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Introduction: Oxidative stress (OS)-related genes have been confirmed to be
closely related to the prognosis of triple-negative breast cancer (TNBC) patients;
despite this fact, there is still a lack of TNBC subtype strategies based on this gene
guidance. Here, we aimed to explore OS-related subtypes and their prognostic
value in TNBC.

Methods: Data from The Cancer Genome Atlas (TCGA)-TNBC and Sequence
Read Archive (SRA) (SRR8518252) databases were collected, removing batch
effects using a combat method before analysis. Consensus clustering analysis
identified two OS subtypes (clusters A and B), with cluster A showing a better
prognosis. Immune infiltration characteristics were analyzed using ESTIMATE and
single-sample gene set enrichment analysis (ssGSEA) algorithms, revealing higher
ImmuneScore and ESTIMATEscore in cluster A. Tumor-suppressive immune cells,
human leukocyte antigen (HLA) genes, and three immune inhibitors were more
prevalent in cluster A.

Results: An eight-gene signature, derived from differentially expressed genes, was
developed and validated as an independent risk factor for TNBC. A nomogram
combining the risk score and clinical variables accurately predicted patient
outcomes. Finally, we also validated the classification effect of subtypes using
hub markers of each subtype in the test dataset.

Conclusion: Our study reveals distinct molecular clusters based on OS-related
genes to better clarify the reactive oxygen species (ROS)-mediated progression
and the crosstalk between the ROS and tumor microenvironment (TME) in this
heterogenetic disease, and construct a risk prognostic model which could provide
more support for clinical treatment decisions.
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1 Introduction

According to the data from the Global Burden of Disease study,
breast cancer (BC) accounts for 30% of all female cancers, and its
incidence rate is still increasing since the past decade (Chen et al.,
2020). In 2022, an estimate of 259,827 new cases and 124,002 deaths
from breast cancer was observed in the United States, contributing
to this disease as the cancer having the second highest mortality rate
after lung cancer worldwide (Xia et al., 2022). According to the
expression of molecular markers on the surface of breast cancer cells,
breast cancer can be divided into hormone receptor (HR)-positive,
human epidermal growth factor receptor 2 (HER2)-enriched, and
triple-negative breast cancer (TNBC) subtypes (absence of estrogen
receptor (ER), progesterone receptor, and HER2 expression).
Among these subtypes, TNBC accounts for 10%–15% of all BC
cases with a high recurrence rate (Brewster et al., 2014). Although
many scholars have made efforts to explore tumor biology and
develop new treatment for this subtype, the achievements are still
unsatisfactory with an extremely poor prognosis with a median
overall survival of 10–13 months in metastatic BC patients (Shi et al.,
2019; Waks and Winer, 2019). Given the heterogeneity of TNBC
patients, exploring new targets that can precisely predict the
prognosis and can be treated as biomarkers is needed.

Oxidative stress (OS) is the imbalance of oxidation and
antioxidant systems in the body, resulting in the production of
excessive peroxides and free radicals, which leads to the occurrence
of various diseases and tumors via damage to the proteins, lipids,
and DNA of cells (Forman and Zhang, 2021; Pisoschi et al., 2021).
Reactive oxygen species (ROS) refers to free radicals and non-
radicals derived from oxygen; they are produced by the
mitochondrial respiratory chain (Jones, 2008). The physiological
concentration of ROS is crucial to maintaining cell survival, while
the OS will occur when the production of ROS exceeds the
individual degradation capacity. ROS can also cause DNA
damage, thereby leading to genetic instability and tumorigenesis
(Liu Y. et al., 2022). Excessive ROS has been reported to be involved
in the pathological and progressive process of hypertension,
Alzheimer’s disease, gastric cancer, myeloid leukemia, and breast
cancer (Gella and Durany, 2009; Harrison and Gongora, 2009;
Mazzuferi et al., 2021; Trombetti et al., 2021; Wu et al., 2021). In
the mitochondrial respiratory chain, ROS-mediated oxidative stress
can significantly damage mitochondrial DNA (mtDNA) and
enhance the incidence of new mutations, and the accumulation
of such new mtDNA mutations can increase the incidence of BC
(Chen et al., 2022). In addition, the role of the tumor
microenvironment (TME) in the development of various tumors
has recently been recognized (Bejarano et al., 2021); different cell
types and soluble factors in the TME can promote the progression
and metastasis of TNBC, and hypoxia is an important factor in
promoting this tumor biology process (Deepak et al., 2020; Lei et al.,
2021). Although some previous studies have confirmed the function
of OS in the tumorigenesis and aggressiveness of BC, little was
known about ROS-mediated progression in the TME of TNBC
(Brown and Bicknell, 2001; Wilkerson and Hayes, 2010;
Nourazarian et al., 2014; Wu et al., 2021).

In the aforementioned concepts, we aim to establish different
molecular subtypes in TNBC based on OS-related genes to better
clarify the ROS-mediated progression and the crosstalk between the

ROS and TME in this heterogenetic disease, and construct a risk
prognostic model which could provide more support for clinical
treatment decisions.

2 Material and methods

2.1 Data collection

Transcriptome RNA sequencing (RNA-seq) data and
corresponding clinical data on TNBC were downloaded from two
public databases, namely, The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) (TCGA-TNBC) (including
188 TNBC samples) and the Sequence Read Archive (SRA)
databases (https://www.ncbi.nlm.nih.gov/sra) with code
SRR8518252 (including 360 TNBC samples). The raw RNA-seq
data from TCGA database were processed using R software, and raw
data from the SRA database were downloaded using the SRA
Toolkit. Meanwhile, the patients without follow-up information
and complete relapse-free survival (RFS) outcomes were excluded
from our study; so, a total of 548 TNBC patients were included in the
current study. All TNBC samples included in this study were used as
the training set, and 40% of TNBC samples were randomly selected
as the internal validation dataset (testing dataset). Lastly, we also
extracted 1,399 oxidative stress proteins from the GeneCards
database (https://www.genecards.org/) based on a previous study.

2.2 Batch effect correction

After the aforementioned transcriptome sequencing raw
expression data from different platforms were combined and
log2-transformed, the expression profiles of OS-related genes
were extracted from the normalized matrix based on the names
of the obtained 1,399 OS-related genes, all of which were
implemented using the R package. To eliminate batch differences
between two datasets, we applied the ComBat method from the R
package “sva” for standardization. In addition, principal component
analysis (PCA) was conducted to evaluate the performance of batch
effect removal.

2.3 Screening of OS-associated prognostic
genes

After correcting for batch effect, we selected the 1,399 OS gene
expression profiles from the combined matrix. Then, univariate Cox
regression analysis was performed to evaluate the relapse-free
survival (RFS)-related genes. The screening criteria were set as a
p-value less than 0.05, and the top 10 results of the analysis were
visualized on a forest map.

2.4 Identification of OS subtypes by
consensus clustering

Based on the OS-related prognostic genes, unsupervised
consensus clustering analysis was conducted to identify OS
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molecular subtypes and define the number of clusters via the
“ConsensusClusterPlus” R package in 548 TNBC samples. To
ensure the stratification stability, after 1,000 iterations of
parameters, the optimal K value was determined, which
represents the optimal number of clusters out of 2–9 clusters. For
showing the distribution difference of OS subtypes, we carried out
principal component analysis. We also compared the difference in
the RFS between different clusters in the total dataset to evaluate the
clinical value of OS subtypes, which were analyzed using the log-
rank test. The relationship between subtypes and clinical factors was
also analyzed.

2.5 Immune landscape of OS subtypes

To explore the immune infiltration characteristics of the OS
clusters, here, the ESTIMATE algorithm and “Estimate” R package
were used for calculating the proportion of immune matrix
components in different OS molecular subtypes, including the
ImmuneScore, StromalScore, and ESTIMATEScore. The
enrichment level of tumor-infiltrating immune cells (TICs) in the
TME between the OS subtypes was compared using a single-sample
gene set enrichment analysis (ssGSEA) program. Meanwhile, we
also assessed the differential expression of the human leukocyte
antigen (HLA) genes between different OS subtypes. Lastly, to
estimate the associations between the OS subtypes and the
efficacy of immune checkpoint blockade (ICB) therapy, we
analyzed the differential expression levels of three common
immune inhibitors in different subtypes. A p-value of less than
0.05 represented the significant difference.

2.6 Differentially expressed gene screening

We use prediction analysis for microarray (PAM) to validate the
subtypes. Differentially expressed genes (DEGs) of each subtype
were analyzed using the “limma” package. The filter criteria were set
to an adjusted p-value < 0.001. The result of the analysis was
visualized in a volcano map utilizing the “ggplot2” package. In
addition, we extracted the DEGs between different subtypes for
further analysis.

2.7 Construction of the OS-related signature

In the training set, univariate Cox regression analysis was
applied for determining the OS-related DEGs associated with the
RFS of TNBC patients. Next, these genes were analyzed using a
machine learning method, called least absolute shrinkage and
selection operator (LASSO), to optimize the number of genes.
Then, we attempted to develop an optimal prognostic signature
based on the coefficient (Coef) from multivariate Cox regression
analysis. The model was constructed using the following formula:
risk score = expression of gene 1 × Coef + expression of gene 2 ×
Coef +. . .+ expression of gene n × Coef. For validating the predictive
power of the OS-related risk signature, we compared the survival
status between high- and low-risk groups with the log-rank test and
drew the time-dependent receiver operating characteristic (tROC)

curve in the training and testing datasets, which were conducted
using the R package survminer. To further ascertain the clinical
value of the OS-related risk signature 161, we compared it with other
clinical parameters. This was assessed using Cox regression analyses.

2.8 Nomogram based on the signature
model and function enrichment

Nomograms are a visualization tool widely used to assess the
disease prognosis or other clinical outcomes in cancer patients. So
based on significant clinical variables and the risk score of the
signature, we established a nomogram in the training set to predict
the probability of 1-, 3-, and 5-year RFS for patients with TNBC.
Then, to validate the reliability of the nomogram between the
predicted RFS and actual RFS rates, a calibration curve was
drawn using the bootstrap method (1,000 replicates). In addition,
to assess the predictive accuracy of the nomogram, we calculated the
concordance index (C-index) of the model.

In this study, Gene Ontology (GO) functional and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted using the “clusterProfiler”
package, which aims to explore the candidate mechanism of the
DEGs in different OS subtypes. GO and the KEGG terms with a
q-value of less than 0.05 were defined as significantly enriched.
Additionally, the top five results of the enrichment analysis were
shown in Circos diagrams.

2.9 Identifying and validating hub genes of
each subtype

Considering the clinical application, using too many genes to
assist in clinical decisions is not possible; so we use prediction
analysis for microarray (PAM) algorithms to select hub genes of
each subtype, and the standard is keeping only features with a
positive PAM score in one subtype. To test the robustness of the
subtype, we randomly sampled 40% of the original dataset for
subtype prediction and performed survival analysis using the
nearest template prediction (NTP) algorithms and KM analysis,
respectively.

3 Results

3.1 Data processing

The flowchart of this study is shown in Figure 1. Enrolled
548 TNBC samples were obtained from TCGA and SRA
databases, respectively. The detailed clinical information on
patients is given in Supplementary Table S1. We used the
ComBat method to correct batch effects after combining OS-
related gene expression data from the two different datasets.
Before the transformation of independent datasets, there was an
obvious batch effect by the PCA results (Figure 2A). However, two
datasets clustered together after the transformation (Figure 2B),
demonstrating that we successfully removed the batch effect in
cross-platform normalization.
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3.2 Identification of oxidative stress subtypes
in TNBC

By conducting univariate Cox regression analysis in the total
dataset, we ultimately identified 61 OS-related genes correlated with
the RFS of TNBC patients (p < 0.05; Figure 2C; Supplementary
Figure S1) for the subsequent determination of the OS subtypes of
TNBC. According to the expression levels of the aforementioned
61 prognostic genes, two different OS-related clusters were
determined by consistent cluster analysis (cluster A vs. cluster B)
(Figure 2D; Supplementary Figure S2). At the same time, the PCA
results supported the stratification when k = 2, that is, the OS-related
prognostic genes successfully distinguished cluster A from cluster B
samples in TNBC (Figure 2E). Moreover, the log-rank test indicated

that TNBC patients in cluster A had a better prognosis than those in
cluster B (p = 0.015; Figure 2F).

3.3 Subtype with the clinical factor

By analyzing the correlations between subtypes and clinical
variables, we found that the distribution of the two variables
metastasis and therapy response was not significant between
subtypes (p = 0.665 vs. p = 1.000) (Figures 3A, B), whereas the
stage showed a significant difference (p = 0.002) (Figure 3C). The
statistical results of KI67, lymph node status, and statistical
distribution of the tumor size were also insignificant (p =
0.665 vs. p = 0.689 vs. p = 0.237) (Figures 3D–F).

FIGURE 1
Workflow of this study.
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3.4 The immune landscape of oxidative
stress subtypes

To further explain the mechanisms underlying the differences in
the prognosis between the two OS subtypes, we explored the
composition of TICs, the HLA, and immune checkpoints in these
two subtypes. First, the ImmuneScore and ESTIMATEscores of
TNBC patients with cluster A were both higher than those of
cluster B (Figure 4A), suggesting that there is a difference in the
tumor microenvironment between the two subtypes. By ssGSEA
analysis, we obtained the infiltration level of tumor-infiltrating
immune cells in the two subtypes. We found that tumor-
suppressive immune cells were more infiltrated in cluster A (such
as activated B cells, activated CD8+ T cells, and natural killer (NK)
cells). Interestingly, we also found that tumor-promoting immune
cells, regulatory T cells (Tregs), appeared highly infiltrated in cluster
A (Figure 4B). This would reveal that cluster A could be an immune-
activated subtype, while cluster B could be an immunosuppressive
subtype. Moreover, as shown in Figure 4C, cluster A had high
expression levels of HLA-A, HLA-B, HLA-DRA, and HLA-DRB1
(p < 0.001). Notably, in the analysis of three common immune
checkpoints between the two subtypes, our results showed that the
expression of PDCD1 (also known as PD-1), CTLA-4, and
PDL1 was all significantly increased in the cluster A subtype (p <
0.001; Figure 4D). Summing up, the aforementioned results
indicated that cluster A may be a tumor-suppressive subtype. At

the same time, TNBC patients with cluster A may be more sensitive
to ICB therapy, as well as being a target population.

3.5 Construction of the OS-related gene
prognostic signature

Having the filter criteria of q-value < 0.001, a total of 441 OS-
related DEGs were screened from clusters A and B, and among
them, 232 were upregulated and 209 were downregulated genes
(Figure 5A; Supplementary Table S2). These 441 OS-related DEGs
were utilized to build the prognostic signature. First, 27 candidate
OS-related genes correlated with the RFS in TNBC patients were
selected using univariate Cox regression (Figure 5B; Supplementary
Table S3). Next, LASSO regression analysis picked out 12 optimal
OS-related prognostic genes with non-zero coefficients (Figures 5C,
D). Subsequently, through multivariate Cox regression analysis,
eight OS-related genes (PDCD1, CSF2, IL6, AGTR1, SERPINA1,
CYP27A1,GCLC, andKNG1) were associated with the RFS of TNBC
patients (p < 0.05). Based on the regression coefficients, an eight-
gene signature was constructed (Supplementary Table S4). The risk
score of the signature was as follows: risk score = (−0.329525354) ×
PDCD1 + (−0.316236293) × CSF2 + (0.16509038) × IL6 +
(0.232422544) ×AGTR1 + (−0.220580168) × SERPINA1 +
(−0.285188297) × CYP27A1 + (−0.697833762) × GCLC +
(−0.348399969) × KNG1.

FIGURE 2
Consensus clustering of themolecular subtype based on the OS-related prognostic genes in TNBC. Principal component analysis for the two TNBC
datasets before (A) and after merging (B). Forest map showing the top 10 OS-related genes correlated with the RFS in the total dataset (p < 0.05) (C).
Determination of the optimal cluster number, and k = 2 was considered to be the best clustering number (D). Principal component analysis of the OS-
related prognostic genes to distinguish cluster A from cluster B samples in TNBC (E). Kaplan–Meier survival analysis between the two OS clusters in
the total dataset (F).
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3.6 Evaluation and validation of OS-related
gene signature efficacy

The risk scores of each TNBC patient will be obtained using
the aforementioned formula; patients will be divided into two
different groups, one for a high-risk group with a risk score more
than the median value and another for the low-risk group. In the
training dataset, these results showed that the mortality
occurrence depended on the risk score (Figure 6A). Moreover,
as shown in the KM survival curve, low-risk patients had
significantly longer relapse-free survival time than high-risk
patients (p = 2.645e−04; Figure 6B). In addition, the area
under the curve (AUC) values of the tROC curves for
predicting the RFS were 0.708, 0.740, and 0.710 (Figure 6C),
suggesting that the prognostic risk signature for TNBC has
favorable predictive sensitivity. The testing dataset was used to
validate the predictive performance of the model, and we showed
the risk distribution of the model and gene expression in the
samples (Figure 6D). Then, we found that the conclusion of the
RFS between groups was also consistent (log-rank test, p =
9.586e−03) (Figure 6E). Similarly, the 1-, 3-, and 5-year tROC
curves further supported the aforementioned conclusion that our
signature had good predictive efficacy for RFS outcomes of TNBC
patients (AUC = 0.691, 0.645, and 0.610, respectively)
(Figure 6F). In general, the aforementioned results proved that
this prognostic risk model was considered reliable.

3.7 Clinical value of the OS-related gene
signature

Cox regression analyses in the training dataset were conducted
to assess the clinical value of the signature. In the univariate Cox
regression model, the hazard ratio (HR) was 1.411 with 95%
confidence interval (CI) ranging from 1.268 to 1.569 (p < 0.001)
(Figure 7A). This conclusion suggested that the signature was a risk
factor for the RFS of TNBC patients. Meanwhile, multivariate Cox
regression also demonstrated that this signature was also an
independent risk factor for TNBC patients compared with other
clinic characteristics (HR = 1.446, 95% CI =1.275–1.640, and p <
0.001) (Figure 7B).

3.8 Nomogram predicting RFS

In the training set, we successfully built a visualized nomogram
combined with several significant clinical factors to predict RFS
probability (Figure 7C). The C-index of this model was 0.725, which
showed a good capacity in predicting the RFS for TNBC patients.
Then, calibration analysis demonstrated that this nomogram had
high accuracy because the predicted curve was close to the ideal
curve (Figure 7D). Lastly, the tROC curves of this nomogram also
illustrated good accuracy for predicting patient outcomes (AUC =
0.747, 0.696, and 0.695, respectively) (Figures 7E–G).

FIGURE 3
Subtypes are associated with clinic factors. The distribution of the metastasis and therapy response of the two variables showed no significance
between subtypes (p = 0.665 vs. p = 1.000) (A,B), whereas the stage showed a significant difference (p = 0.002) (C). Statistical results of KI67, lymph node
status, and statistical distribution of the tumor size were also insignificant (p = 0.665 vs. p = 0.689 vs. p = 0.237) (D–F).

Frontiers in Genetics frontiersin.org06

Liu et al. 10.3389/fgene.2023.1230911

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230911


3.9 Different biological functions of
subtypes

In terms of the potential biological functions of the DEGs,
we found that these DEGs were mainly involved in the

response to oxidative stress (Supplementary Figure S3A).
The important pathways for KEGG enrichment were
mitogen-activated protein kinase (MAPK) and tumor
necrosis factor (TNF) signaling pathways (Supplementary
Figure S3B).

FIGURE 4
Immune landscape of OS subtypes in the total datasets. StromalScore, ImmuneScore, and ESTIMATEscore between the two OS subtypes (A).
Abundance of TICs between the two OS subtypes (B). Expression of HLA genes between the two OS subtypes (C). Expression of three common immune
checkpoint molecules between the two OS subtypes (D).

FIGURE 5
Differential expression analysis and construction of the OS-related prognosis signature. Volcano map of 441 OS-related DEGs between clusters A
and B. Red represents the upregulated genes; green represents the downregulated genes; and black represents genes with no statistical difference (A).
Forest plot showing the top 10 OS-related genes correlated with RFS among 441 DEGs (p < 0.05) (B). The partial likelihood deviance plot is based on the
LASSO regressionmodel in the 10-fold cross-validation (C). LASSO coefficient profiles of the 12OS-associated genes are determined by the optimal
lambda (D).
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4 Subtypes could be predicted by core
genes

To test the robustness of the subtype, we randomly sampled
40% of the original dataset for subtype prediction and
performed survival analysis. The analysis results suggested
that the core genes could better distinguish the oxidized
subtypes of TNBC and further confirmed that the
recurrence-free survival time of the A subtype was longer
than that of the B subtype, and there was statistical
significance between the groups (Figures 8A–C).

5 Discussion

There is growing evidence that ROS is involved in all stages of
tumorigenesis, including initiation, promotion, and progression
(Weitzman and Gordon, 1990). Chronic oxidative stress has been
proved to increase the invasiveness of the breast cancer cell line
MCF-7 in vitro (Mahalingaiah et al., 2015), and mitochondrial
DNA damage derived from OS could promote progression and
metastasis in BC mouse models (Yuzefovych et al., 2016). All
these suggest that oxidative stress occurs during the progression
and metastasis of BC. As in TNBC, Malik et al. (2021) observed
increased ROS levels in all the TNBC cell lines compared to
normal cells and ER + breast cancer cell lines. In addition, the
activated C/EBPβ/AEP signaling involved in OS-mediated
metastasis in the TNBC cell line has been revealed by Lei
et al. (2021) recently. However, more existing studies mainly
focus on the induction of ROS by peroxidative drugs to cause the
death of BC cells (Morotti et al., 2021), while the mechanism of

ROS in the development of TNBC patients remains unclear.
Despite the high recurrence rate and poor prognosis of TNBC
patients, some sets of this population have the same prognosis as
other subtypes (Liedtke et al., 2008), which should remind us that
TNBC is a highly heterogeneous tumor, and gene expression
profiling of individuals should be taken into consideration before
risk-stratified treatment.

Fortunately, the development of sequencing technologies
provides more platforms and opportunities to dissect the disease
at the molecular level (Karaayvaz et al., 2018). As shown in our
study, two different molecular subtypes were identified by consistent
cluster analysis in TNBC datasets based on the prognosis-related OS
genes, demonstrating differential prognosis and TME profiling,
which also highlight the heterogeneity of TNBC patients.
Although ROS can mediate the reprogramming of the
extracellular matrix, cancer-associated fibroblasts, and endothelial
cells in the breast TME (Wishart et al., 2020; Zheng et al., 2022), we
did not observe any differences between the two molecular subtypes.
Different TNBC datasets and different cell composition ratios in the
breast TME may have explained this result, which also does not
imply an opposite function driven by ROS in stromal cells. Cluster A
is more enriched with tumor-infiltrating lymphocytes (TILs) than
cluster B, whichmight contribute to a better RFS. Interestingly, some
tumor-suppressor immune cells (Li et al., 2018), such as Tregs, are
also enriched in cluster A. Operation plus systematic chemotherapy
has been considered the standard regimen for non-metastatic TNBC
(Brewster et al., 2014); however, the unsatisfactory treatment
response has led researchers to focus on immunotherapy, a
promising therapy that has achieved success in hematological
diseases and several solid tumors (Brown and Bicknell, 2001;
Nourazarian et al., 2014; Deepak et al., 2020). Previous studies

FIGURE 6
Validation of the OS-related prognostic signature in TNBC patients. Risk score distribution, survival status distribution, and the expression of eight
OS-related genes in low- and high-risk groups from the training dataset (A). Kaplan–Meier survival analysis of RFS between the low- and high-risk groups
from the training dataset (B). Time-dependent ROC curves of 1-, 3-, and 5-year RFS predicted by the prognostic signature from the training dataset (C).
Risk score distribution, survival status distribution, and the expression profile of eight OS-related genes in low- and high-risk groups from the testing
dataset (D). Kaplan–Meier survival analysis of RFS between the low- and high-risk groups from the testing dataset (E). Time-dependent ROC curves of 1-,
3-, and 5-year RFS predicted by the prognostic signature from the testing dataset (F).
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showed that TNBC has more TILs and higher expression of PD-L1
in both immune and cancer cells than other tumors (Wilkerson and
Hayes, 2010; Wu et al., 2021), which predict better immunotherapy
response, making this subtype likely to benefit from
immunotherapy. Unfortunately, we did not obtain a positive
result from comparing single-agent pembrolizumab versus single-
agent chemotherapy in the phase III KEYNOTE-119 trial
(Weitzman and Gordon, 1990). Therefore, it is important to
explore new molecular markers to select the potential population.
Recently, some scholars have shown the expression of HLA-A and
HLA-B was correlated with the markers of T-cell activation and the
favorable prognosis in basal-like BC patients (Noblejas-López et al.,
2019); these could be new markers for identifying better
immunotherapy responses. Another study showed that HLA-I
loss of heterozygosity (LOH) (loss of at least one of the HLA-A,
HLA-B, and HLA-C genes) was an independent risk factor for RFS
and worse immunotherapy response in TNBC patients (Zhou et al.,

2021), which was consistent with our result. In addition, higher
expression of important immune checkpoints, like PDCD1, PDL1,
and CTLA4 (Yin et al., 2020), can be observed in molecular subtype
A. All these observations suggest that our molecular subtypes based
on OS-related genes could be applied to predict the efficacy of
immunotherapy for TNBC patients.

To construct an OS-related prognostic signature for TNBC
patients, eight hub OS genes (PDCD1, CSF2, IL-6, AGTR1,
SERPINA1, CYP27A1, GCLC, and KNG1) were selected among
the DEGs between clusters A and B via machine learning
algorithms and the Cox regression model. The eight-gene
signature was highly accurate in predicting the (1-, 3-, and 5-
year) RFS for TNBC patients due to the high AUC values of
tROC curves in the training and testing datasets. These genes
have been shown to be associated with oxidative stress and
involved in cancer progression. Programmed cell death 1 (PD1,
also termed PDCD1) is an immunosuppressive molecule expressed

FIGURE 7
Independent prognostic analysis of the signature and the construction and evaluation of the nomogram in the training dataset. Univariate Cox
regression analysis of the signature and other clinical factors in the training set (A). Multivariate Cox regression analysis of the signature and other clinical
factors in the training set (B). The nomogramconsists of the age, T stage, N stage, and risk score to predict the probability of 1-, 3-, and 5-year RFS in TNBC
patients (C). Calibration curves of 1-, 3- and 5-year RFS in TNBC patients were predicted by the nomogram (D). Time-dependent ROC curves of 1-,
3-, and 5-year RFS predicted by the nomogram (E–G).
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in activated T cells as a marker of exhaustion and has been used to
predict immunotherapy response. Wang et al. (2019) found that
PD1 was upregulated and served as a risk factor in the
immunomodulatory subtype of TNBC. On the other hand, the
expression of PD1 on activated T cells can also limit oxidative
metabolism (Bettonville et al., 2018), which was related to decreased
generation of ROS, to promote T-cell survival and functional fitness.
CSF2, known as GM-CSF, can stimulate GM and dendritic cell
differentiation, and enhance the antigen-presenting function for
antitumors (Yan et al., 2017). IL-6 takes part in various immune and
inflammation procedures, and the inhibition of IL-6 expression can
decrease colony formation and tumor growth in TNBC through NF-
κB signaling (Hartman et al., 2013). However, the exact regulatory
mechanism of ROS/IL-6 in TNBC remains unclear. As for another
risk gene, AGTR1, previous studies already revealed that AGTR1 can
promote the metastasis and invasion of breast cancer via the
CXCR4/SDF-1α axis (Singh et al., 2020), and the AGTR1 KO
TNBC cell line demonstrated an attenuated EMT process
(Moschetta-Pinheiro et al., 2021). On the contrary, SERPINA1
(Chan et al., 2015) and CYP27A1 (Kimbung et al., 2017) were
considered favorable genes for prognosis in BC patients, and
GCLC is involved in glutathione biosynthesis and could eliminate
the irradiation-derived ROS via increasing the glutathione, thus
driving resistance in TNBC (Bai et al., 2021). As for KNG1, an

important pro-inflammatory and pro-oxidant factor, there are few
studies on its role in breast cancer. Furthermore, based on the risk
score of the signature, we included some significant risk variables,
like age, T stage, and N stage, in the nomogram for comprehensively
assessing the 1-, 3-, and 5-year RFS of TNBC patients, and it
demonstrated effective predictive power, which may provide an
easy and accurate method for clinicians to evaluate the RFS of TNBC
patients.

The function analysis of DEGs between clusters A and B
revealed that these genes are involved in some OS-related and
immune activity biological processes, like the response to OS,
T-cell activation, and positive regulation of cytokine production,
as well as being predominantly enriched in the MAPK and TNF
signaling pathways. For example, the MAPK signaling pathway is
involved in directing cellular responses to stimuli, such as heat
shock, ionophores, and pro-inflammatory cytokines (Seger and
Krebs, 1995). Previous studies have shown that the activation of
the MAPK/JUN pathway could induce ROS-mediated cell death in
TNBC cell lines (Zhang et al., 2015; Dai et al., 2021); on the other
hand, ROS derived from the pathway can also promote the
aggressiveness of TNBC cells (Zhao et al., 2017). Meanwhile, to
explore the interaction relationships and hub gene modules of these
DEGs, we successfully identified three hub modules in the PPI
network. These three modules included nine genes

FIGURE 8
Hub genes of each subtype and robustness of test subtypes in a random dataset. Eleven hub genes of subtype A and 10 hub genes of subtype Bwere
identified (A), and these genes could better distinguish the oxidized subtypes of TNBC (B). The subtype A shows a better outcome than the subtype B (C).
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(MT-ND3, MT-ND1, MT-ND4, RAC2, CYBA, NCF4, GRB2, SHC1,
and PIK3R1) shown to be involved in the progression and
development of cancers or diseases (Jiang et al., 2018; Mani
et al., 2019; Liu J. et al., 2022).

However, our study still lacks in some areas. First, the TME is a
complicated context for the progression of cancers. Thus, the ROS-
mediated crosstalk among immune cells, tumor cells, and stromal
cells should be further explored to elaborate on the role of OS in the
TNBC TME. Second, more immunotherapy datasets and
multicenter randomized controlled trials are needed to validate
our molecular subtypes and risk model in the TNBC population.
Third, experiments should be further performed to explore the
function of the hub OS genes.

6 Conclusion

In summary, our stratified OS-related molecular subtypes
depict two different molecular clusters and immune profiles of
TNBC, which is of great significance for predicting the
prognosis and immunotherapy efficacy for TNBC patients. In
addition, the OS-related signature and nomogram can provide
important supplement risk evaluation to direct individual
precision therapy.
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