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Objective: Estrogen receptor breast cancer (BC) is characterized by the
expression of estrogen receptors. It is the most common cancer among
women, with an incidence rate of 2.26 million cases worldwide. The aim of
this study was to identify differentially expressed genes and isoform
switching between estrogen receptor positive and triple negative BC
samples.

Methods: The data were collected from ArrayExpress, followed by preprocessing
and subsequent mapping from HISAT2. Read quantification was performed by
StringTie, and then R package ballgown was used to perform differential
expression analysis. Functional enrichment analysis was conducted using
Enrichr, and then immune genes were shortlisted based on the ScType marker
database. Isoform switch analysis was also performed using the
IsoformSwitchAnalyzeR package.

Results: A total of 9,771 differentially expressed genes were identified, of
which 86 were upregulated and 117 were downregulated. Six genes were
identified as mainly associated with estrogen receptor positive BC, while a
novel set of ten genes were found which have not previously been reported in
estrogen receptor positive BC. Furthermore, alternative splicing and
subsequent isoform usage in the immune system related genes were
determined.
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Conclusion: This study identified the differential usage of isoforms in the immune
system related genes in cancer cells that suggest immunosuppression due to the
dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine
activity.
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Introduction

Breast cancer (BC) is one of the most commonly diagnosed
global malignancies and is a leading cause of mortality among
women. BC is a heterogeneous disease involving multiple
environmental and genetic factors such as age, hormones,
unhygienic diet, or toxic environmental exposure. The
BRCA1 and BRCA2 tumor suppressor genes play a significant
role in BC development (Li et al., 2017). Despite advances in
treatments like chemotherapy, endocrine therapy, and human
epidermal growth factor receptor-2 (HER2)-targeted therapy, the
chance of relapse and BC metastasis remains a great challenge (Zhu
and Yu, 2022). BC is a global health challenge as the most commonly
diagnosed cancer, with an estimated incidence of 2.26 million cases
worldwide according to GLOBOCAN 2020 global cancer statistics.
The reported BC incidence rate is higher in Asia at 45.4% (Sung
et al., 2021). There are different types of BC, depending on which
cells in the breast become cancerous. Estrogen receptor positive
(ERP) and triple-negative BC (TNBC) are the most aggressive types
of BC. ERP BC is characterized by the presence of estrogen receptors
(ERs) on tumor cells that help them grow and proliferate rapidly
based on estrogen fueling. It is the largest subtype of BC as it involves
the expression and activity of the estrogen receptor. It is estimated
that approximately 80% of BCs are ERP (Lamb et al., 2019). TNBC is
defined as a type of BC with a negative expression of ER,
progesterone receptor (PR), and HER2. The mortality rate of
TNBC is higher because of its high invasiveness and because
approximately 46% of TNBC patients are more likely to have
distant metastasis (Yin et al., 2020).

The ERP BC microenvironment (BCM) consists of immune
cells, fibroblasts, adipocytes, mesenchymal stem cells, extracellular
matrix, and tumor-associated macrophages (TAMs) (Munir et al.,
2021). During breast tumorigenesis, tumor cells escape the immune
surveillance by modifying surface antigens and altering their
surrounding environment (Segovia-Mendoza and Morales-
Montor, 2019). Chemokine, a family of signaling proteins,
functions to induce leukocyte migration. Chemokine CC receptor
type 5 (CCR5) is a cell surface receptor that has a high affinity for
chemotropic cytokines called chemokines. A 32-bp deletion in this
receptor (CCR5Δ32) results in a non-functional and deformed
receptor which, in turn, results in the activation and invasion of
immune cells at the site of tumorigenesis and ultimately leads to its
progression (Fatima et al., 2019). In mammalian cells, alternative
splicing (AS) is a key mechanism of gene expression regulation. AS
occurs when intron and exon elements become rearranged by
splicing at different splice-sites, resulting in multiple RNA
transcripts. AS regulation is influenced by multiple factors such
as cancer or other diseases (Vitting-Seerup and Sandelin, 2017). It

occurs when there is differential usage of gene transcripts between
different conditions (Baralle and Giudice, 2017). Thus, gene
expression should be analyzed at the isoform level because
isoform switching (IS) with predicted functional consequences is
more common and important in dysfunctional cells (Kahraman
et al., 2020).

RNA sequencing (RNA-seq) is a proven quantitative tool for the
expression estimation of cells and facilitates the detection and
identification of novel transcripts generated by AS. This study
identified differential isoform usage (DIU) across conditions
(ERP vs. TNBC) in immune system-related genes that may assist
targeted therapies for ERP BC. Identifying novel biomarkers and
isoform switching may pave the way for the early detection and
successful treatment of ERP BC (Chen et al., 2022).

Methodology

Overview of the protocol

The data were collected from ArrayExpress: E-MTAB-4993.
Further processing and analysis were performed by RNA-seq
analysis consisting of preprocessing, mapping, quantifying, and
differential expression analysis (DEA) methods (Costa-Silva
et al., 2017). Isoform switching and DIU were ultimately
detected in immune system-related dysregulated genes in ERP
vs. TNBC. This study considered two biological conditions of BC,
ERP, and TNBC. The raw data comprised 63 samples (ERP = 51,
TNBC = 12).

RNA-seq data preprocessing and mapping

The data obtained from ArrayExpress were in the form of raw
reads and required preprocessing and quality control to reduce noise
by trimming poor quality reads, adaptors, and primers. The first step
in data preprocessing was quality assessment, which was performed
by the FastQC tool to generate individual quality reports for each
sample (v0.11.9) (Rostovskaya et al., 2022). The fastp tool (v0.20.0)
was then used to trim poor quality reads to remove primer and
adaptor content, resulting in filtered reads (Chen et al., 2018). These
filtered reads then underwent quality check analysis by FastQC.
Next, the filtered reads were used as input in the HISAT2 tool
(v2.1.0) for mapping against the reference genome of Homo sapiens
(GRCh38) (Kim et al., 2015). This generated files in SAM (sequence
alignment map) format which contained aligned reads. Mapping
rates indicative of the quality of RNA sequencing are presented in
Supplementary File 6.
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Read quantification and DEA

Before read quantification, the SAM files were first converted to
BAM (binary alignment map) format, which is the compressed and
binary format of aligned reads, using Samtools (v1.16) (Danecek
et al., 2021). Next, BamUtil (v1.0.15) was used to remove duplicates
(deduplication) from mapped reads (Jun et al., 2017). The
quantification of deduplicated sorted reads was then performed
using StringTie (v2.2.0) (Shumate et al., 2022) in three steps. In the
first step, the StringTie assembler was employed to assemble the
aligned reads of each sample into a transcriptome. In the second
step, the full set of transcriptome assemblies was passed to the
StringTie merge module to merge the genomic features among all
samples to create a consistent set of transcripts across all samples. In
the final step, this merged assembly was used to estimate the
transcript abundances (Pertea et al., 2016). The identification of
differentially expressed genes (DEGs) and their enrichment analysis
offers biological insights into the processes that are affected by
certain conditions (Frazee et al., 2015). R package ballgown (v3.15)
was used to perform differential gene expression (DGE) analysis of
all the transcripts and abundances in ERP vs. TNBC (Frazee et al.,
2014). Criteria of a p-value less than 0.05 and log2 FoldChange value
of <1.5 and >1.5 were used to identify biologically and statistically
significant DEGs in ERP vs. TNBC. DEGs were graphically
represented by the volcano plot (Nisar et al., 2021).

Functional enrichment analysis

For Gene Ontology (GO) and pathway enrichment analysis, the
Enrichr package was used (Xie et al., 2021). The analysis of both up-
and downregulated DEGs was performed separately. The plotEnrich
() function was used to plot bar charts of biological processes (BP),
molecular functions (MF), cellular components (CC), and KEGG
pathways. The results were ordered according to p-value.

Identification of immune system-related
genes

The ScType cell marker database was used to filter the genes
involved in immune functions (regulation of immune cells through
signaling pathway and immune response against tumors) from the
DEGs identified in the previous step (Gonzalez et al., 2018;
Ianevski et al., 2022). Genes common to the DEGs set and the
ScType database (immune system) were selected for further
analysis.

Identification of isoform switching in DEGs

Isoform switch analysis was performed to identify transcript-level
expression profiles between ERP and TNBC to detect potential
functional consequences resulting from isoform switch. The
IsoformSwitchAnalyzeR package (v1.16.0) was used for this analysis
(Vitting-Seerup and Sandelin, 2017). The package’s input was the
quantification files from StringTie, transcript files, a file containing
merged annotations of all samples, and a design file containing sample

IDs and relevant condition status. The IsoformSwitchTestDEXSeq ()
function was used to identify DIU based on differential isoform (dIF)
cutoff. A dIF criteria of 0.1 was used to find the relative abundances of
all isoforms of a gene between two sample groups, and gene
ExpressionCutoff of 0.5 was applied. The open reading frames
(ORF) were analyzed using the analyzeORF() function, where the
longest orfMethod was selected in order to shortlist only long ORFs
due to their functional importance. The longest ORFs were then
extracted using the extractSequence () function that outputs two
files—one containing nucleotide sequences and the other including
protein sequences. The functional consequences of ORFs were
identified in order to add functional knowledge to the transcripts.
Four types of functional consequences were identified for ORFs: coding
potential, protein domains, signal peptides, and intrinsically disordered
regions (IDRs). The coding potential of the genes was identified through
the CPC2 tool that takes nucleotide sequences as an input. The Pfam
tool was used to predict protein domains. The signal peptides of ORFs
were identified through SignalP, whereas intrinsically disordered
regions (IDRs) were predicted by the IUPred3 tool. To assign the
predicted functional consequences to the transcripts, R package was
employed using functions such as analyzeCPC2 (), analyzeSignalP (),
analyzePFAM (), and analyzeIUPred2A (). Moreover, the switchPlot ()
function was used to plot the shortlisted immune system-related genes
that were dysregulated in ERP BC.

Results

Identification of upregulated and
downregulated genes

The gene expression profiling of 63 samples (ERP = 51, TNBC =
12) by ballgown R/Bioconductor identified 15,947 DEGs between
ERP and TNBC tissue samples. Genes with no annotation were
filtered out, with 9,771 DEGs remaining. Using DEA, 86 genes were
identified as upregulated (logFC >1.5 and p-value <0.05) and
117 were downregulated (logFC < −1.5 and p-value <0.05)
(Figure 1). The top 10 upregulated DEGs were FOXA1,
RHOB, AR, CMBL, AGR2, ESR1, TFF3, SYBU, CBLC, and
DNALI1 (Table 1; Supplementary Information S1); the top
10 downregulated DEGs were CENPW, EN1, A2ML1, TMSB15A,
FOXC1, KRT16, SLC7A5, CDK6, MELTF, and CA9 (Table 2;
Supplementary Information S2).

Gene Ontology analysis

Both up- and downregulated DEGs were subjected to GO
enrichment analysis. This analysis revealed BP, CC, and MF that
were affected due to change in gene expression. Upregulated
DEGs of biological processes were enriched in steroid hormone-
mediated signaling pathway, intracellular steroid hormone
receptor signaling pathway, regulation of smooth muscle cell
proliferation, and response to estrogen, indicating that
upregulated genes are involved in the regulation of breast
stem cells, increased cell proliferation, increased estrogen
hormone and cancerous T-cells, angiogenesis, and excessive
mitochondrial and sodium ion transport (Figure 2A; Table 3).
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The downregulated DEGs enriched in mitotic spindle
organization, chemokine-mediated signaling pathway, cellular
response to chemokine, microtubule cytoskeleton organization
involved in mitosis, antimicrobial humoral immune response
mediated by antimicrobial peptides, neutrophil chemotaxis,
granulocyte chemotaxis, and the attachment of mitotic spindle
microtubules to kinetochore and kinetochore organization
indicated that they may have cancer development-related
functions because of disrupted cell signaling and a
dysregulated cell cycle due to incorrectly organized proteins
and a suppressed immune system (Figure 2B; Table 4).
Alternatively, the upregulated DEGs of molecular functioning
show transcription coactivator binding, RNA polymerase II
general transcription initiation factor binding, epidermal
growth factor receptor binding, BMP receptor binding,

SH3 domain binding, ATPase binding, general transcription
initiation factor binding, metallocarboxypeptidase activity, and
IgG binding (Figure 3A; Table 5). This denotes disrupted cell
signaling, increased cell proliferation, growth, differentiation,
and epithelial–mesenchymal transition (EMT) due to
upregulated transcription. On the other hand, the
downregulated DEGs were mainly enriched in CXCR3 and
CXCR chemokine receptor binding, chemokine and cytokine
activity, peptidase inhibitor activity, L-leucine transmembrane
transporter activity, and chitinase activity, which indicate
suppressed immune system response and increased abnormal
proteins which may result in cancer progression and
development (Figure 3B; Table 6). The cellular component
enrichment of upregulated DEGs, collagen-containing
extracellular matrix, elastic fiber, Golgi lumen, intracellular

FIGURE 1
Volcano plot for DEGs. The red dots represent up- (right) and downregulated (left) DEGs. Upregulated genes having logFC >1.5 and
p-value <0.05 can be seen on the right of the plot; downregulated genes having logFC < −1.5 and p-value <0.05 can be seen on the left of the plot.

TABLE 1 Top 10 differentially expressed upregulated genes.

Gene name p-value log2FoldChange Expression

FOXA1 4.44E-16 4.03 Up

RHOB 2.75E-12 1.79 Up

AR 4.69E-12 2.19 Up

CMBL 5.16E-12 1.86 Up

AGR2 4.93E-11 4.93 Up

ESR1 5.81E-11 3.32 Up

TFF3 7.72E-11 4.75 Up

SYBU 8.24E-11 1.91 Up

CBLC 2.37E-10 1.67 Up

DNALI1 3.04E-10 2.06 Up

TABLE 2 Top 10 differentially expressed downregulated genes.

Gene name p-value log2FoldChange Expression

CENPW 6.66E-16 −1.84 Down

EN1 2.06E-14 −2.98 Down

A2ML1 2.95E-12 −2.52 Down

TMSB15A 8.07E-12 −1.95 Down

FOXC1 1.47E-11 −2.20 Down

KRT16 3.93E-11 −2.63 Down

SLC7A5 3.98E-11 −2.18 Down

CDK6 5.90E-11 −1.60 Down

MELTF 1.66E-10 −1.85 Down

CA9 2.41E-10 −2.45 Down
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organelle lumen, basement membrane, and sodium:potassium-
exchanging ATPase complex indicate that these may have been
involved in the initiation and progression of cancer due to
changes in the cellular cytoskeleton, membrane remodeling,
and alterations in protein secretions (Figure 4A; Table 7).
Moreover, the downregulated DEGs of cellular components
show intermediate filament, intermediate filament
cytoskeleton, polymeric cytoskeletal fiber, spindle, cornified
envelope, desmosome, and endoplasmic reticulum lumen,
which indicate cancer development and progression due to

disrupted cytoskeletal proteins, dysregulated cell division,
misfolded proteins, and DNA damage (Figure 4B; Table 8).

KEGG pathway analysis

KEGG pathways were predicted using Enrichr for the DEGs to
identify biological pathways that are disrupted due to the up- and
downregulation of genes involved in those pathways. As indicated in
Figure 5A, upregulated genes such as BMP4, GSTM3, FOS,

FIGURE 2
GO biological processes up- and downregulated by DEGs. Bar chart plots of top 15 BPs in ERP vs. TNBC. The x-axis is the gene ratio, while the color
represents p-value. (A) Steroid hormone-mediated signaling pathway and response to estrogen and endothelial tube morphogenesis as significant
upregulated BP. (B) Chemokine-mediated signaling pathway, cellular response to chemokine, granulocyte chemotaxis, and attachment of mitotic
spindle microtubules to kinetochore as significant downregulated BP.

TABLE 3 GO analysis of BP of upregulated DEGs according to Enrichr (p-value<0.05).

Biological process Gene ratio p-value Genes

Steroid hormone-mediated signaling pathway 4/15 4.19E-07 BMP4; AR; PGR; ESR1

Intracellular steroid hormone receptor signaling pathway 4/44 3.79E-05 AR; SCGB2A1; PGR; ESR1

Regulation of smooth muscle cell proliferation 4/49 5.82E-05 BMP4; ELN; OGN; APOD

Regulation of cell proliferation involved in heart morphogenesis 2/5 0.00018 BMP4; TBX3

Negative regulation of cell population proliferation 8/379 0.00022 BMP4; AR; BTG2; CAMK2N1; ERBB4; OGN; APOD; TBX3

Negative regulation of cell cycle 4/80 0.00039 BMP4; BTG2; CAMK2N1; RHOB

Response to estrogen 3/35 0.00045 GSTM3; AR; ESR1

Endothelial tube morphogenesis 2/10 0.00080 BMP4; RHOB

Positive regulation of osteoblast differentiation 3/44 0.00089 BMP4; NPNT; IL6ST

Axonal transport of mitochondrion 2/11 0.00098 MAPT; SYBU

Keratan sulfate catabolic process 2/12 0.0011 OMD; OGN

Positive regulation of sodium ion transmembrane transport 2/12 0.0011 FXYD1; WNK4

Negative regulation of myoblast differentiation 2/13 0.0013 BMP4; TBX3

Mitochondrion transport along microtubule 2/13 0.0013 MAPT; SYBU
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HMGCS2, ADH1B, COL4A5, ESR1, NAT1, IL6ST, and PGR were
enriched in pathways in cancer, chemical carcinogenesis,
ECM–receptor interaction, tyrosine metabolism, valine, leucine
and isoleucine degradation, the PI3K-Akt signaling pathway,

estrogen signaling pathway, caffeine metabolism, signaling
pathways that regulate the pluripotency of stem cells, and BC
(Table 9). This indicates that the upregulation of genes promotes
pathways that are mainly involved in DNA repair, cell motility and

TABLE 4 GO analysis of BP of downregulated DEGs according to Enrichr (p-value<0.05).

Biological process Gene
ratio

p-value Genes

Mitotic spindle organization 10/157 2.89E-08 CDC20; STMN1; NUF2; CDCA8; BIRC5; KIF23; KIF2C; BUB1; NDC80;
AURKB

Chemokine-mediated signaling pathway 7/56 3.58E-08 CXCL10; CXCL9; FOXC1; CXCL11; CXCL8; CXCL13; CCL18

Cellular response to chemokine 7/60 5.85E-08 CXCL10; CXCL9; FOXC1; CXCL11; CXCL8; CXCL13; CCL18

Microtubule cytoskeleton organization involved in mitosis 9/128 6.26E-08 CDC20; STMN1; NUF2; CDCA8; BIRC5; KIF2C; BUB1; NDC80;
AURKB

Antimicrobial humoral immune response mediated by antimicrobial
peptide

6/64 2.00E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; KRT6A

Neutrophil chemotaxis 6/70 3.40E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Granulocyte chemotaxis 6/73 4.36E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Neutrophil migration 6/77 5.95E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Attachment of mitotic spindle microtubules to kinetochore 3/12 4.13E-05 NUF2; KIF2C; NDC80

Kinetochore organization 3/13 5.35E-05 CENPW; NUF2; NDC80

Lymphocyte chemotaxis 4/44 0.00012 CXCL10; CXCL11; CXCL13; CCL18

Regulation of chromosome segregation 3/18 0.00014 KIF2C; BUB1; AURKB

Mitotic metaphase plate congression 4/51 0.00022 NUF2; CDCA8; KIF2C; NDC80

Inflammatory response 7/230 0.00041 CXCL10; CXCL11; CXCL9; CXCL8; KRT16; CXCL13; CCL18

Positive regulation of calcium ion transmembrane transport 3/27 0.00051 CXCL10; CXCL9; CXCL11

FIGURE 3
GO molecular functions up- and downregulated by DEGs. Bar chart plots of top 15 MF in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Transcription coactivator binding, RNA polymerase II general transcription initiation factor binding, epidermal growth factor
receptor binding, and BMP receptor binding as significant upregulated MF. (B) CXCR3 chemokine receptor binding, CXCR chemokine receptor binding,
chemokine activity, and L-leucine transmembrane transporter activity as significant downregulated MF.
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proliferation, cell cycle regulation, the inhibition of apoptosis, and
increased EMT, resulting in tumor development and prognosis. The
downregulated genes such as CXCL8, CXCL10, CXCL11, CDC20,
CDK6, CDKN2A, CXCL13, and SHC4 (Table 10) were enriched in
chemokine signaling pathway, toll-like receptor signaling pathway,
cell cycle, bladder cancer, IL-17 signaling pathway, cellular
senescence, p53 signaling pathway, and microRNAs in cancer

(Figure 5B). The downregulation of genes involved in these
pathways plays a crucial role in the tumor microenvironment by
disrupting immune response, cell cycle arrest in the G2/M phase,
increased cell growth, metastasis, proliferation and invasiveness, and
the angiogenic potential of cancer cells. The analysis revealed that
cancer-related pathways that were dysregulated due to DEGs have
also been reported in various other cancers.

TABLE 5 GO analysis of MF of upregulated DEGs according to Enrichr (p-value<0.05).

Molecular function Gene ratio p-value Genes

Transcription coactivator binding 3/20 8.30E-05 AR; PGR; ESR1

RNA polymerase II general transcription initiation factor binding 2/5 0.00018 AR; ESR1

Epidermal growth factor receptor binding 3/26 0.00018 ERBB4; AGR2; CBLC

Growth factor receptor binding 4/105 0.0010 ERBB4; AGR2; CBLC; IL6ST

BMP receptor binding 2/13 0.0013 BMP4; GDF15

Transcription coregulator binding 3/53 0.0015 AR; PGR; ESR1

Transmembrane receptor protein serine/threonine kinase binding 2/16 0.0021 BMP4; GDF15

SH3 domain binding 3/62 0.0024 CBLC; EVL; MAPT

ATPase binding 3/73 0.0038 AR; PGR; ESR1

General transcription initiation factor binding 2/26 0.0055 AR; ESR1

Metallocarboxypeptidase activity 2/29 0.0068 CPA3; CPE

Sequence-specific double-stranded DNA binding 8/712 0.0114 FOXA1; AR; ERBB4; FOSB; FOS; LMX1B; ESR1; TBX3

Carboxypeptidase activity 2/38 0.0116 CPA3; CPE

Transcription regulatory region nucleic acid binding 4/212 0.0132 FOXA1; AR; ERBB4; FOS

IgG binding 1/5 0.0213 PIP

TABLE 6 GO analysis of MF of downregulated DEGs according to Enrichr (p-value<0.05).

Molecular function Gene ratio p-value Genes

CXCR3 chemokine receptor binding 4/5 5.54E-09 CXCL10; CXCL11; CXCL9; CXCL13

CXCR chemokine receptor binding 5/17 3.68E-08 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13

Chemokine activity 6/46 2.73E-07 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Chemokine receptor binding (GO:0042379) 6/50 4.54E-07 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Cytokine activity 6/173 0.00054 CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

Metalloendopeptidase activity 3/82 0.01235 ADAMDEC1; MMP7; MMP1

Peptidase inhibitor activity 2/40 0.02289 A2ML1; PI3

CCR chemokine receptor binding 2/42 0.02508 CXCL13; CCL18

Cyclin-dependent protein serine/threonine kinase regulator activity 2/44 0.02735 CCNB2; CDKN2A

D-loop DNA binding 1/5 0.02891 RAD51AP1

L-Leucine transmembrane transporter activity 1/5 0.02891 SLC7A5

Endopeptidase regulator activity 2/46 0.02970 A2ML1; PI3

Metallopeptidase activity 3/121 0.03415 ADAMDEC1; MMP7; MMP1

Tubulin binding 5/307 0.03443 STMN1; BIRC5; KIF23; KIF2C; FAM83D

Chitinase activity 1/6 0.03459 CHI3L2
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Selection of immune system genes

A total of 86 upregulated and 117 downregulated genes were
used as a query against the marker genes database of the ScType R
package, revealing that three upregulated and 10 downregulated
genes were directly involved in immune system-related functions
(Table 11, 12).

Isoform switching

Isoform switching analysis was performed on shortlisted immune
system related genes, facilitating the identification of known and novel
isoform switches from RNA-seq derived quantification data. Of
10 downregulated immune genes, three (STMN1, MELTF, and
CXCL8) were found to have isoforms that were significantly used in

FIGURE 4
GO cellular components up- and downregulated by DEGs. Bar chart plots of top-15 CC in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Collagen-containing extracellular matrix, elastic fiber, Golgi lumen, and intracellular organelle lumen as significant upregulated
CC. (B) Intermediate filament, intermediate filament cytoskeleton, polymeric cytoskeletal fiber, spindle, and desmosome as significant
downregulated CC.

TABLE 7 GO analysis of CC of upregulated DEGs according to Enrichr (p-value<0.05).

Cellular component Gene ratio p-value s

Collagen-containing extracellular matrix 14/380 8.27E-10 CPA3; TPSB2; COL14A1; GDF15; ELN; HTRA1; NPNT; ASPN;
THSD4; THBS4; MFAP4; CILP; OGN; COL4A5

Elastic fiber 2/5 0.00018 MFAP4; ELN

Supramolecular fiber 2/19 0.00298 MFAP4; ELN

Golgi lumen 3/100 0.00919 MUCL1; OMD; OGN

Intracellular organelle lumen 9/848 0.01058 BMP4; MUCL1; COL14A1; ERBB4; OMD; OGN; COL4A5;
ABAT; HMGCS2

Basement membrane 2/52 0.02108 COL4A5; THBS4

Neurofibrillary tangle 1/5 0.02131 MAPT

Sodium:potassium-exchanging ATPase complex 1/10 0.04218 FXYD1

Microtubule 3/182 0.04380 KIF12; MAPT; SYBU

Microfibril 1/11 0.04630 MFAP4

Lysosomal lumen 2/86 0.05294 OMD; OGN

Glial cell projection 1/14 0.05856 MAPT

Cation-transporting ATPase complex 1/16 0.06664 FXYD1

Vesicle 3/226 0.07374 OGN; TSPAN1; SYBU

Connexin complex 1/21 0.08656 GJC3
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ERP andhave been validated through the ExpressionAtlas (Supplementary
Information Table S3). Moreover, no significant isoform switch was
observed in upregulated immune genes.

Isoform usage

STMN1, MELTF, and CXCL8 represent significant switches in
isoform usage across ERP vs. TNBC, as shown in sashimi plots in

Supplementary Information Figures S1–S3 respectively. By comparing
the isoform usage across conditions, it was revealed that STMN1 has a
single isoform (ENST00000485226) which was overexpressed in ERP.
CXCL8 also has one isoform (ENST00000483500) which was significantly
used in ERP. Furthermore, it was found that a novel isoform
(MSTRG.29921.1) of MELTF was overexpressed in ERP (Figure 6).

Gene Ontology analysis of downregulated immune genes
indicates that these genes may be involved in key immune
system molecular functions such as CXCR chemokine receptor

TABLE 8 GO analysis of CC of downregulated DEGs according to Enrichr (p-value<0.05).

Cellular component Gene ratio p-value Genes

Intermediate filament 5/50 1.08E-05 SYNM; KRT16; PKP1; KRT75; KRT6C

Intermediate filament cytoskeleton 5/84 0.00013 SYNM; KRT16; PKP1; KRT75; KRT6C

Polymeric cytoskeletal fiber 7/256 0.00077 SYNM; KRT16; PKP1; KIF23; KIF2C; KRT75; KRT6C

Spindle 6/192 0.00093 CDC20; BIRC5; KIF23; KIF2C; FAM83D; AURKB

Cornified envelope 3/43 0.00203 PKP1; PI3; DSC3

Desmosome 2/17 0.00435 PKP1; DSC3

Endoplasmic reticulum lumen 6/285 0.00664 SPP1; COL9A3; MELTF; MSLN; MFGE8; CP

Cyclin-dependent protein kinase holoenzyme complex 2/30 0.01326 CCNB2; CDK6

Microtubule cytoskeleton 6/331 0.01326 CDC20; CCNB2; KIF23; KIF2C; FAM83D; AURKB

Serine/threonine protein kinase complex 2/37 0.01977 CCNB2; CDK6

Microtubule 4/182 0.02221 BIRC5; KIF23; KIF2C; AURKB

Cortical actin cytoskeleton 2/42 0.02508 GYS2; SLC2A1

External side of apical plasma membrane 1/5 0.02891 SLC7A5

Barr body 1/5 0.02891 MACROH2A2

Bleb 1/5 0.02891 ANLN

FIGURE 5
KEGG pathways analysis of upregulated DEGs. Bar chart plots of top 15 KEGG pathways in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Pathways in cancer, chemical carcinogenesis, ECM–receptor interaction, and tyrosine metabolism as significant upregulated
pathways. (B) Chemokine signaling pathway, toll-like receptor signaling pathway, cell cycle, bladder cancer, and IL-17 signaling pathway as significant
downregulated pathways.
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binding, chemokine activity, iron ion binding, and cytokine activity
(Figure 7).

Discussion

BC is the most prevalent type of cancer worldwide. It is thus
essential to understand and explore ways to prevent its occurrence

while identifying the genetic changes that are more susceptible to its
incidence. The present study identified 9,771 DEGs, of which
86 genes were significantly upregulated and 117 were
downregulated. The identified upregulated genes were FOXA1,
RHOB, AR, CMBL, AGR2, ESR1, TFF3, SYBU, CBLC, and
DNALI1; the downregulated genes were CENPW, EN1, A2ML1,
TMSB15A, FOXC1, KRT16, SLC7A5, CDK6, MELTF, and CA9.
Functional enrichment analysis of these DEGs revealed that the

TABLE 9 Pathway prediction for upregulated DEGs according to Enrichr (p-value<0.05).

KEGG pathway Gene ratio p-value Genes

Protein digestion and absorption 4/90 0.00061 CPA3; COL14A1; ELN; COL4A5

Pathways in cancer 8/530 0.00200 BMP4; AR; GSTM3; IGF2; COL4A5; FOS; IL6ST; ESR1

Chemical carcinogenesis 3/82 0.00532 GSTM3; NAT1; ADH1B

ECM–receptor interaction 3/82 0.00532 CHAD; COL4A5; THBS4

Butanoate metabolism 2/28 0.00642 ABAT; HMGCS2

Tyrosine metabolism 2/36 0.01047 ADH1B; TAT

Drug metabolism 3/108 0.01133 GSTM3; NAT1; ADH1B

Valine, leucine, and isoleucine degradation 2/48 0.01813 ABAT; HMGCS2

PI3K–Akt signaling pathway 5/354 0.01831 ERBB4; CHAD; IGF2; COL4A5; THBS4

Estrogen signaling pathway 3/137 0.02129 PGR; FOS; ESR1

Caffeine metabolism 1/5 0.02131 NAT1

Phenylalanine, tyrosine, and tryptophan biosynthesis 1/5 0.02131 TAT

Fluid shear stress and atherosclerosis 3/139 0.02211 BMP4; GSTM3; FOS

Signaling pathways regulating pluripotency of stem cells 3/139 0.02211 BMP4; IL6ST; TBX3

BC 3/147 0.02555 PGR; FOS; ESR1

TABLE 10 Pathway prediction for downregulated DEGs according to Enrichr (p-value<0.05).

KEGG pathway Gene ratio p-value Genes

Chemokine signaling pathway 7/190 0.00012 SHC4; CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

Toll-like receptor signaling pathway 5/104 0.00036 CXCL10; CXCL11; CXCL9; CXCL8; SPP1

Cell cycle 5/124 0.00081 CDC20; CCNB2; CDK6; CDKN2A; BUB1

Bladder cancer 3/41 0.00176 CXCL8; CDKN2A; MMP1

IL-17 signaling pathway 4/93 0.00217 CXCL10; CXCL8; MMP1; LCN2

Cellular senescence 5/160 0.00251 CCNB2; CDK6; CXCL8; CDKN2A; MYBL2

Cytokine–cytokine receptor interaction 6/294 0.00769 CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

p53 signaling pathway 3/72 0.00868 CCNB2; CDK6; CDKN2A

Human T-cell leukemia virus 1 infection 5/219 0.00936 CDC20; CCNB2; MMP7; CDKN2A; SLC2A1

Glioma 3/75 0.00970 SHC4; CDK6; CDKN2A

Chronic myeloid leukemia 3/76 0.01006 SHC4; CDK6; CDKN2A

Protein digestion and absorption 3/90 0.01585 KCNK5; COL9A3; KCNN4

MicroRNAs in cancer 5/299 0.03125 SHC4; CDK6; CDKN2A; STMN1; KIF23

Oocyte meiosis 3/125 0.03706 CDC20; CCNB2; BUB1

Central carbon metabolism in cancer 2/65 0.05559 SLC7A5; SLC2A1
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intracellular steroid hormone receptor signaling pathway,
chemokine-mediated signaling pathway, kinetochore
organization, pathways in cancer, BC, toll-like receptor signaling
pathway, and cell cycle were the most dysregulated biological
pathways and processes.

In the present study, FOXA1 was found to be upregulated and
has been reported to inhibit STAT2, a transcription factor and its
target IFN signaling pathway in BC; this may result in cancer
progression due to suppressed immune response (He et al.,
2021). Furthermore, upregulated RHOB results in ER-α (estrogen
receptor alpha) overexpression that leads to increased estrogen
uptake by BC cells which helps them grow and proliferate
(Médale-Giamarchi et al., 2013). It has been reported that AR
overexpression increases the transcription of genes involved in
the cell cycle, resulting in increased proliferation of prostate
cancer cells (Formaggio et al., 2021). This study found that
CMBL (p-value: 0.00003) is suppressed in TNBC compared to
non-TNBC types of BC, such as ERP. It encodes a cysteine
hydrolase that cleaves cyclic esters which activate an angiotensin
receptor blocker that helps lower blood pressure (Guo et al., 2017).
Upregulated AGR2 is found in BC due to ER signaling and
endoplasmic reticulum stress, and it results in increased cell
proliferation, survival, and metastasis in BC (Ann et al., 2018).
Moreover, ESR1 upregulation makes BC cells more prone to
estrogen uptake which may lead to the increased growth and
proliferation of cancer cells (Lei et al., 2019). According to the
literature, TFF3 acts as an oncogene because it regulates other genes
(FOXA1, HER2, and AR) involved in EMT, thus promoting
invasiveness, survival, and increased proliferation in multiple
carcinomas such as gastric cancer, mammary carcinoma, and

prostate cancer (Yuan et al., 2017). It has been reported that
SYBU, a microtubule-associated protein, is overexpressed in
hepatocellular carcinoma (HCC), which results in disrupted cell
cycle and increased proliferation (Zheng and Yu, 2021). Breast
tumor formation is increased by CBLC overexpression, which
suppresses TGF-β (transforming growth factor beta). This results
in the deactivation of its target Smad3 pathway which is responsible
for proliferation, differentiation, and apoptosis (Kang et al., 2012).
This study found that DNALI1 (p-value: 0.0000148), a flagellar
protein, is overexpressed in BC, which has not been reported
previously for any other carcinoma.

According to the literature, CENPWwas downregulated in BC
and HCC. It is involved in kinetochore organization and
centromere complex assembly. This downregulation results in
subsequent function disruption, resulting in chromosomal
instability due to mis-segregation of chromosomes (Liu and
Liu, 2022). It has been reported that EN1 is downregulated in
lung cancer due to altered DNA methylation which promotes cell
proliferation and differentiation (Jiang et al., 2017). The
downregulation of A2ML1, a protease inhibitor, results in
MAPK pathway mutation, which leads to apoptotic resistance
and uncontrolled cell division in BC (Li et al., 2016).
FOXC1 suppression induces ER-α expression in BC cells,
which helps in increased estrogen uptake, resulting in the
growth and proliferation of tumor cells (Wang et al., 2017). It
has been reported that KRT16 is overexpressed in basal-like
TNBC, along with increased expression of EMT-associated
proteins. In contrast, in luminal A and B subtypes of BC which
include ER+ and PR+ tumors, KRT16 expression was suppressed,
but E-cadherin (CDH1), an EMT protein was overexpressed,

TABLE 11 Shortlisted upregulated DEGs involved in the immune system (p-value<0.05).

Gene name p-value LogFC Function Expression

CPA3 1.02E-05 1.84048 Generates mature protease; released by mast cells Up

THBS4 1.60E-05 1.95670 Adhesive glycoprotein Up

CXCL14 5.20E-05 2.25235 Chemotactic factor for monocytes Up

TABLE 12 Shortlisted downregulated DEGs involved in the immune system (p-value<0.05).

Gene name p-value LogFC Function Expression

MELTF 1.66E-10 −1.85184 Cell surface glycoprotein Down

STMN1 4.25E-08 −1.53543 Integrate intracellular regulatory signals Down

CXCL8 5.51E-05 −1.97224 Chemotactic factor Down

CXCL11 0.00020 −1.67806 Regulate cell trafficking Down

PI3 0.00020 −1.59618 Antimicrobial peptide Down

CXCL10 0.00022 −2.01352 Stimulates monocytes, natural killer, and T-cells migration Down

CD24 0.27436 −1.86584 Essential role in cell differentiation Down

CD24P4 0.28050 −1.83388 Pseudogene Down

CCL18 0.00771 −1.73928 Chemotactic factor, attracts only lymphocytes Down

CXCL13 0.01855 −1.62905 Chemotactic factor for B-lymphocytes Down
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leading to metastasis due to increased cellular motility (Elazezy
et al., 2021). SLC7A5 has been reported to be overexpressed in
TNBC due to its glutamine transporting activity to tumor cells for
energy production—TNBC is thus glutamine dependent and
requires glutaminase for its catabolism. In addition, cells with
increased proliferation use transaminases to catabolize glutamate,

in contrast to glutamate dehydrogenase (GLUD), to reduce
ammonia production. However, ER+ tumors are glutamine-
independent and show increased GLUD expression (Wang
et al., 2020). It has been reported that the downregulation of
CDK6 also suppresses its interacting gene, RB1—a tumor
suppressor gene. This results in dysregulated cell growth,

FIGURE 6
Isoform switch of differentially expressed immune genes. “*” represents significant isoform usage.

FIGURE 7
GOmolecular functions of downregulated immune system genes (STMN1, MELTF, and CXCL8) having significant isoform switches (p-value <0.05).
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apoptosis, and increased proliferation in tumor cells (Knudsen
et al., 2020). MELTF downregulation also dysregulates its
interacting genes such as ACO2, a gene-encoding Krebs’ cycle
enzyme. The disruption of Krebs’ cycle enzymes leads to the
production of oncometabolites, which stabilize hypoxia-inducible
factor 1 and activate cell growth signaling by regulating DNA
methylation—crucial factors in cancer progression (Sajnani et al.,
2017). CA9 suppression leads to the disruption of interacting
genes such as HIF3A and EPAS1 which are involved in regulating
hypoxic conditions. Such conditions are favorable for the
increased proliferation of tumor cells (Jun et al., 2017).
TMSB15A has been reported to be upregulated in TNBC; it
plays a crucial role in the organization of the cytoskeleton,
which is responsible for cancer cell motility and is involved in
cancer metastasis (Darb-Esfahani et al., 2012).

KEGG pathway enrichment analysis revealed protein digestion
and absorption, pathways in cancer, chemical carcinogenesis, and
ECM–receptor interaction as upregulated pathways, while
downregulated pathways include chemokine signaling, toll-like
receptor signaling, cell cycle, bladder cancer, IL-17 signaling,
cellular senescence, cytokine–cytokine receptor interaction, and
p53 signaling. We found that the protein digestion and
absorption pathway was upregulated, which demonstrates the use
of proteins as an alternative fuel by tumor cells to fulfill their
metabolic needs. This occurs due to the limited supply and
metabolism of glucose by cancer cells (Lieu et al., 2020).
Moreover, it was found that pathways in cancer were upregulated
that involve the disruption of the ErbB, p-53-mediated apoptotic,
and GSK3 signaling pathways, which are involved in DNA repair,
cell growth, migration, differentiation, and metabolism (Yip and
Papa, 2021). The upregulation of chemical carcinogenesis activates
certain hormonal pathways that make mammary glands more
susceptible to carcinogenesis due to altered DNA repair genes
(Rodgers et al., 2018). Furthermore, upregulated ECM–receptor
interaction results in interaction with HMMR and SDC1 genes,
the dysregulation of which promotes BC cell motility and
differentiation (Yeh et al., 2018). A downregulated chemokine
signaling pathway and cytokine–cytokine receptor interaction
cannot recruit immune cells (leukocytes) to the tumor
microenvironment, thus resulting in tumor progression (Gil Del
Alcazar et al., 2020). The downregulation of toll-like receptor
signaling pathways results in non-recognition and the escape of
cancer cells from the immune system, leading to the invasiveness,
migration, and angiogenic potential of cancer cells (Javaid and Choi,
2020). The disruption of the cell cycle at the G2/M phase results in
cells that contain damaged DNA and genomic instability, a hallmark
of cancer (Thu et al., 2018). It has been reported that increased ER-α
in BC cells suppresses bladder cancer cell growth by downregulating
INPP4B which, in turn, suppresses the AKT signaling pathway (Hsu
et al., 2014). Research has found that the IL-17 signaling pathway
becomes downregulated due to increased estrogen receptor
expression, resulting in dysregulated PD-1/PD-L1 and CD8+

T cell expression—a suppressed immune response (Shuai et al.,
2020). Furthermore, downregulated cellular senescence results in
increased cell proliferation and tumor development (Milczarek,
2020). Moreover, a downregulated p53 signaling pathway cannot
perform DNA damage repair and cell death, thereby facilitating the
increased growth and metastasis of tumor cells (Marei et al., 2021).

According to the GTEx portal, cells express an average of
3.42 transcripts per gene (Tung et al., 2020). The expression
dominance of major isoform transcripts compared to others from
the same gene is crucial for normal cellular homeostasis (Hu et al.,
2017). However, splicing regulation is often disrupted in cancer with
a dominant expression of alternative transcripts in a tumor
microenvironment (TME) which promotes switches that
contribute to tumor progression and metastasis (Kahraman et al.,
2020). The interaction pattern of the cancer-specific most dominant
transcript (cMDT) differs from the generally expressed isoform of
normal cells because of changes caused by alternative splicing; this
could affect protein domains due to mutations caused by tumor and
subsequent disruption in cancer-related pathways (Yang et al., 2016;
Climente-González et al., 2017). According to the literature,
apoptosis, ubiquitin, signaling, and spliceosomes were the most
disrupted protein interactions (Kahraman et al., 2020). It has
been reported that isoform switching leads to the loss of the
DNA sequence that encodes for protein domains, promoting
functional loss. The subsequent switches have functional
consequences for cancer development and progression (Vitting-
Seerup and Sandelin, 2017).

The present study has identified the differential usage of
transcript isoforms among ERP and TNBC. It revealed isoforms
that are significantly expressed and used by shortlisted
downregulated genes (STMN1, MELTF, and CXCL8).
CXCL8 encodes a protein that is involved in chemotaxis
(Łukaszewicz-Zając et al., 2020). It transcribes five
transcripts; among them, only one isoform transcript was
significantly used. Differential gene expression plotting shows
that CXCL8 is downregulated in ERP (Figure 6). On the other
hand, there is in isoform usage an increased use of isoform
ENST00000483500 in ERP. However, this isoform is non-coding
due to retained introns and the unavailability of any domain,
leading to functional loss of CXCL8 and immune suppression as
a consequence of the non-recruitment of macrophages and
neutrophils to the TME (Xiong et al., 2022). STMN1, a
cytosolic phosphoprotein, is involved in microtubule
destabilization by regulating the microtubule filament system
and signal transduction (Bao et al., 2017). It transcribes four
known and two novel isoforms (Figure 6). The isoform usage
plot indicates that a single isoform (ENST00000485226) is
significantly used in ERP, as compared to TNBC. However, it
lacks a domain, which results in its non-coding behavior.
Furthermore, STMN1 is repressed in ERP, as shown in
differential gene expression plotting which promotes ERP
progression due to the disruption of microtubules and their
subsequent role in the growth of immune cells such as T-cells
and natural killer cells (Zhang et al., 2022). MELTF, a cell
surface glycoprotein, is involved in cellular iron uptake
(Sawaki et al., 2019). MELTF could transcribe six novel and
two known isoforms (Figure 6); however, increased use of the
single isoform MSTRG.29921.1 has been identified in ERP.
Moreover, this isoform contains nonsense codons that
prematurely terminate translation—nonsense-mediated decay
(NMD). Differential gene expression plotting also shows that
MELTF is downregulated in ERP, leading to the decreased
proliferation and maturation of immune cells such as
lymphocytes due to decreased iron uptake (Roemhild et al.,
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2021). Gene Ontology analysis of shortlisted immune genes
revealed that CXCR chemokine receptor binding, iron ion
binding, and cytokine activity are the most dysregulated
molecular functions (Figure 7). These functions mediate
immune response by recruiting immune cells such as
monocytes, T cells, lymphocytes, and natural killer cells, and
assist their growth and proliferation. The downregulation of
these functions promotes ERP BC due to suppressed immune
response in TME (Bates et al., 2018).

This research therefore provides key insights into the genes that
are differentially expressed in ERP. Moreover, DNALI1 is a novel
gene that has not been previously reported and is involved in ERP
BC development. Furthermore, the identification of three immune
system-related genes (STMN1,MELTF, and CXCL8) reveals that the
dysregulation of the immune system due to isoform switching is the
major factor in ERP BC development and progression.
Downregulation and isoform switching of key immune system
genes suggest BC progression and possible metastasis due to the
non-recruitment of cytokines in the TME.

Conclusion

ERP BC is characterized by the growth of tumor cells in response
to estrogen hormone. The dysregulation of gene expression results
in the development of significant biological changes that are key
features of multiple human carcinomas such as prostate cancer,
gastric cancer, hepatocellular carcinoma, and lung cancer. In this
study, 9,771 DEGs were identified; among these, 86 genes were
upregulated and 117 were downregulated. Six genes (FOXA1,
RHOB, AGR2, ESR1, CBLC, and FOXC1) were found to be
significantly associated with the development and progression of
ERP BC. This study also identified a novel set of genes (DNALI1,
TMSB15A, AR, TFF3, SYBU, CENPW, EN1, CDK6, MELTF, and
CA9) not previously reported positive for estrogen receptors but that
has been reported in other carcinomas. Moreover, alternative
splicing and subsequent isoform expression in three
downregulated immune system genes (STMN1, MELTF, and
CXCL8) had been identified that were mainly responsible for
ERP progression due to suppression of the immune system and
the non-recruitment of cytokines against cancer cells. It was found
that CXCR chemokine receptor binding, iron ion binding, and
cytokine activity were the most dysregulated functions due to
immune system suppression. This study reveals that
dysregulation of the immune system due to isoform switching is
the major factor in ERP BC development and progression.
Therefore, these crucial immune system genes should be targeted
as therapeutic biomarkers.
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