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Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp
DNA wrapped around a histone octamer, containing two copies of H2A, H2B,
H3 and H4. A linker histone H1 can bind nucleosomes through its conserved
GH1 domain, which may promote chromatin folding into higher-order structures.
Therefore, the complexity of histones act importantly for specifying chromatin
and gene activities. Histone variants, encoded by separate genes and
characterized by only a few amino acids differences, can affect nucleosome
packaging and stability, and then modify the chromatin properties. Serving as
carriers of pivotal genetic and epigenetic information, histone variants have
profound significance in regulating plant growth and development, response to
both biotic and abiotic stresses. At present, the biological functions of histone
variants in plant have become a research hotspot. Here, we summarize recent
researches on the biological functions, molecular chaperons and regulatory
mechanisms of histone variants in plant, and propose some novel research
directions for further study of plant histone variants research field. Our study
will provide some enlightens for studying and understanding the epigenetic
regulation and chromatin specialization mediated by histone variant in plant.
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1 Introduction

Over the long evolutionary process, nucleosome has always been a defining unique
feature of eukaryotes. Nucleosome, the most basic structural unit of chromatin, is consisting
of ~147 bp DNA wrapped around a histone octamer, two copies of H2A, H2B, H3, and H4.
Besides these core histones, the linker histones H1, which binds to the nucleosome core at a
ratio of one per nucleosome to form the chromosomes and play a role in compacting
chromatin into higher order structures. This integral regulatory unit is indispensable in
almost every DNA template involving processes, and the complexity, involving
modifications and variants, of these histones code unquestionably has important
significances on genome architecture and gene regulation (Foroozani et al., 2022).

The chromatin of plants exhibits a wide range of sequence variants of the core and
linker histones. In plants, except for H4, the remaining histones H2A, H2B, H3 and linker
H1 all exist in multiple variants forms that are encoded by different genes and
distinguished by different protein sequences. Histone variants, acting as non-allelic
protein isoforms of canonical histones, can antagonize deposition of canonical
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histones at specific chromatin loci to maintain stability of
nucleosome and confer chromatin structure more diversity and
flexibility (Martire and Banaszynski, 2020; Kurumizaka et al., 2021;
Nunez-Vazquez et al., 2022; Probst, 2022). Additionally, variant
protein can be modified by specific post-translational
modifications (PTMs), defines distinct chromatin states that
impact specific chromatin functions (Foroozani et al., 2022;
Jiang and Berger, 2023). Increasing studies have indicated that
histone variants influence in transcription and epigenetic states,
chromosome segregation, DNA damage repair (Foroozani et al.,
2022; Jiang and Berger, 2023). Overall, histone variants exhibit
important transcriptional programming functions during
developmental process and stress responses in plants.

In this review, we concisely summarize the researches about
plant histone variants and mainly focus on their biological functions
and regulatory mechanisms in transcriptional regulation during
plant growth and development, environmental stress responses.
Moreover, we also discuss the limitation in current researches,
and propose new directions for researches in the field of plant
histone variants.

2 Histone variants in plants

In plants, except for histone H4, all other core histones (H2A,
H2B, and H3) and linker H1 have various variant forms, and most
researches focus on variants of H2A and H3. H3.3 and H2A.Z are
evolutionarily conserved throughout eukaryotes (Yelagandula et al.,
2014; Giaimo et al., 2019). In addition, there are some lineage-
specific and tissue-specific variants, such as H2A.W variants that
only function in flowering plants (Bourguet et al., 2021; Lei et al.,
2021), while the H3.10 and H2B.8 only existing in sperm cells of
Arabidopsis (Borg et al., 2020; Jiang et al., 2020; Borg et al., 2021;
Buttress et al., 2022). Species and tissues specificity endow histone
variants with distinct functions. Cause of distinct amino acid
sequences from the canonical histones, variant proteins exhibit
distinct chromatin deposition pattern. For example, H2A.Z and
H2A.X are more biased to be concentrated in the euchromatic
region (Lei and Berger, 2020; Borg et al., 2021), while H2A.W is
mainly located in the concentrated heterochromatin region, and
different histone variants can endow nucleosomes and chromatin
with unique properties. The combination of different histone
variants can form hundreds or thousands different types of
nucleosomes, and this flexible pattern confer great potential for
regulating various physiological processes in plants by the epigenetic
code. Histone variants can influence nucleosome stability, histone
modification, DNA repair and methylation, transcriptional activity,
epigenetic states, and other nuclear processes that profoundly
involve in plant growth and development, environmental stress
responses.

There is a wide variety of histone variants in plants and their
physiological functions are sophisticated, therefore, in the next
paragraph, histone variants will be classified according to their
family, and the similarities and differences between different
variants in the same family will be summarized, which will
provide reference for further research on the biological functions
of histone variants in plant. In Arabidopsis, the majority of histones
variants are organized in Table 1 discussed below.

2.1 H2A variants

The H2A histone variants, playing vital roles in numerous
biological processes, are widely studied. The three most widely
studied histone variants of H2A are H2A.Z, H2A.X, and H2A.W,
among them, H2A.W is specific in flowering plant, whereas H2A.X
and H2A.Z are evolutionarily conserved among different species.
Different H2A variants are distinguished mainly by three main
features: L1 loop, docking domain and C-terminal tail.

The H2A.Z variant has a shorter C-terminal tail, which is a
typical feature that differs from canonical H2A. The C-terminal tail
of H2A.Z contains a KD/E conservative motif, and L1 loop contains
a conservative S/TAHG motif, and the H2A.Z docking domain
differs from other H2A histone variants. In Arabidopsis, there are a
total of three genes encoding H2A proteins. The HTA8/9/11, which
are redundant but exhibit different expression patterns, are
responsible for encoding H2A.Z (Yi et al., 2006; Sijacic et al.,
2019). In Arabidopsis, most active genes contain a prominent
H2A.Z peak at the +1 nucleosome beyond the transcription start
site (TSS) (Foroozani et al., 2022), while H2A.Z is mainly enriched in
the gene body region of genes with low expression. H2A.Z is
deposited into nucleosome by the ATP dependent
SWR1 complex (SWI2/SNF2 related 1 complex) (Verbsky and
Richards, 2001; Kobor et al., 2004; Mizuguchi et al., 2004), and
the core subunits of SWR1 include PIE1 (PHOTOPERIOD-INDE
PENDENT EARLY FLOWERING 1), ARP6 (ACTIN RELATED
PROTEIN 6), SWC4 (SWR COMPLEX SUBUNIT 4) and SWC6
(SWRCOMPLEX SUBUNIT 6) (Kobor et al., 2004; Mizuguchi et al.,
2004; March-Díaz et al., 2007; Carter et al., 2018; Potok et al., 2019).
Recent studies have shown that MBD9 (methy-CpG-binding
domain 9) (Sijacic et al., 2019), YAF9 (yeast all1-fused gene from
chromosome 9) (Crevillén et al., 2019) also participated in the
assembly of H2A.Z into nucleosomes. On the contrary, NRP1
(NAP1 related protein 1) and NRP2 perform opposite function.
Arabidopsis NRP1 and NRP2 proteins interacting with H2A.Z are
also involved in the removal of H2A.Z from nucleosome in a
SWR1 complex dependent manner, thus preventing the excessive
accumulation of H2A.Z in nucleosome (Wang et al., 2020).
INO80 control sliding and displacing of the canonical histone
H2A and the variant H2A (Eustermann et al., 2018).

H2A.Z occupied a high proportion of total H2A content in cells,
and involved many chromatins mediated processes, including
changes of chromatin state as well as transcriptional activation or
repression. In terrestrial plants, most H2A.Z-substituted nucleosomes
are involved in the repression of transcription. H2A.Z inhibits
transcriptional activity by promoting the recruitment of
H3K27me3—a repressive histone modification, and preventing the
deposition of H3K4me3, an active histone modification, thereby
repressing gene transcription (Sequeira-Mendes et al., 2014;
Yelagandula et al., 2014). Similar to conventional histones, histone
variant H2A. Z could also be post-translationally modified, and the
mono-ubiquitin modification of 129th lysine residue in H2A.Z by the
PRC1 is also related to transcriptional repression (Gómez-Zambrano
et al., 2019). Overall, H2A is involved in regulating all aspects of plant
growth and development, and mutants loss of H2A function cause
pleiotropic phenotypes including early vegetative phase change, early
flowering, reduced fertility and others. In Arabidopsis, the biological
functions of H2A.Z are organized in Figure 1 below.

Frontiers in Genetics frontiersin.org02

Wu et al. 10.3389/fgene.2023.1229782

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1229782


Unlike H2A.Z, H2A.X variant has great similarity with H2A in
terms of amino acid sequence, and the subtle feature that distinguishes
H2A.X from canonical H2A is the presence of an SQEF motif at the
C-terminal of H2A.X. H2A.X is enriched primarily in euchromatin and
bodies of expressed genes (Yelagandula et al., 2014; Lorković et al.,
2017). The histone chaperone of H2A.X is FACT (Facilitate Chromatin
Transcription) complex in mammalian, while the assembly mechanism
of H2A.X in plants has not been revealed. However, based on the fact
that FACT chaperone is conserved in eukaryotes, it is reasonable to
speculate that FACT may perform a similar function in plants
(Foroozani et al., 2022). The most classic and characteristic function
of H2A.X is to participate in the repair of DNA damage (Redon et al.,
2011), which mainly depend on the phosphorylation of SQEF motif.
WhenDNA is damaged, the serine residue of the SQEFmotif in H2A.X
is phosphorylated and then repair factors is recruited to repair the DNA
damage (Bewersdorf et al., 2006).

The H2A.W variant is exclusive to the flowering plant
(Kawashima et al., 2015). Particularly, the expression of H2A.W
is restricted to S-phase, and its deposition is replication dependent
(Gómez-Zambrano et al., 2019). H2A.W synergizes with the
heterochromatin marker H3K9me2 and mainly distributed in the
heterochromatin region, and H2A.W can promote heterochromatin
condensation thus maintaining heterochromatin silence state
(Yelagandula et al., 2014). The deposition of H2A.W alters the
chromatin properties, therefore, preventing transposable elements
(TEs) mobility mediated by DDM1 (DECREASE IN DNA
METHYLATION 1) and leading to the silencing of TEs
(Osakabe et al., 2021). At the same time, H2A.W can antagonize
excessive H1 incorporation on heterochromatin, maintaining
appropriate both CG and non-CG methylation level on the
transposon (Bourguet et al., 2021). H2A.W has the same function
as H2A.X in DNA damage repair. When DNA is damaged, the
serine residue of the SQ motif in C-terminal of H2A.W. is
phosphorylated by ATM (Ataxia-telangiectasia mutated kinase),
thus playing an essential role in promoting DNA damage repair
in the heterochromatin region (Lorković et al., 2017).

2.2 H2B variants

Compared with the well characterized histone variants of other
core histones, the understanding of variants of H2B is relatively
limited. The H2B variants of plants have undergone substantial
evolutionary divergence, and the sequence between different H2B
variants are diverse (Jiang et al., 2020). The H2B.S is highly
expressed in sperm cells and mature embryo cells, both of which
have highly concentrated chromatin. H2B.S variant specifically
accumulates in dry seeds of several flowering plants. It indicates
that the assembly of H2B.S may be beneficial to the concentration of
chromatin. However, the study of H2B variants in plants is still in
inception phase, and their specific functions need to be deeply
studied in the future.

2.3 H3 variants

In plants, H3 has three main variants, H3.1, H3.3, and
centromeric H3 variants (CenH3/CENP-A). Among them,

H3.3 and CenH3 variants are most widely studied. Unlike other
histone variant family, H3 family has high amino acid homology in
convergent evolution. Canonical H3.1 and variants H3.3 are
distinguished by four different amino acids: the 31st (Ala vs. Thr),
41st (Phe vs. Tyr), 87th (Ser vs. His) and 90th (Ala vs. Leu) (Talbert
et al., 2012). Despite such tiny divergence, H3.1 and H3.3 have
significant differences in modification and deposition manner. The
distinction of these four different amino acids facilitates H3.1 to
specifically recruit PRC2 to ensure the silence state of some
developmental related genes. Recently, the combination of
multiple technology methods such as immunofluorescence and
genome-wide ChIP-seq data revealed that H3.1 and H3.3 have
significant differences in deposition manner. H3.1 is
predominantly associated with transposable elements, peri-
centromeric heterochromatin and heterochromatin domains on
chromosome arms, while H3.3 is enriched at the transcription end
sites (TES) of genes (Stroud et al., 2012; Wollmann et al., 2012). A
recent research shows that the variation of 41st amino acid (Phe vs.
Tyr) partially contributes to the different distribution of H3.1 and
H3.3 (Lu et al., 2018). Although H3.3 is predominantly enriched at
the TES and associated with activated histone modification marks
such as H3K4me3, H3K9me3, and H3K36me3, H3.3 does not affect
global transcription but specifically affects the genes in response to
biotic and abiotic stresses (Wollmann et al., 2017). H3.1 is mainly
expressed in the S phase of the cell cycle, while H3.3 can be deposited
through all stages of cell cycle in a DNA replication independent
manner (Ahmad and Henikoff, 2002; Tagami et al., 2004). As the
specific molecular chaperone of H3.1, CAF1 (chromatin assembly
factor 1) can interact with DNA replication fork protein PCNA
(PROLIFERATING CELL NUCLEAR ANTIGEN) to help
H3.1 incorporate onto the newly synthesized nucleosome in S
phase; whereas the H3.3 is transferred by ASF1 (Anti-Silencing
Factor 1) to the typical chaperone HIRA (Histone regulator
homolog A) complex, which can bind to 87th histidine and 90th
leucine amino acids at C-terminal tail of H3.3 and get deposited
through all stages of cell cycle (Daniel Ricketts et al., 2015). Since
other less studied variants including H3.6, H3.14, and H3.10 all
contain the 87th histidine and 90th leucine amino acids, whether
HIRA also plays the role as molecular chaperone in their
incorporations need to be demonstrated in future. Shorten
breeding life.

The amino acid sequence and protein structure of CenH3 is very
different fromH3.1 and H3.3, especially at the N-terminal. CenH3 is
located in the centromere region and plays key roles in centromere
formation and kinetochore assembly, and the incorporation of
CenH3 into nucleosomes occurs in the mitosis G2 stage
(Lermontova et al., 2006; McKinley and Cheeseman, 2016).
Unlike other H3 variants that have been thoroughly studied,
there are few studies on the mechanism of CenH3 assembly into
nucleosomes, and most studies of CenH3 are focused on its
functions in shorting the breeding period. In recent years,
scientists have exploited a series of techniques for haploid
induction (HI) through manipulation of CenH3. HI can create
true-breeding lines in a short period of time, which can greatly
accelerate the pace of plant breeding (Lv et al., 2020; Aboobucker
et al., 2023). At present, HI technology relying on CenH3/CENP-A
transformation in wheat and maize has been reported (Lv et al.,
2020; Wang N. et al., 2021).
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In addition to the main variants of H3 described above, there are
also some atypical H3 variants in Arabidopsis, for instance
H3.15 and H3.10 while H3.15 plays an essential role in callus
differentiation during plant regeneration (Yan et al., 2020),
H3.10 is specially expressed in sperm and participates in the
epigenetic reprogramming of spermatocytes (Borg et al., 2020).

2.4 Linker H1 variants

The linker H1 histone serves as a bridge connection for DNA and
nucleosomes and facilitates chromatin compaction. H1 can bind to
nucleosome through its binding sites in conserved GH1 domain and
draw close to adjacent nucleosome to compress chromatin (Bednar et al.,
2017). There are three variants of H1 in Arabidopsis: H1.1, H1.2, and
H1.3. Among them, H1.1 andH1.2 are themainH1 variants donors. All
of these H1 variants contain three conservative structures: a short
N-terminus, GH1 central globular domain, and lysine rich
C-terminus (Zhou et al., 2013). H1.3 is a histone variant induced by
stresses such as low light, drought, or ABA (Rutowicz et al., 2015), and
H1.3 with shorter N andC terminals and a lack of (S/T) PXKmotifs that
bind to DNA. All of these H1 variants are mainly enriched in the
heterochromatin region and gene body, H1.1 and H1.2 are negatively
correlated with gene expression and H3K4me3 deposition, while the
negative correlation of H1.3 with gene expression and
H3K4me3 deposition is weaker than H1.1 and H1.2 (Rutowicz et al.,
2015). H1.3 is induced under stress and competes for the binding sites of
H1.1 and H1.2, thus changing the accessibility of chromatin.

3 Biological functions of histone
variants in plants

Plant growth and development is orchestrated by specific gene
expression in a spatio-temporal manner. Additionally, plants also
adjust their growth and metabolism in response to environmental
stimuli by altering gene expression. Histone variants contribute
importantly to specify the chromatin complexity and gene
activities, and increasing findings on the variants reveal that they
have essential functions during plant development in response to the
external environment. Therefore, we summarize the important
functions and the downstream mechanisms of histone variants
redefining the plant chromatin landscape that plants perceive and
transmit both developmental and environmental signals.

3.1 Roles of histone variants in plant growth
and development

Flowering is an indispensable stage for higher plants, and
histone variants play important roles in regulating plant flower.

H2A.Z affects flower through regulating the transcript levels of
the floral repressor FLC. Reduction of H2A.Z enrichment near the
TSS region on FLC chromatin repressing its expression and leading
to premature flowering (Deal et al., 2007). In this process, FRI
interacts with SWR1 complex to form a complex (FRI-C), which
mediates H2A.Z enrichment at FLC chromatin loci and regulate
FLC expression (Choi et al., 2011). Early flowering phenotypes were

also observed in arp6, pie1, sef, yf9, mbd9 mutants, which were also
associated with H2A.Z loading and deposition. The SWR1 complex
(SWR1C) can catalyze the substitution of H2A to H2A.Z, and
mutations in members of SWR1C, such as SWC6, SUF3 and
PIE1, also lead to a series of development defective phenotypes,
including leaf serration, apical dominance inhibition, flower
deformity and accompanied with early flowering (Choi et al.,
2007; Fan et al., 2022). Consistently, the early flowering
phenomena of these mutants are all caused by the decrease of
FLC expression caused by H2A.Z loading defects. Unexpectedly,
nap1nap2 double mutants display an increase of H2A.Z enrichment
at the TSS of FLC but a decrease of FLC expression, this finding
indicated that H2A.Z enrichment at the TSS region of FLC is not
prerequisite for FLC activation, and H2A.Z plays a dual role of
activation and repression in gene transcription. The modification of
H2A.Z also plays important roles in regulating the flower process,
such as the acetylation of H2A.Z (Crevillén et al., 2019). Besides
H2A.Z, H3.3 also participate in regulating floral transition in a FLC
dependent pathway. H3.3 deposition and H3.3 mediated histone
modifications are key controllers for flowering regulation through
FLC transcription. FRI and HIRA chaperones collaborate to deposit
H3.3 at the FLC locus and increase the activating histone
modifications H3K4me3 and H3K36me3 at the FLC chromatin
locus. Besides, the researchers discovered that H3.3 can facilitate
the formation of 5′ to 3’ gene loop in FLC thereby promoting its
transcriptional activation through chromosome conformation
capture (3C) technology (Zhao et al., 2021). In addition to
regulating flowering, H3.3 is also involved in regulating seed
germination. H3.3 exhibits a seed specific 5′gene end
distribution, and H3.3 is essential for proper gene transcriptional
regulation during germination (Zhao et al., 2022).

In addition to regulating plant flowering in a FLC-dependent
manner, H2A.Z could also regulate plant growth and development
through some important microRNAs. H2A.Z facilitates the
deposition of H3K4me3 on MIR156A/MIR156C loci, and
maintains a high level of MIR156A/MIR156C transcriptions in
the early stage of shoot development (Xu et al., 2018). In
arp6 and pie1 mutants, reduced H2A.Z deposition and increased
relative nucleosome possession of the MIR396A promoter
significantly repressed miR396 expression, which accelerated
plant leaf growth and vegetative phase change (Hou et al., 2019).
These researches indicate that H2A.Z plays significant role in the
process of plant growth and development regulated by miRNA.

In addition to regulate flower and vegetative transition,
histone variants also involve in spermatocytes formation and
callus differentiation. Unlike animals, specific histone variants
package sperm chromatin of plants (Borg et al., 2020).
H2B.8 performs a vital act in chromatin condensation of
spermatocytes in flowering plants. H2B.8 (also known as
H2B.S) specifically expressed in spermatocytes of flowering
plants and is important for fertility. H2B.8 can specifically
bind to the euchromatin transposon and the inter-gene region,
condense the transcriptionally inactive region through phase
separation, which facilitates nuclear compaction of the
spermatocyte chromatin without affecting the gene expression
(Buttress et al., 2022). In addition, variant of H3 family--
H3.10 participate in the epigenetic reprogramming of sperm
chromatin as well (Borg et al., 2020). H3.15 expression is
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rapidly induced to promote callus differentiation during plant
regeneration. The replacement of lysine with histidine in the 27th
amino acid of H3.15 leads to the failure of H3K27me3 deposition
on the 27th amino acid mediated by the poly-comb repressive
complex 2 (PRC2) on H3.15, and then the assembly of H3.15 will
cause the removal of H3K27me3 from the chromatin, which will
lead to transcriptional de-repression of genes related to callus
formation and tissue regeneration (Yan et al., 2020).

Accurate modulation of hypocotyl cell extension is essential for
plant growth and survival. Under the light, the plant presents the
phenotype of the suppressed hypocotyl elongation and unfolded
cotyledons, while under the dark condition, the hypocotyl elongates
rapidly and cotyledons close. This process by which plants perceive
the light and adjust their morphology is called photo-
morphogenesis, a necessary developmental process from plant
seedlings, which is jointly regulated by multiple pathways.
Research has indicated that the deposition of H2A.Z is essential
for the formation of photo-morphogenesis. NF-YCs (NUCLEAR
FACTOR-Y) directly interact with ARP6 (ACTIN-RELATED
PROTEIN6) to induce the deposition of H2A.Z in a light

dependent manner. Enrichment of H2A.Z occupancy inhibits the
expression of some auxin related genes such as IAA6 and IAA19,
which then suppresses the growth of hypocotyls and promotes the
photo-morphogenesis (Zhang et al., 2021).

PIFs direct interact with SWC6 and repress H2A.Z deposition at
auxin-responsive genes such as IAA6 and IAA19, thus upregulate the
expression of IAA6 and IAA19 in a red light dependent manner
(Chen et al., 2023). Except to IAA6 and IAA19, H2A.Z deposited on
gene body of auxin response genes HY5 to regulated hypocotyl
elongation in the INO80 dependent manner (Yang et al., 2020).
Compared with the deposition or eviction mechanism of H2A.Z, the
transcriptional regulation of H2A.Z is still lacking in available
research (Yin et al., 2023). Recently, Fang et al. shed a form of
feedback regulation of auxin signaling through the transcription and
deposition of H2A.Z, and ARF7/19-HB22/25-mediated H2A.Z
transcription to modulate the activation of SAURs (SMALL
AUXIN UP RNAs) and plant growth in Arabidopsis (Sun et al.,
2022).

Similar to the photo-morphogenesis, plants will adjust their
morphology and architecture under high temperature, such as

FIGURE 1
The biological functions of the histone variants in Arabidopsis thaliana. (A). H2A.Z is deposited into nucleosome by the ATP dependent
SWR1 complex; (B). H2A.Z facilitates the deposition of H3K4me3 on MIR156A/MIR156C loci, and maintains a high level of MIR156A/MIR156C
transcriptions; (C). Under red light conditions, the SWR1 complex deposit H2A.Z at auxin and cell elongation-related genes such as IAA6 and IAA19 to
repress their expression, resulting in photomorphogenesis. Under low R:FR light condition, the INO80 complex mediate H2A.Z eviction from PIF
leading to shade avoidance response; (D). H2A.Z facilitates the transcription of FLC and inhibit the expression of FT, and prevent plants from entering
reproductive stage early; (E). H2A.Z facilitates the deposition of H3K4me3 on YDD, thereby contributing the plants tolerance to Sclerotinia sclerotiorum;
(F). H2A.Z facilitates the expression of drought responsive genes; (G). H2A.Z facilitates the expression of heat responsive genes such as HSP70.(4) The
transcription of genes regulated by histone variants involves a variety of epigeneticmodifications, such as H3K4me3, H3K27me3, and histone variants co-
localize with epigenetic modifications in the same genomic regions, thus they work together to influence the chromatin landscape, but it is unclear how
the corresponding regulatory factors cooperate to achieve this transcription regulation.
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elongations of hypocotyl and petiole as well as early flowering, which
are collectively termed as thermal morphogenesis. Thermal
morphogenesis can facilitate plant to reduce their own
temperature and better adapt to high-temperature environment
(Qin et al., 2022).

There is considerable overlap and crosstalk between plant
thermal morphogenesis and photo-morphogenesis, and H2A.Z
plays indispensable role in both these two physiological
processes. Contrary to photo-morphogenesis, H2A.Z plays an
inhibitory role in process of plant thermal morphogenesis. When
the ambient temperature rises, INO80 chromatin remodeling
complex interacts with PIF4 (PHYTOCHROME-INTERACTING
FACTOR 4), and mediating the expulsion of H2A.Z from
nucleosomes of PIF4 (Xue et al., 2021). INO80-C, a molecular
chaperone, promotes H3K4me3 enrichment on PIF4 and
enhances its transcription (Xue et al., 2021). INO80-C links
H2A.Z eviction and transcription to co-modulate the expression
of high temperature response associated genes, promoting the
thermal morphogenesis of Arabidopsis. INO80 is an ATP-
dependent chromatin remodeling factors that can establish and
maintain the dynamic structure of chromatin employing the
energy provided by ATP hydrolysis, and INO80 is necessary for
H2A.Z loading to nucleosome of target genes. H2A.Z-
INO80 module participates not only in photo morphogenesis and
thermal morphogenesis, but also in the regulation of gibberellin
pathway in rice. H2A.Z-INO80 module influences the GA
biosynthesis pathway, and knockdown of INO80 causes decrease
of H2A.Z enrichment at CPS1 and GA3ox2 loci, leading to a dwarf
phenotype that can be partially restored by the spray of exogenous
GA3 (Li et al., 2018).

3.2 Roles of histone variants in plant
responses to biotic stress

In normal environments, plants maintain their growth and
development accompanied by suppression of the functions of
immune system. Microbial pathogens are the most significant
biotic stresses to which plants are exposed, and therefore plants
have evolved comprehensive immune response strategies to sense
and deal with infection by viruses, bacteria, fungi, and other
pathogens. With the refinement of the network between
epigenetics and plant immunity, histone variants have been
revealed to functions importantly in plants response to biotic
stresses (Kim, 2021).

After perceiving pathogens, plants transduce the signals to alter
phytohormone homeostasis and activate the transcriptions of
resistance genes, ultimately initiating immune mechanisms.
Puccinia striiformis f. sp. tritici (Pst) is a fungus that causes stripe
rust in the host and reduces crop yield. Under high temperature, the
TaCRK10 (Cysteine-rich receptor-like kinases 10) interacts with
TaH2A.1, a variant of H2A.W, to mediate its phosphorylation and
binding to related resistance genes, thereby enhancing resistance to
stripe rust in wheat via the SA signaling pathway (Wang J. et al.,
2021). Sclerotinia sclerotiorum causes white mold in plants,
especially crucifers, whereas the critical element of SWR1C and
the mutation of H2A.Z will affect the resistance of Arabidopsis to
this fungus (Jakada et al., 2019; Cai et al., 2021). Further studies

reveal that SWR1C promotes the expression of YDD (YODA
DOWNSTREAM), a process that involves two epigenetic
modifications, H2A.Z deposition and H3K4me3 modification, on
YDD, thereby contributing to Arabidopsis tolerance to S.
sclerotiorum (Cai et al., 2021). Similarly, arp6, pie1 and hta9hta11
mutants alter the disease resistance of Arabidopsis to the
phytopathogenic bacteria Pseudomonas syringae (March-Díaz
et al., 2008; Berriri et al., 2016). These results suggest that the
SWR1C and histone variants regulate systemic acquired
resistance in Arabidopsis. In addition, monoubiquitination of
histone variants also affects plant disease resistance (Li et al.,
2015). Under normal conditions, BRHIS1 (BIT-responsive
Histone-interacting SNF2 ATPase 1) containing complex
suppresses the expression of disease defense associated genes by
interacting with histone variants H2A.Xa/H2A.Xb/H2A.3 and
H2B.7, which are deposited in the promoter region of these
genes. Upon pathogen infection in rice, decreased BRHIS1
expression is accompanied by increased deposition of
monoubiquitinated histone variants to initiate the immune
response (Li et al., 2015).

3.3 Roles of histone variants in plants
responses to abiotic stresses

Plant growth and crop yield are co-regulated by both internal
and external conditions, whereas the increased frequency and
duration of extreme environments poses challenges to plants
survival, so that plants have evolved multiple complex strategies
to respond to abiotic stresses such as salt stress, phosphate
deficiency, drought, high temperature, etc. Epigenetic regulation
comes into action through histone variants in plant adaptation to
adversities (Wollmann et al., 2017; Halder et al., 2022). Here, we
review current researches on functions of histone variants in plant
responses to abiotic stress and discuss the intricate mechanisms,
with the hope of providing additional valuable references for crop
breeding.

Excessive accumulation and deficiency of soil salinity alters
plant photosynthesis, water uptake, and metabolism, which
ultimately reduces crop production (Van Zelm et al., 2020; Liu,
2021). Plants have evolved multiple molecular mechanisms such
as osmotic adjustment and ionic homeostasis to mitigate the
damage caused by salt stress, where epigenetic modification of
chromatin presents novel perspectives (Singroha et al., 2022).
After salt treatment, a salt-tolerant grapevine rootstock exhibits
three-fold decrease of H2A.X expression (Çakır Aydemir et al.,
2020). Under salt stress, the reduction of H2A.Z deposition at the
promoter and gene body region of AtMYB44 triggers the
transcription of AtMYB44 and enhances Arabidopsis resistance,
combined with unaffected levels of histone modifications,
includingH3K4me3, H3 and H4 acetylation (Nguyen et al.,
2018). Loss of function of ARP6, which affects H2A.Z
deposition, causes inhibition of root development in
Arabidopsis subjected to salt stress (Do et al., 2023). In rice,
phosphate deficiency induces a decline in H2A.Z accumulation on
the gene bodies of stress-responsive genes and facilitates the
expression of these genes, allowing the plant to adapt to
environmental changes (Zahraeifard et al., 2018).
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Water deficit delays plant growth by causing a decline in
biomass accumulation, while the drought response mechanisms
are complex and unrefined. During response to mild water
deficit, the higher stomatal density of h1.3 plants resulting in the
enhanced photosynthetic rate and then in accelerated growth
(Rutowicz et al., 2015). The increased transcription level of

H1.3 contributes importantly to plant responses to drought and
low light stresses (Rutowicz et al., 2015). Furthermore, H1.3 plays an
irreplaceable role in maintaining redox homeostasis and stomatal
development (Rutowicz et al., 2015; Probst et al., 2020). By studying
the gene expression profile of Arabidopsis, it was revealed that the
transcriptions of drought responsive genes are negatively correlated

TABLE 1 Classification of histone variant family, including coding gene loci, chaperone, related generally physiological functions and roles in development and
stress responses in Arabidopsis.

Histone
variants

Gene loci Chaperone General function Roles in stress response, growth and development

H2A H2A.X AT1G54690 FACT? Transcriptional activation, DNA
damage repair

AT1G08880

H2A.W AT5G59870 DDM1 Maintain the silence of
heterochromatin

AT5G27670 Chromatin compaction, DNA damage
repair

AT5G02560

H2A.Z AT2G38810 SWR1 Transcriptional activation and
repression

Flowering time Deal et al. (2007); Sijacic et al. (2019); vegetative phase change
Gómez-Zambrano et al. (2018); Xu et al. (2018); Inflorescence architecture Cai
et al. (2019); Salt, drought, extreme temperature, phosphate deficiency and
immunity responses; Germline development Zhao et al. (2018); Circadian clock

Tong et al. (2020)

AT1G52740 MBD9

AT3G54560 INO80

H2B H2B.1 AT1G07790 NAP1

NRP1

FACT

H2B.2 AT5G22880

H2B.3 AT2G28720

H2B.4 AT5G59910

H2B.5 AT2G37470

H2B.6 AT3G53650

H2B.7 AT3G09480

H2B.8 AT1G08170 Regulate seed development but not expressed in sperm cells

H2B.9 AT3G45980

H2B.10 AT5G02570

H2B.11 AT3G46030

H3 H3.3 AT4G40030 HIRA Transcriptional activation Flowering time Zhao et al. (2021); Male Gametogenesis Ingouff et al. (2010);
Cell proliferation and organogenesis Otero et al. (2016)

AT4G40040 ATRX

AT5G10980

H3.6 AT1G13370 HIRA?

H3.7 AT1G75610

H3.10 AT1G19890 HIRA? Regulate epigenetic reprogramming of Arabidopsis spermatocytes

H3.11 AT5G65350

CenH3 AT1G01370 KNL2 Involved in the formation of spindle
during cell division

induce haploid production

NASP

H3.14 AT1G75600 HIRA?

H3.15 AT5G12910 HIRA Promote callus formation and tissue regeneration
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with the enrichments of H2A.Z in their gene body regions (Sura
et al., 2017).

Extreme temperature affects the balance between development
and reproduction of plants, which is also an important perspective
for studying the functions of histone variants. Under high
temperature, arp6 mutant exhibits hypocotyl and petiole
elongation along with increased expression of heat responsive
genes and HSP70 (Heat shock protein 70), and ChIP analysis
reveals that the enrichment of H2A.Z on the HSP70 promoter is
reduced, relieving its repressive effects onHSP70 expression (Kumar
and Wigge, 2010). Further studies reveal that the INO80 complex
mediates the eviction of H2A.Z and consequently activates the
expressions of thermo-responsive genes, thereby contributing
thermal morphogenesis of Arabidopsis (Xue et al., 2021). Heat
stress regulates plant flowering time by altering the deposition of
H2A.Z on FT gene, whereas this regulatory effect is specific in
different plant species (Del Olmo et al., 2019; Abelenda et al., 2023).
In conclusion, current researches on functions of histone variants in
plants response to stresses have been focused on the H2A variants,
and further investigations are needed to reveal the functions of other
histone variants.

4 Conculsion

The dynamic properties and structural integrity of the
nucleosome are crucial to maintain chromosome activity, and
variants of the core canonical histone, profoundly affecting
chromatin properties, play a prominent role in plant biological
functions. At present, various researches are focusing on H2A.Z,
especially on H2A.Z mediated transcriptional regulation, which has
become a hot topic in the field of plant biology. The current research
gives us a preliminary understanding of the biological functions and
mechanisms of histones in plants, while there are still much
explorations that need to be conducted for in-depth studies.
Future researches can be explored in the following areas:

(1) As important epigenetic regulatory factors, histone variants
play a key role in plant growth and development and stress
responses. At present, most of the histone variant researches
on plants is based on animal researches, and majority of
researches in plant all focus on H2A.Z. There are many cell/
tissues specific histone variants with low expression in plants,
such as and H2B.S and CENH3/CENP-A, it is difficult to use
conventional methods to reveal their functions. The
cognitions of their biological functions are limited and still
in primary exploration stage. With the continuous
development of new technology such as single cell
sequencing technology, CUT&Tag (Cleavage Under Target
sand Tag mentation) can be applied to the study of histone
variants. These technologies have the advantages of low
sample input, high signal-to-noise ratio, and future
research can use these technologies to clarify the
molecular chaperone, depositing and evicting mechanism
in distinct cell types;

(2) The assembly and deposition of histone variants undergo a
dynamic process in a specific growth stage or receiving
environmental stimuli signals such as salt stress, drought,
extreme temperature, or nutrient deficit. And for plant cell, it
is crucial to reprogram their chromosome landscape to respond
to stimuli signals. What roles does epigenetic modifications play
in these processes and whether there are tissue or time specific
epigenetic modifications changes? The mechanism of how the
molecular chaperone receive the internal or external
environmental signals, thus assemble and unload the
corresponding variants remain need to be intensively explored;

(3) In addition, related researches mainly focus on Arabidopsis,
however, there are few studies relate on horticultural crops.
With the deepening of research on the exploration of plant
histone variants, the histone variants are expected to provide
more important reference for crop breeding;
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