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Background: Chronic rhinosinusitis (CRS) is a complex inflammatory disorder
affecting the nasal and paranasal sinuses. Mitophagy, the process of selective
mitochondrial degradation via autophagy, is crucial for maintaining cellular
balance. However, the role of mitophagy in CRS is not well-studied. This
research aims to examine the role of mitophagy-related genes (MRGs) in CRS,
with a particular focus on the heterogeneity of endothelial cells (ECs).

Methods: We employed both bulk and single-cell RNA sequencing data to
investigate the role of MRGs in CRS. We compiled a combined database of
92 CRS samples and 35 healthy control samples from the Gene Expression
Omnibus (GEO) database and we explored the differential expression of MRGs
between them. A logistic regression model was built based on seven key genes
identified through Random Forests and Support Vector Machines - Recursive
Feature Elimination (SVM-RFE). Consensus cluster analysis was used to categorize
CRS patients based on MRG expression patterns and weighted gene co-
expression network analysis (WGCNA) was performed to find modules of
highly correlated genes of the different clusters. Single-cell RNA sequencing
data was utilized to analyze MRGs and EC heterogeneity in CRS.

Results: Seven hub genes—SQSTM1, SRC, UBA52, MFN2, UBC, RPS27A, and
ATG12—showed differential expression between two groups. A diagnostic
model based on hub genes showed excellent prognostic accuracy. A strong
positive correlation was found between the seven hub MRGs and resting dendritic
cells, while a significant negative correlation was observed with mast cells and
CD8+ T cells. CRS could be divided into two subclusters based onMRG expression
patterns. WGCNA analysis identified modules of highly correlated genes of these
two different subclusters. At the single-cell level, two types of venous ECs with
different MRG scores were identified, suggesting their varying roles in CRS
pathogenesis, especially in the non-eosinophilic CRS subtype.

Conclusion:Our comprehensive study of CRS reveals the significant role of MRGs
and underscores the heterogeneity of ECs. We highlighted the importance of

OPEN ACCESS

EDITED BY

Lei Cheng,
Nanjing Medical University, China

REVIEWED BY

Hongfei Lou,
Fudan University, China
Xu-Jie Zhou,
Peking University, China

*CORRESPONDENCE

Shaoqing Yu,
yu_shaoqing@163.com

†These authors have contributed equally
to this work

RECEIVED 31 May 2023
ACCEPTED 28 August 2023
PUBLISHED 08 September 2023

CITATION

Zhou S, Fan K, Lai J, Tan S, Zhang Z, Li J,
Xu X, Yao C, Long B, Zhao C and Yu S
(2023), Comprehensive analysis of
mitophagy-related genes in diagnosis
and heterogeneous endothelial cells in
chronic rhinosinusitis: based on bulk and
single-cell RNA sequencing data.
Front. Genet. 14:1228028.
doi: 10.3389/fgene.2023.1228028

COPYRIGHT

© 2023 Zhou, Fan, Lai, Tan, Zhang, Li, Xu,
Yao, Long, Zhao and Yu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 08 September 2023
DOI 10.3389/fgene.2023.1228028

https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1228028/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1228028&domain=pdf&date_stamp=2023-09-08
mailto:yu_shaoqing@163.com
mailto:yu_shaoqing@163.com
https://doi.org/10.3389/fgene.2023.1228028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1228028


Migration Inhibitory Factor (MIF) and TGFb pathways in mediating the effects of
mitophagy, particularly the MIF. Overall, our findings enhance the understanding of
mitophagy in CRS, providing a foundation for future research and potential
therapeutic developments.

KEYWORDS

chronic rhinosinusitis, mitophagy, endothelial cells, single-cell RNA analysis, bulk RNA
analysis

1 Introduction

Chronic rhinosinusitis (CRS) is a prevalent and debilitating
condition that substantially impacts the quality of life of affected
individuals (Lal et al., 2023). It is estimated to affect approximately
5%–15% of the general population worldwide, leading to significant
morbidity and economic burden (Rudmik, 2015; Liu et al., 2020;
Naclerio et al., 2023). The underlying pathophysiology of CRS is
multifactorial and complex, involving a combination of host,
environmental, and microbial factors (Qureshi et al., 2023). CRS
is typically characterized by inflammation of the nasal and paranasal
sinus mucosa lasting for more than 12 weeks (Kim et al., 2022). Its
symptoms encompass a range of manifestations, including nasal
obstruction, rhinorrhea, facial pain or pressure, and a decrease in
sense of smell (Al-Ahmad et al., 2022). The etiology of CRS is not
fully understood, but the disease is believed to be a result of a
dysregulated immune response to environmental and microbial
stimuli in a genetically susceptible host (Lee and Lane, 2011).
The disease is often categorized according to the presence or
absence of nasal polyps (CRSwNP and CRSsNP, respectively),
each presenting distinct pathological and clinical features (Xuan
et al., 2022). Further to this, based on the degree of eosinophilic cells
infiltration, CRSwNP is stratified into eosinophilic chronic
rhinosinusitis with nasal polyps (ECRSwNP) and non-
eosinophilic chronic rhinosinusitis with nasal polyps
(nECRSwNP) (Lou et al., 2018). ECRSwNP is often associated
with a Type 2 inflammatory response characterized by
eosinophilia, elevated levels of IL-5, IL-13, and IgE, whereas
nECRSwNP typically shows a mixed or Type 1 inflammatory
pattern (Li et al., 2021; Shen et al., 2022).

Mitophagy, a specialized subset of autophagy, selectively
degrades and eliminates damaged or dysfunctional mitochondria
under various stress conditions such as hypoxia, depolarization, and
infectious challenges (Mishra and Thakur, 2023). Mitochondrial
integrity is crucial for cellular energy supply and homeostasis, and its
disruption can lead to impaired bioenergetics, redox control, and
ultimately, cell death (Harrington et al., 2023). The mitophagic
process involves specific receptors that identify defective
mitochondria, initiating their encapsulation by an isolation
membrane or phagophore for subsequent lysosomal degradation
(De et al., 2021). This process is governed by diverse signaling
pathways, including PINK1/Parkin, BNIP3/Nix, and FUNDC1, with
their involvement varying according to cell type (Iorio et al., 2021).
Impaired mitophagy is associated with a wide range of diseases,
including cancers, heart failure, and neurological disorders (Liu H.
et al., 2022). In the field of pulmonary diseases, the implications of
mitophagy have been explored in conditions such as Chronic
Obstructive Pulmonary Disease (COPD), Asthma, and potentially

Acute Respiratory Distress Syndrome (ARDS) (Araya et al., 2019; Li
et al., 2019; Zhang et al., 2019). Nevertheless, the involvement of
mitophagy in Chronic Rhinosinusitis (CRS) remains less extensively
investigated. This paper, therefore, aims to utilize the bulk and
single-cell RNA sequencing data to probe the role of mitophagy-
related genes (MRGs) in the pathogenesis of CRS. Particularly, we
aim to explore how the differential expression of MRGs in various
cell types might contribute to disease severity and heterogeneity, and
whether these could serve as potential therapeutic targets for CRS.
This approach may provide more precise diagnostic and therapeutic
strategies, thereby improving the management and prognosis of
patients with CRS.

2 Materials and methods

2.1 Identification of MRGs expression in
nasal mucosa between CRS and healthy
control group

The detailed work flow is indicated in Figure 1. We obtained two
gene expression matrix of human nasal mucosa (GSE136825,
GSE179265) from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). A merged database of 92 CRS
samples and 35 healthy control (Control) samples were obtained by
de-batch-based operation with sva packages in R software. The
29MRGswere obtained fromReactome (https://reactome.org/), and
the difference in these gene’s overall expression between CRS and
Control was then compared using “limma” package.

2.2 Identification hub MRGs in CRS

To identify the hub genes in CRS, random forest classifiers and
SVM recursive feature elimination (SVM-RFE) analyses were
implemented using the “randomForest” and “SVM-RFE” R
packages. Each MRGs were ranked by importance based on
random forest analysis and the SVM-RFE algorithm, and the top
10 genes were reserved. Then, the MRGs were identified by taking
the intersection of the top 10 MRGs ranked by random forest and
SVM-RFE analysis separately.

2.3 Construction of receiver operating
characteristic curve and nomogram

The hub genes were subjected to multivariate logistic
regression analysis, and the area under the receiver operating
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characteristic (ROC) curve (AUC) was calculated to evaluate
their diagnostic value in CRS by using “pROC” package. A
nomogram was developed to predict the possibility of CRS,
and the calibration curve and decision curve analyses were
drawn to present the stability of the model. The model was
retested for internal validation using bootstrap, with

1000 bootstrap replicates. We evaluated the discrimination
using the AUC of the ROC curve. An AUC >0.80 was
considered to be an acceptable value. Model calibration was
assessed using the Hosmer–Lemeshow goodness-of-fit test.
Decision curve analysis (DCA) was used to assess the clinical
usefulness of the logistic regression model.

FIGURE 1
Flowchart for Comprehensive analysis of MRGs in diagnosis and heterogeneous ECs in CRS.
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2.4 The relationship between the hub MRGs
and immune cells infiltration

We utilized the IODR package for a comprehensive
immunoinfiltration analysis (Zeng et al., 2021). This tool allowed
us to explore the relationships between our chosen hub MRGs and
various immune cell types, which included dendritic cells (DC), mast
cells, and CD8+ T cells, among others. Furthermore, we implemented
theMCPcounter technique for additional immunoinfiltration analysis
(Becht et al., 2016). This tool enabled us to quantify the relative
abundance of immune infiltrates from the gene expression profiles,
providing insight into the association between the hub MRGs and
immune cells like neutrophils, monocytes, and myeloid cells. Besides,
we conducted a correlation analysis to assess the relationship between
the seven diagnostic MRGs and the inflammatory factors. For this
purpose, we used the Pearson correlation coefficient to establish the
degree and direction of the association.

2.5 Consensus clustering analysis and co-
expression analysis

Consensus cluster analysis was operated using
“ConsensusClusterPlus”, and the maximum number of cluster
genes in CRS samples was set as 10. The top 5000 most variable
genes weremeasured and clustered CRS samples by amedian absolute
deviation. Unsupervised consensus clustering was operated to cluster
CRS samples and identify the best number of optimal clusters (Monti
et al., 2003). The weighted gene co-expression network analysis
(WGCNA) package in R (Langfelder and Horvath, 2008). Was
used to identify sets of genes with similar mRNA expression
profiles across CRS samples using the default parameters. The
scale-free topology (SFT) criterion was used to choose the soft
threshold parameter of the power adjacency function, and the
optimal threshold parameter value was accepted based on the SFT
criterion recommendation (model-fit saturation > 0.85).

2.6 GO, KRGG and GSVA function analysis

We utilized the Molecular Signatures Database (MSigDB) to
acquire gene sets associated with Homo sapiens in the “Hallmark”
category using the “msigdbr” R package. Using “clusterProfile”
packages (Yu et al., 2012) in R, GO, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses were also conducted.
We also use Metascape (Zhou et al., 2019) for enrichment analysis.
For the computation of gene set variation analysis (GSVA), we utilized
the “GSVA” package in R and selected the single-sample gene set
enrichment analysis (ssGSEA) method with a Gaussian kernel
cumulative distribution function (Hänzelmann et al., 2013).

2.7 scRNA-seq analysis

2.7.1 Basic analysis workflow of scRNA-seq data
We retained cells that expressed a minimum of 300 genes and had

mitochondrial gene counts constituting less than 20% of total gene
counts for quality control of scRNA-seq data. Each cell was assigned a

cell cycle stage using the CellCycleScoring function in the Seurat package
(version 4.3.0) (Stuart et al., 2019). Data normalization was performed
using the scTransform function, which incorporated the S. Score and
G2M.Score. Dimension reduction and clustering analysis were executed
using the Seurat package. To mitigate the batch effect, which may
impede the accuracy of single cell analysis, we implemented batch effect
correction analysis using the harmony package (version 0.1.1) based on
the top 3000 variable genes with the default harmony parameters. The
selection of the principal components (PCs) was informed by both elbow
and Jackstraw plots. For clustering, we employed the FindNeighbors and
FindClusters functions, which implement a shared nearest neighbor
(SNN) modularity optimization-based clustering algorithm on the
identified number of principal components with a resolution of 0.8.
The clusters were visualized by UMAP using Seurat’s RunUMAP
function. The clusters were assigned identifiers based on the unique
gene expression profile of each cluster. We calculated MRGs score using
UCell V.2.2.0 (Andreatta and Carmona, 2021). Differential gene
expression analysis Differential gene expression analysis was
performed using FindMarkers function with default parameters. We
followed the same procedure for the secondary clustering of ECs, with a
resolution of 0.2.

2.7.2 Construction and analysis of the transcription
factor-gene network

We employed pySCENIC (Aibar et al., 2017; Van de Sande et al.,
2020) for the identification of transcription factor regulons. A count
matrix was constructed using 10,000 variable genes selected. Genes
that were expressed in less than 1% of cells were excluded in
accordance with the recommendations of the pySCENIC protocol.
The gene co-expression network was deduced using the gradient
boosting machine, that is, implemented in Arboreto. Enriched motifs
for each gene co-expression module were predicted using the pre-
computed databases from cisTargetDB and the ctx function in
pySCENIC. Lastly, the activity scores of the inferred regulons were
quantified at the single-cell level using AUCell.

2.7.3 Cell-cell communication analysis
Cell–cell communication analysis was performed using the R

CellChat (v 1.6.1) package (Jin et al., 2021). Initially, the normalized
expression matrix was imported into the CellChat object using the
“createCellChat” function. Subsequently, the data underwent
preprocessing utilizing default parameters in the “identifyOver
ExpressedGenes”, “identifyOverExpressedInteractions”, and
“projectData” functions. Potential ligand–receptor interactions were
then calculated using “computeCommunProb”, “filterCommunication”
(min.cells = 10), and “computeCommunProbPathway” functions.
Lastly, the cell communication network was consolidated utilizing
the “aggregateNet” function.

2.8 Statistical analysis

All raw data processing was conducted in R software (version
4.2.1). Student’s t-test or Wilcoxon’s rank sum test was used to
detecting the significant difference between two independent
groups. Kruskal-Wallis-test was used to explore differences among
more than two independent groups. All statistical p values were two-
sided, p < 0.05 was considered statistically significant.
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3 Results

3.1 Constructed upon the hub MRGs, the
CRS diagnostic model was established

The datasets GSE136825 and GSE179265 were processed through
the sva R package for the refinement of batch effects and comprehensive
data integration, leading to the procurement of 35 control subjects and
92 CRS cases (Supplementary Figure S1A). The PCA graph conclusively
demonstrates the effective eradication of batch effects (Figure 2A). For

the exploration of inter-group Differentially Expressed Genes (DEGs),
the Linear Models for Microarray and RNA-Seq Data (limma)
application was effectively employed. The detailed differential gene
expression profiles are presented in Supplementary Table S1. The
delineation of MRGs’ expression patterns spanning across diverse
groups was achieved via a volcano plot, identifying genes such as
SQSTM1, SRC, and UBA52 exhibiting a pronounced surge in CRS
expression, whereas ATG12 demonstrated a conspicuously diminished
expression (Figure 2B). Additional investigation into the correlation
among MRGs unveiled a marked positive correlation between

FIGURE 2
Constructed upon the hubMRGs, the CRS diagnostic model was established. (A) PCA plot of two obtained datasets after batch effects are removed.
(B) Volcano plot of differentially expressed MRGs between CRS and Control. (C) Heat map of the differentially expressed MRGs correlation analysis. (D)
Seven hub genes were identified by random forest and SVM-RFE analysis. (E) Receiver operating characteristic (ROC) curve of predicted risk scores in CRS
diagnosis. (F) The AUC score for the full dataset was calculated and then 1000 bootstrap samples of the AUC score were used to obtain a confidence
interval for each AUC score. (G) Calibration curve for the diagnostic model. (H) Comparison of decision curve analysis (DCA) of different genes. (I)
Nomogram of seven hub MRGs in the diagnosis of a CRS sample.
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UBA52 and RPS27A, starkly juxtaposed by a significant inverse
correlation between UBA52 and CSNK2A1 (Figure 2C).

By synergizing the capabilities of Random Forests and
Support Vector Machines—Recursive Feature Elimination
(SVM-RFE), a meticulous selection process for MRGs was
enacted, with the confluence of selected genes unveiling the
identification of seven hub genes (SQSTM1, SRC, UBA52,
MFN2, UBC, RPS27A, and ATG12) (Figure 2D). Then, a
logistic regression model was used to construct the prediction
model base on the seven hub genes (Supplementary Figure S1B).
The resultant model demonstrated commendable prognostic
acuity (AUC = 0.848), as visually represented in Figure 2E.
The subsequent stage involved corroborating the Receiver
Operating Characteristic (ROC)’s reliability through a
bootstrap method, incorporating random samples (n =
1000 bootstraps) with replacement (Figure 2F). The
calibration curve compellingly showcased the model’s stability
(Figure 2G). Moreover, the aggregated distribution scope of the
AUC, specificity, and sensitivity collectively vouch for the
model’s robust diagnostic competency (Supplementary Figures
S1C, D, E). The nomogram model transcended the diagnostic
value of the individually designated gene (Figure 2H). The
accurate diagnosis of patients was achieved through the
application of this model (Figure 2I). The Chronic
Rhinosinusitis (CRS) diagnostic model was established

Constructed upon MRGs, suggesting that MRGs play an
important role in the occurrence of CRS.

3.2 The expression of hub genes correlated
with the immune cell and the inflammatory
factors

We harnessed the capabilities of the IODR package to perform an
immune-cell infiltration analysis, which predominantly involved an
exploration of the interrelations between seven hub MRGs and various
immune cell types. The findings highlighted a robust positive
interconnection between the seven hub MRGs and resting dendritic
cells (DC), concurrently exhibiting a significant inverse correlation with
mast cells and CD8+ T cells (Figure 3A). Simultaneously, we
implemented the MCPcounter technique for immunoinfiltration
analysis, where the seven hub MRGs displayed a substantial positive
association with neutrophils, monocytes, and myeloid cells, contrasted
by a distinct negative linkage with CD8+ T cells (Figure 3B).

An evaluation of the interconnectedness between the seven
diagnostic MRGs and inflammatory factors suggested that the
upregulated MRGs in CRS bore a positive correlation with TGFB1,
while the downregulated MRGs in CRS demonstrated a negative
correlation with TGFB1 (Figure 3C). This insinuates that TGFB1 may
ostensibly assume a pivotal function within the realm of mitophagy.

FIGURE 3
Correlation of hubMRGswith immune cell infiltration and inflammatory factors. (A)Graphical representation of the interrelation between seven hub
MRGs and various immune cell types, as analyzed by the IODR package’s deconvo_cibersort function. (B) Using the IODR package’s deconvo_
mcpcounter function to analyze the interrelation between seven hub MRGs and various immune cell types. (C) The correlation of the seven diagnostic
MRGs with the inflammatory factor.
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3.3 Based on MRGs, CRS can be divided into
two subclusters

Based on the expression patterns of the MRGs, we grouped the
CRS patients into two distinct clusters employing consensus cluster
analysis (Figures 4A, B). Patients in Cluster 2 were more likely to be
diagnosed with CRS (Figure 4C). Cluster 2 exhibited a conspicuous

upregulation of UBC, SRC, TOMM40, PINK1, PGAM5, whilst a
significant downregulation of MFN1, TOMM5, ATG12 was
discerned (Figure 4D). Differences in the expression of
inflammatory factors revealed that Cluster 2 exhibited elevated
expression of CSF1 and TGFB1 (Figure 4E). Subsequently, we
used GSEA for enrichment analysis, conducting a pathway
differential analysis for the two clusters. The results indicated

FIGURE 4
Cluster analysis and gene expression patterns of CRS patients based onMRGs. (A)Consensusmatrix plots depicting consensus values on awhite-to-
blue color scale ordered by consensus clustering when two clusters were selected. (B) Heat map of the differentially expressed MRGs between the two
cluster. (C) Differences in the predicted possibility of CRS among two clusters. (D) Differential expression of the MRGs in each cluster. (E) Differential
expression of the inflammatory factors in each cluster. (F) GSEA pathway differential analysis showing activated and inhibited pathways in the two
clusters. (G)Clustering dendrogram of genes based on topological overlapping. (H)Heatmap of the correlation betweenmodule eigengenes and the two
clusters. (I) Enrichment analysis using Metascape for genes in the red module.
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FIGURE 5
Single-cell analysis of MRGs in different cell types and detailed analysis of ECs. (A) UMAP plot illustrating nine identified first level cell types in the
nasal mucosa. (B)Heat map of marker genes defining each cell type. (C)UCell scoring of MRGs for the different cell types. (D)MRGs score comparison of
ECs among control and disease groups. (E) UMAP plot depicting five annotated EC types. (F)Heat map of marker genes defining each EC types. (G)UCell
scoring of MRGs for each EC types. (H) Intergroup variation in cell proportions for each EC types. (I) Differential gene expression analysis between
the two types of venous EC. (J,K)GSEA enrichment analysis showing activation of the mitophagy pathway in Venous EC1 and Venous EC2. (L) Functional
enrichment analysis using GSVA.
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activation of pathways such as “negative regulation of receptor
signaling pathway via JAK STAT” and “alpha beta T-cell
activation” within the clusters, while the “regulation of cilium
movement” pathway was inhibited (Figure 4F).

Next, we utilized WGCNA to explore the correlated genes of the
two clusters. Quality control was performed on 92 CRS samples with
none being removed (Supplementary Figure S2A). Co-expression
modules were formulated utilizing dynamic tree-cut analysis, with
the soft threshold set to 9 as an optimal SFT (scale-free topology) to
construct a scale-free network (Supplementary Figure S2B). All
statistically significant co-expression modules were identified
based on optimal dynamic tree cut and hierarchical clustering
(Figure 4G). In particular, the red module demonstrated a
significant positive correlation with Cluster 2 and a significant
negative correlation with Cluster 1 (p < 0.05) (Figure 4H). We
subsequently used Metascape to perform enrichment analysis on the
genes in the red module, which primarily identified pathways such
as “TNFA signaling via NFKB”, “Hallmark Hypoxia”, and
“P53 Pathway” (Figure 4I).

3.4 Single-cell analysis reveals that there are
two types of endothelial MRGs score high
and low in the nasal mucosa

To conduct an analysis related toMRGs at the single-cell level, we
retrieved the original data HRA000772 from the Genome Sequence
Archive, then using Cell Ranger to acquire the expression matrix. The
permissions pertinent to data usage are comprehensively delineated in
the attached document. This public study incorporated 21 samples,
including Control, CRSsNP, neCRSwNP, and eCRSwNP, distributed
as 5, 5, 5, and 6 samples, respectively. Upon initial quality control, we
isolated a total of about 140,000 cells. Subsequently, we proceeded to
perform batch correction, dimensionality reduction, clustering, and
cell naming. By employing the “findallmark” function, we identified
genes specific to each cell type (Supplementary Table S2), ultimately
identifying nine cell types (Figure 5A). The marker genes, which
served as the basis for naming each cell type, are depicted in Figure 5B.
We then employed UCell to score theMRGs of the different cell types.
The results illustrated that mast cells possessed the highest score,
followed by plasma cells, with ECs also exhibiting a significant score
(Figure 5C). Concurrently, the scoring results of ECs among different
groups indicated that the control group had a lower score, while
disease conditions elevated the score, particularly in the case of
neCRSwNP (Figure 5D). The Ucell scores among groups for other
cell types are shown in the (Supplementary Figure S3).

In our quest to further investigate the cause of variation in MRGs
score of ECs among different groups, we extracted ECs for a secondary
analysis. We annotated five cell types: arterial EC, capillary EC,
lymphatic EC, and two types of venous EC (Figure 5E). The
marker genes, which served as the basis for naming each cell type,
are depicted in Figure 5F. Upon further implementation of UCell for
MRGs scoring, we observed that the two types of venous EC displayed
diametrically opposite scores (Figure 5G). The results of the
intergroup variation in cell proportion demonstrated that venous
EC1 with a high score had the highest proportion in neCRSwNP,
while venous EC2 with a low score had the lowest proportion in
neCRSwNP (Figure 5H). This alteration coincided with the scoring

situation among different groups of ECs (Figure 5D), suggesting that
the proportional difference between these two types of ECs might be
the primary contributor to the variation in MRGs scores among
endothelial cell groups.

We then proceeded to characterize these two types of venous EC.
Using the “findmarker” function, we compared the differential genes
between these two cell types, with the results detailed in
Supplementary Table S3. The majority of mitochondria-related
genes exhibited high expression in venous EC1 (Figure 5I). GSEA
enrichment analysis also indicated the activation of the mitophagy
pathway in venous EC1 (Figure 5J), and its suppression in venous
EC2 (Figure 5K). The GSVA analysis revealed the variation in
hallmark gene set enrichment across these two cell types.
Notably, venous EC1 were enriched in pathways such as
“Epithelial-Mesenchymal Transition”, “Notch Signaling”, and
“Protein Secretion”, while venous EC2 endothelial cells displayed
enrichment in the “Wnt Beta-Catenin Signaling”, “PI3K Akt mTOR
Signaling”, and “IL6 Jak STAT3 Signaling” pathways (Figure 5L).

3.5 SCENIC analysis identified distinct
transcriptional factor profiles in two type
venous EC with high and low MRGs scores

Utilizing pySCENIC, we explored the transcription factors
disparities between two type venous EC exhibiting divergent
MRGs scores. Transcription factors notably affiliated with venous
EC1 include BCL3(+), RELA (+), NELFE (+), while those intimately
associated with venous EC2 encompass NR2F1 (+), BHLHE41 (+),
FOXC2 (+) (Figure 6A) (supplement Excel1). We then further
investigated the expression patterns of the transcription factors
BCL3 and NR2F1 within the two types of venous EC. The score
of BCL3(+) _RAS (Regulon Activity Score) and the expression of
BCL3 were both ascend in venous EC1; while the opposite situation
was observed for NR2F1 (+) and NR2F1 (Figures 6B, C). Moreover,
we conducted a correlation analysis at the bulk transcriptome level
between the top 10 transcription factors unique to each venous EC
and mitochondrial autophagy genes. The outcome revealed that the
top 10 transcription factors of high MRGs score venous EC are
predominantly positively correlated with mitochondrial autophagy
genes (Figure 6D), while those of low MRGs score venous EC are
primarily negatively correlated (Figure 6E). These findings
underscore the critical role of these transcription factors in
modulating mitochondrial autophagy within the venous EC.

3.6 Significant disparities exist between high
and low MRG scores in ECs on the MIF and
TGFb pathways

ECs are stratified into three categories based on their MRG
scores: Mitophagy_highECs (scoring above the 75th percentile),
Mitophagy_lowECs (scoring below the 25th percentile), and
Mitophagy_medianECs (with scores falling within the 25th to
75th percentile). We employed CellChat to investigate the
differences in intercellular communication among ECs with
varying MRG scores and other cells. Figures 7A, B graphically
present the intercellular communication dynamics among various

Frontiers in Genetics frontiersin.org09

Zhou et al. 10.3389/fgene.2023.1228028

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1228028


cell types. Mitophagy_high ECs demonstrate significant potential
for both signal transduction and reception, while Mitophagy_low
ECs primarily exhibit high signal reception ability (Figure 7C). We

depicted the specific cellular communication scenarios when
Mitophagy_high ECs and Mitophagy_low ECs act as signal
senders. The results identified a preferential utilization of the

FIGURE 6
Transcription factor profiles and correlation analysis withMGRs in two types of venous EC. (A) Transcription factor profiles in venous EC1 and venous
EC2. (B)The score of BCL3(+) _RAS and the expression of BCL3 in venous EC1 and venous EC2. (C)The score of NR2F1 (+) _RAS and the expression of
NR2F1 in venous EC1 and venous EC2. (D)Correlation analysis between the top 10 transcription factors unique to high MRG score venous EC1 andMRGs.
The top 10 transcription factors in high MRG score venous EC show a positive correlation with mitochondrial autophagy genes. (E) Correlation
analysis between the top 10 transcription factors unique to low MRG score venous EC2 and MRGs. The top 10 transcription factors in low MRG score
venous EC show a negative correlation with MRGs.
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MIF signaling pathway in the communication between Mitophagy_
high ECs and other cells (Supplementary Figure S4). The heatmap
further illustrates that Mitophagy_high ECs can communicate with
B cells, myeloid cells, and TNK cells via the MIF pathway, while
Mitophagy_low ECs are unable to do so (Figure 7D). We also
observed a diminished communication capacity of Mitophagy_
low ECs through the TGFb pathway (Figure 7E). Further, we
employed violin plots to represent the expression of receptors in
the MIF and TGFb pathways across Background Methods Results
Conclusionvarious cell types. MIF and TGFB1 genes manifest

elevated expression levels in Mitophagy_high ECs compared to
Mitophagy_low ECs (Figures 7F, G).

4 Discussion

CRS is a common inflammatory condition affecting the
paranasal sinuses and nasal mucosa, with a complex
pathophysiology involving microbial, immunological, and
inflammatory responses (Yao et al., 2023). Despite extensive

FIGURE 7
Disparities in intercellular communication and pathway utilization among ECs with varying MRG scores. (A,B)Graphic representation of intercellular
communication dynamics across various cell types. (C) Comparison of signal transduction and reception capabilities between Mitophagy_high ECs and
Mitophagy_low ECs. (D)Heatmap demonstrating the unique communication capabilities of Mitophagy_high ECswith B cells, myeloid cells, and TNK cells
via the MIF pathway, which Mitophagy_low ECs lack. (E) Illustration of the diminished communication capacity of Mitophagy_low ECs via the TGFb
pathway. (F,G) Violin plots representing the expression of MIF and TGFB1 receptors in the MIF and TGFb pathways across various cell types, indicating
higher expression in Mitophagy_high ECs compared to Mitophagy_low ECs.
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research, the exact etiology of CRS remains unclear, presenting
significant challenges in the diagnosis and management of the
condition (Kato et al., 2022). Mitophagy, the selective
degradation of mitochondria by autophagy, plays a crucial role in
cellular homeostasis, maintaining the quality of the mitochondrial
network by eliminating damaged or unnecessary mitochondria
(Perrone et al., 2023).

Mitophagy plays a pivotal role in respiratory diseases. In
Chronic Obstructive Pulmonary Disease (COPD), the augmented
expression of mitophagy-associated proteins can deter the buildup
of Reactive Oxygen Species (ROS) and cellular senescence, thereby
mitigating the severity of the disease (Araya et al., 2019). Yet,
another investigation postulates that enhanced mitophagy could
exacerbate COPD (Zhang et al., 2019). In Acute Respiratory Distress
Syndrome patients, mitophagy could potentially thwart
mitochondria-induced apoptosis, thereby alleviating respiratory
symptoms (Li et al., 2019).

For Asthma, contemporary research indicates that the activation
of mitophagy could impact the symptoms in asthmatic patients. The
expression of BNIP3 is found to be elevated in the airway smooth
muscle cells of asthmatic patients (Pan et al., 2019). In parallel,
another study suggests that by curbing mitophagy in human
bronchial epithelial cells, allergic airway inflammation can be
mitigated in asthmatic individuals (Zhang et al., 2021).
Mitophagy-associated proteins such as PINK1 and Parkin are
overexpressed in fibroblasts procured from asthmatic patients
(Ramakrishnan et al., 2020).

Conversely, the role of mitophagy in nasal inflammation is not
well defined. Phosphatase and tensin homolog could potentially
deter nasal inflammation by restraining mitophagy in nasal
epithelial cells (Ramakrishnan et al., 2020). Bleomycin-A5 can
suppress dynamin-related protein 1-mediated mitophagy in
fibroblasts, leading to apoptosis in nasal polyps (Wu et al.,
2021). A recent study revealed that the downregulation of
autophagy and mitophagy was noted in eosinophilic and
noneosinophilic nasal polyps, exhibiting a negative correlation
with the severity of eosinophilic inflammation (Wang C. et al.,
2022). In the present era, the swift advancement of scRNA-seq
technology offers an innovative approach to investigate CRS
(Wang W. et al., 2022). In the present study, we have
conducted a comprehensive analysis of MRGs in CRS, using
both bulk and single-cell RNA sequencing data to provide an
in-depth understanding of the heterogeneity of endothelial cells
in CRS.

Through our examination of bulk RNA sequencing data, we
unveiled a potential crucial role of MRGs in CRS. Initially, we
discerned seven pivotal genes—SQSTM1, SRC, UBA52, MFN2,
UBC, RPS27A, and ATG12—displaying differential expression in
CRS patients as opposed to controls, and based on these key
genes, we established a proficient model for CRS diagnosis.
Among the hub MRGs, SQSTM1, a versatile protein, is
integral to cellular processes like autophagy and mitophagy,
which involve selective mitochondrial degradation (Liu W.
et al., 2022).

Notably, SQSTM1 facilitates mitochondrial ubiquitination
independent of PINK1 and PRKN/parkin in mitophagy
(Yamada et al., 2019). Furthermore, our findings substantiate
the association between the expression of pivotal MRGs and the

immune microenvironment as well as inflammatory factors.
Specifically, a robust positive correlation was observed
between the seven central MRGs and resting dendritic cells,
contrasted with a notable negative correlation with mast cells
and CD8+ T cells, thereby underlining the intricate relationship
between mitophagy and the immune response in CRS.
Simultaneously, we discovered a potent correlation between
TGFB1 and MRGs, indicating the significant influence
TGFB1 could have on mitophagy in nasal mucosa. TGF-β1
can stimulate mitophagy, thereby promoting the ex vivo
generation of erythrocytes from hematopoietic stem cells
(Kuhikar et al., 2020). Furthermore, TGF-β1 incites
mitochondrial ROS and depolarization in lung epithelial cells,
as well as stabilizes the vital mitophagy initiating protein, PINK1
(Patel et al., 2015). Lastly, our analysis proposes that CRS can be
bifurcated into two subtypes grounded on MRG expression
patterns, unveiling substantial heterogeneity in MRG
expression across the two clusters. These revelations could
potentially carry weighty implications for patient
categorization and tailored treatment strategies in CRS.

Our comprehensive analysis of MRGs and EC heterogeneity in
Chronic Rhinosinusitis (CRS) in single cell levels enhances the
understanding of this complex inflammatory condition. The
expression of the hub genes in different cell types. Among
them, UBC has the highest expression level in EC. Some
research delves into the role of mitophagy in EC amidst
oxidative stress and energy scarcity (Li C. et al., 2022; Coon
et al., 2022; Wen et al., 2023). ECs with damaged mitochondria
are removed by mitophagy, which lessens cellular damage (Rong
et al., 2021; Li A. et al., 2022). Furthermore, when ECs encounter
hemin, a lipid peroxidation cascade ensues, triggering
mitochondrial depolarization and subsequent mitophagy (Basit
et al., 2017).

Furthermore, we identified two venous EC types with distinct
MRG scores, suggesting their different role in the pathogenesis
of CRS, particularly the neCRSwNP subtype. Venous
EC1 exhibited high MRG scores and a higher proportion in
neCRSwNP, alongside activation of the mitophagy pathway.
These cells were enriched in “Epithelial-Mesenchymal
Transition”, “Notch Signaling”, and “Protein Secretion”
pathways, suggesting their involvement in tissue remodeling,
immune regulation, and mucus production. Venous EC2,
conversely, had lower MRG scores, were underrepresented in
neCRSwNP, and exhibited suppressed mitophagy. They were
enriched in “Wnt Beta-Catenin Signaling”, “PI3K Akt mTOR
Signaling”, and “IL6 Jak STAT3 Signaling” pathways, indicative
of their role in inflammation and tissue repair. Further, we
unveil that unique transcription factor profiles were discerned
for both categories of venous endothelial cells (ECs). A
noteworthy positive correlation was observed between the
paramount transcription factors (BCL3(+)) and mitophagy
genes in Venous EC1 s, insinuating their significant role in
regulating mitochondrial autophagy.

Intercellular communication analysis demonstrated
significant disparities between high and low MRG scoring
ECs. Mitophagy_high ECs primarily utilized the MIF signaling
pathway, while Mitophagy_low ECs demonstrated diminished
communication via the TGFb pathway. The TGFb pathway plays
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a multifaceted role in CRS pathogenesis, influencing tissue
remodeling, inflammation, immune regulation, and
mucociliary clearance. Dysregulation in this pathway can
exacerbate CRS symptoms, making it a potential therapeutic
target (Lai et al., 2022). The MIF pathway significantly
influences chronic rhinosinusitis (CRS) by modulating
inflammation, tissue remodeling, and mucosal barrier
function. Elevated MIF levels in CRS patients suggest its role
in persistent sinus inflammation (Yuan et al., 2021). These
findings suggest the role of MIF and TGFb pathways in
mediating mitophagy’s effects in CRS. Although the precise
mechanisms remain nebulous, the MIF signaling trajectory
indeed plays a pivotal role within the context of mitophagy
(El Bounkari and Bernhagen, 2012). Established investigations
have discerned and explicated two distinct signaling trajectories
of mitophagy: those contingent upon ubiquitin (Ub) and those
independent thereof, the latter of which are facilitated via
receptor-mediated mechanisms (Harris et al., 2018). Certain
scholarly discourse posits that Migration Inhibitory Factor
(MIF) instigates mitophagy via the BNIP3-mediated conduit, a
modality of mitophagy that operates independently of ubiquitin
(Lai et al., 2015). Conversely, alternate perspectives argue that
MIF presides over the regulation of PINK1/Parkin-mediated
mitophagy, representing the most comprehensively
characterized ubiquitin-dependent pathway of mitophagy
(Smith et al., 2019). Specifically, deficiency of MIF
Accentuates Overloaded Compression-Induced Nucleus
Pulposus Cell Oxidative Damage via Depressing Mitophagy
(Wang et al., 2021).

This study stands out as one of the pioneering investigations
into the role of endothelial dysfunction and mitophagy in CRS.
By utilizing both bulk and single-cell RNA sequencing data, we
have obtained a granular insight into the molecular dynamics at
play. This approach allowed us to unravel previously overlooked
aspects of CRS and provided a holistic view of the endothelial
changes in the condition. However, we acknowledge several
limitations in our research. Primarily, the results might not
comprehensively represent the endothelial functional status
across all CRS patients due to sample sourcing and
technological constraints. Secondly, while our study
emphasizes the role of mitophagy in CRS endothelial
dysfunction, mechanistic studies are required to further
confirm these findings. Lastly, our conclusions are primarily
based on RNA sequencing data. Future studies employing
proteomics and functional assays would be invaluable to verify
and extend our findings. In conclusion, our comprehensive
investigation of CRS elucidates the significant role of MRGs
and highlights the heterogeneity of ECs. We identified key
MRGs, revealing their interplay with immune responses and
inflammation, and underscored the heterogeneity within CRS
subtypes, informing patient stratification and personalized
treatment. At the single-cell level, venous ECs displayed
distinct MRG scores, hinting at their differential roles in CRS
pathogenesis. We spotlighted the importance of MIF and TGFb
pathways in mediating mitophagy’s effects, especially the MIF.
Overall, our findings enhance the understanding of mitophagy in
CRS, paving the way for future research and therapeutic
advancements.
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