.05 were deemed statistically significant.

Result

Calculation of λ

According to data from TCGA and CCLE, the majority of the
log2(λ) values in Set1 (Width >100 kb) ranged from 0 to 0.5, while
most of the log2(λ) values in Set2 (Width≤100 kb) were close to 0
(Figures 2A–D). Estimation revealed that the minimum value of λ in
hotspots of TCGA Set1 was around 1.4, while the CCLE Set1 was
around 1.6. In TCGA Set2 and CCLE Set2, the minimum value may
be 1. Since theminimum value of Set2 was close to 1, which represents
the overall minimum value of λ, the Manhattan plot of Set2 won’t be
displayed. The Manhattan plot of Set1 with a threshold value of
approximately 1.4 and 1.6, respectively, was plotted (Figures 2E, F).

145 hotspots and relevant genes

A total of 145 hotspots were identified from the analysis of
2,897 windows in Set1 and Set2. In TCGA Set1, 1,437 genes were
found within these hotspots, and after modification, 1,230 genes
remained. Similarly, in TCGA Set2, 452 genes were located within
the hotspots, and 395 genes remained after modification. In CCLE-
Set1, 1,462 genes were found within these hotspots, and after filtering
for genes whose variability could potentially interfere with the GO
analysis, 1,265 genes remained. In CCLE Set2, 1,458 genes were found
within these hotspots, and 1,336 genes were left after the filtering
(Table 2). The complete list of genes before and after modification for
both sets of experiments can be found in the appendices, along with
additional information on the hotspots.

APOBEC-related DNA cytosine deamination
was overrepresented in genes affected by
DSBs

The GO analysis revealed that DNA Cytosine Deamination
appeared among the top 10 terms in Set1. However, the top

10 terms in Set2 did not show any significant functions, leading
to the exclusion of Set2 from further analysis. Interestingly, the
GO analysis also highlighted the presence of genes belonging to
the APOBEC family in both TCGA-Set1 and CCLE-Set1. These
APOBEC genes were found to be associated with hotspots that
exhibited a relatively low value of λ compared to other hotspots.
The analysis revealed that these genes were predominantly
located in hotspots with λ values around 1.4 and 1.6 in two
sets of data, respectively (Figures 2G, H).

Association between the SCNA burden and
APOBEC family copy number statuses,
expression of APOBEC gene

In TCGA data, the results indicated a significant association
between the expression levels of APOBEC3C, APOBEC3D,
APOBEC3F, APOBEC3G, APOBEC3H, and SCNA burden (Figures
3A–E). The findings also revealed a significant association between
DSB points affecting APOBEC3D and SCNA burdens (Figure 3F). In
CCLE data, the results showed a significant association between the
expression levels of APOBEC3D, APOBEC3F, APOBEC3G,
APOBEC3H, and SCNA burdens (Figures 3G–J).

Significance of SCNA burden and
APOBEC3C expression on the prognosis of
STAD patients

The cohort of 332 patients from TCGA was divided into
three groups based on their SCNA burden. The survival
analysis demonstrated that patients with higher SCNA
burden tended to better overall survival compared to those
with lower SCNA burden (Figures 4A, B). Additionally, we
investigated the correlation between the expression of specific
APOBEC genes and the overall survival of STAD patients.
Similarly, the cohort of 332 patients was divided into three
groups based on SCNA burden. The results indicated that
patients with median expression of APOBEC3C tended to
better overall survival, as opposed to those with high or low
expression (Figures 4C, D).

Discussion

The distribution of SCNAs has been extensively studied and
found to be associated with various abnormal conditions, including
autism spectrum disorder and Adrenocortical Carcinomas
(Girirajan et al., 2013; Gupta et al., 2022). However, the

TABLE 2 Minimum λ of hotspots, number of relevant genes before and after modification in two sets of experiments. Minimum λ of hotspots, number of relevant
genes in two sets of experiments.

Experiment Minimum λ of
hotspots

Number of associated genes (before
modification)

Number of associated genes (after
modification)

Set1 1.342 1,437 1,230

Set2 1 1,337 1,277
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relationship between the prognosis of STAD patients and hotspots
of SCNAs remained unclear. Identifying genomic regions
undergoing frequent alteration in human cancers was a powerful
way to discover genes playing significant roles in oncogenesis
(Beroukhim et al., 2010). By identifying genes located in the
hotspots of SCNAs in STAD patients and understanding their
functions, we may uncover new mechanisms of STAD
development, novel cell signaling pathways, and targeted
therapeutic approaches that can improve the precision of
treatment for patients. It is worth noting that many SCNAs
identified in one cancer type are present in multiple other cancer
types (Beroukhim et al., 2010). In the case of APOBEC genes, it was
proven that a common deletion in the APOBEC3 gene was strongly
associated with Breast Cancer risk (Long et al., 2013). Notably a
signature attributed to the APOBEC family of cytidine deaminases
was present inmany cancer types (Alexandrov et al., 2013; Guo et al.,
2018). Therefore, further research on SCNAs in STAD and APOBEC
genes may yield valuable insights into the variations observed in
other cancer types, ultimately advancing the overall treatment of
various cancers. While the methods employed in this study may
appear straightforward, there are still certain aspects that warrant
discussion.

First, the result of GO analysis in Set1 indicated that genes
related to DNA Cytosine Deamination may be highly variable in
STAD patients. Previous research has demonstrated the beneficial
role of DNA Cytosine Deamination in immunity and its detrimental
effects on cancer (Shi et al., 2017). APOBEC3-mediated mutagenesis
has been observed in various cancers (Butler and Banday, 2023).
However, the specific mechanism underlying this association
remains poorly understood. The DSB points that affect
APOBEC3D appear to be linked to the SCNA burden, although
the precise pattern of this relationship is still unknown. Future
research should focus on unraveling the mechanisms through which
DNA Cytosine Deamination impacts STAD patients.

Second, the findings of the study suggested a phenomenon that a
higher burden of SCNAs in STAD patients was associated with
improved clinical performance. This indicated that SCNAs may
confer a survival advantage in STAD patients. Previous research
showed that in the high tumor mutational burden group,
nivolumab plus ipilimumab seemed to provide better clinical
performance than nivolumab monotherapy (Hellmann et al.,
2018). It was also shown that higher nonsynonymous mutation
burden in tumors had a relationship with durable clinical benefit
(Rizvi et al., 2015). However, the specific mechanism underlying the
association requires further investigation. Interestingly, the study also
observed that a median expression of APOBEC3C was associated with
better clinical outcomes in STAD patients. This suggests that the
expression ofAPOBEC3Cmay play a role in influencing the prognosis
of STAD patients. Future research should focus on exploring the
expression patterns ofAPOBEC3C and investigating its mechanism of
action in affecting the prognosis of STAD patients.

Finally, the results of the analysis with TCGA data and CCLE data
seemed to be the same. In the analysis for TCGA data, there was a
significant association between the expression levels of APOBEC3C,
APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H, and SCNA
burden while the results showed a significant association between
the expression levels of APOBEC3D, APOBEC3F, APOBEC3G,
APOBEC3H, and SCNA burden with CCLE data. Both the result

of GO Analysis for TCGA data and CCLE data revealed the
significance of DNA Cytosine Deamination, which may suggest
the endogeneity of DNA Cytosine Deamination. Future research
should focus on the mechanism of DNA Cytosine Deamination.

Conclusion

This research study identified a total of 145 hotspots associated
with APOBEC-related DNA Cytosine Deamination in patients with
STAD. These hotspots were found to be linked to recurrent SCNAs,
suggesting a potential role in the progression of STAD. As a result,
the APOBEC genes have emerged as potential targets for the
treatment of STAD.
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