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Objective: To assess the performance of diverse prenatal diagnostic approaches
for nuchal translucency (NT) thickening and to investigate the optimal prenatal
screening or diagnostic action with a NT thickening of 95th percentile-3.50 mm.

Methods: A retrospective analysis of 2,328 pregnancies with NT ≥ 95th percentile
through ultrasound-guided transabdominal chorionic villus sampling (CVS),
amniocentesis, or cordocentesis obtained clinical samples (chorionic villi,
amniotic fluid, and cord blood), and real-time quantitative fluorescent PCR
(QF-PCR), chromosome karyotyping (CS), chromosome microarray analysis
(CMA), or whole exome sequencing (WES) were provided to identify genetic
etiologies.

Results: In this study, the incidence of chromosomal defects increased with NT
thickness. When NT ≥ 6.5 mm, 71.43% were attributed to genetic abnormalities.
The 994 gravidas with fetal NT thickening underwent short tandem repeat (STR),
CS, and CMA. In 804 fetuses with normal karyotypes, CMA detected 16 (1.99%)
extra pathogenic or likely pathogenic copy number variations (CNVs). The
incremental yield of CMA was only 1.16% (3/229) and 3.37% (10/297) in the
group with NT 95th percentile-2.99 mm and NT 3.0–3.49 mm, separately.
Among the 525 gravidas with fetal NT thickening who underwent STR, CMA,
andWES, the incremental yield ofWESwas 4.09% (21/513). In the group of NT 95th
percentile-2.99 mm, there were no additional single-nucleotide variations (SNVs)
detected inWES, while in 143 cases with NT of 3.0–3.49 mm, the incremental yield
of WES was 5.59% (8/143).

Conclusion: In the group of NT 95th percentile-3.0 mm, since chromosomal
aneuploidy and chromosomal copy number variationwere the primary causes and
the additional contribution of CMA and WES was not significant, we recommend
NIPT-Plus for pregnant women with a NT thickening of 95th percentile-3.0 mm
first. In addition, comprehensive prenatal genetic testing involving CMA and WES
can benefit pregnancies with NT thickening of 3.0–3.49 mm.
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Introduction

Nuchal translucency (NT), defined as the subcutaneous
accumulation of fluid behind the fetal neck, can be observed by
an ultrasound scan between 10 and 13 weeks of gestation. NT
measurement has been widely used as a marker of fetal
abnormalities since it was first described in 1992 by Nicolaides
et al. (1992). NT ≥ 95th percentile is not only associated with
chromosomal abnormalities but also some genetic syndromes, as
well as fetal structural defects (Taipale et al., 1997; Souka et al.,
2005), such as congenital heart disease, diaphragmatic hernia, and
skeletal dysplasias (Hyett et al., 1997; Bilardo et al., 1998; Snijders
et al., 1998). Common aneuploidies, including trisomies 21, 18,
and 13 and monosomy X, are the major chromosomal
abnormalities associated with increased NT (Bilardo et al.,
1998; Snijders et al., 1998; Kagan et al., 2006). The incidence of
chromosomal defects increases with NT thickness from
approximately 7% for those with NT between the 95th
percentile for crown-rump length and 3.4 mm to 75% for NT
of 8.5 mm or more (Taipale et al., 1997). Moreover, the most
common genetic disorders such as 22q11 micro-deletion
syndrome, Noonan syndrome, Smith–Lemli–Opitz syndrome,
and congenital adrenal hyperplasia have also been reported in
association with increased NT (Dane et al., 2008; Bilardo et al.,
2010; Leung et al., 2011). In addition, when these abnormalities
occur, there is also an increased risk of miscarriage, intrauterine
fetal death, or developmental delay (Lund et al., 2015).

With the development of genetic analysis techniques, the non-
invasive prenatal test (NIPT) of cell-free fetal DNA has become an
option for screening chromosomal abnormalities and is available in
various countries, while a diagnostic method using chorionic villus
sampling (CVS) or amniocentesis still needs to be provided.
Chromosomal microarray analysis can not only detect
chromosome aneuploidy but also large fragment deletions or
duplications and submicroscopic copy number variant (CNV)
abnormalities, showing advantages over conventional karyotyping
in prenatal diagnosis. Previous studies have shown different
detection rates for pCNVs in euploidy fetuses with increased NT
varying from 2% to 15% (Grande et al., 2015; Lund et al., 2015; Pan
et al., 2016; Srebniak et al., 2016; Egloff et al., 2018; Su et al., 2019;
Zhang et al., 2019; Zhao et al., 2020; Wang et al., 2022). Grande et al.
(2015) concluded that, compared with karyotyping, the incremental
yield of CMA was 4% (95% CI, 2%–7%) in a recent meta-analysis of
17 studies.

In recent years, prenatal exome sequencing (ES) has been
shown to increase the diagnosis of single-gene diseases and
improve the identification of genetic disorders in fetuses with
structural abnormalities. Two large prospective studies in
2019 showed that ES provided an additional diagnosis in
fetuses with isolated increased NT (≥3.5 mm) with diagnostic
rates of only 3.2% and 3.0%, respectively (Lord et al., 2019;
Petrovski et al., 2019). Other studies (Choy et al., 2019; Sparks
et al., 2020; Xue et al., 2020; Yang et al., 2020; Mellis et al., 2022)
[24–27] have reported the diagnostic rate in fetuses with isolated
increased NT ranging from 1% to 17%, which could not be detected
by CMA.

However, there is currently no global consensus on the cutoff
value for when we recommend that patients choose to do CMA only

or both CMA and WES when undergoing prenatal diagnosis in our
daily genetic counseling.

In this study, we retrospectively analyzed the prenatal diagnosis
results of NT-thickened fetuses diagnosed in our center, including
CS, CMA, andWES results, and explore feasible methodological test
options for each NT thickening range (especially in the controversial
range of NT 95th percentile-3.0 mm and 3.0–3.49 mm) based on the
analysis of different detection methods and pregnancy outcome in
different NT thickening ranges.

Materials and methods

Demographics data

Clinical indications included 2,328 pregnant women with
fetuses with increased NT in the Guangdong Women and
Children Hospital between January 2019 and January 2023 for
invasive prenatal diagnosis. Those women with fetal increased
NT were transferred to a large tertiary referral center,
Guangdong Women and Children Hospital of Guangdong
Province, through a referral network in Guangzhou, China.
Through ultrasound-guided transabdominal chorionic villus
sampling (CVS), amniocentesis, or cordocentesis clinical samples
(chorionic villi, amniotic fluid, and cord blood) were obtained. STR,
G-banded karyotyping, CMA, and WES were provided to identify
the fetal anomalies. Each participant signed a written informed
consent form after accepting detailed pretest genetic counseling.
This study was approved by the Ethics Committee of Guangdong
Women and Children’s Hospital.

QF-PCR

We performed QF-PCR to rapidly analyze T21, T18, T13, and sex
chromosome aneuploidy. QF-PCR for detecting common
chromosome numerical anomalies was conducted using a modified
version of the previous report (Liu et al., 2019). Gel electrophoresis
was performed using an ABI3100 with a 3100-POP4 gel of internal
lane standard 600 as themolecular standard. The 22 polymorphic sites
of chromosomes 21, 18, 13, X, and Y were selected from the NCBI
database as primer sequences, and then the 5′end of the forward
primer of the detection site was labeled with different fluorescence.
The primer labeling and synthesis were completed by Dalian Baobio.

G-banding karyotyping

We performed standard G-banding karyotyping to analyze the
structures of all the chromosomes in the fetuses. G-banding
karyotyping was conducted as in previous literature by Hu et al.
(2022). Cells were cultured and prepared for G-banding and
fluorescence in situ hybridization (FISH) following standard
protocols. Karyotypes were described based on the criteria of the
International System for Human Cytogenetic Nomenclature (ISCN
2020) (Liehr, 2021). When suspected low-level mosaicism was
observed, an interphase FISH of uncultured amniocyte cells was
recommended to be performed.
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Chromosomal microarray analysis

We performed chromosome microarray analysis to detect
CNVs in the fetuses. Fetal uncultured genomic DNA was
extracted using a DNA extraction kit (QIAamp DNA Mini Kit,
QIAGEN, Germany). CMAwas conducted as in previous literature
(Huang et al., 2021; Hu et al., 2022), which was performed using a
whole-genome CytoScan 750K array (Thermo Fisher Scientific,
United States). The raw data analyzed with the Chromosome
Analysis Suite 4.0 (Thermo Fisher Scientific, United States)
were checked and compared carefully with the genome version
GRCh37/hg19. According to the deletion and duplication in
chromosome location, the clinical significances of chromosomal
abnormalities were evaluated and defined as five types of
properties, including pathogenicity, likely pathogenicity, benign,
likely benign, and variant of uncertain significance.

Whole exon sequencing

Fetal uncultured genomic DNA was extracted from chorionic
villus samples, amniotic fluid, tissue samples, or cord blood, using
the QIAamp DNA Blood MiniKit (Qiagen Sciences, United States)
according to the manufacturer’s instructions. Whole-exon
sequencing and Sanger sequencing (NextSeq 2000, Illumina,
United States) were performed on DNA samples. Variants were
identified by sequence alignment with the NCBI Reference
Sequence; the pathogenicity of the identified variant was assessed
based on the adapted American College of Medical Genetics and
Genomics (ACMG) guidelines (Chen et al., 2022; Qian et al., 2022).

Statistical analysis

Statistical analysis was performed using SPSS 19.0 (Chicago,
United States). Categorical variables were presented as
percentages.

Results

In total, 2,328 pregnancies with a NT ≥ 95th percentile were
analyzed. The mean gestational week of prenatal diagnosis was
15.5 weeks (range 11–34 weeks) with a median NT of 3.3 mm
(range 2.3 mm–13.5 mm). The number of pregnant women who
underwent amniocentesis or umbilical vascular puncture after
16 weeks was 1,285 cases. In 1,043 of the cases, the testing was
performed by chorionic villous sampling at 11–13 + 6 weeks. The
99th percentile was defined as NT ≥ 3.5 mm for all gestational ages.

Distribution of NT thickness

Of all fetuses with NT ≥ 95th percentile found in early
pregnancy, 551 (23.7%) had a NT between the 95th percentile
and 1.99 mm, 735 (31.6%) had an increased NT of 3.0–3.49 mm,
and 1,007 (53%) had a NT ≥ 95th percentile. The distribution of
different NT thicknesses is shown in Figure 1.

Genetic abnormalities

We grouped these fetuses with increased NT according to
different NT thicknesses and calculated the percentage of genetic
factors at different NT thicknesses separately. The proportion of
genetic abnormalities increased with increasing NT thickness, while
13.79% was caused by genetic abnormalities, when NT increased
95th percentile-2.99 mm. When NT increased by ≥ 6.5 mm, the
genetic abnormalities accounted for 71.43% (Table 1; Figure 2).

Incremental yield of different genetic
techniques

In this study, 994 pregnant women with fetal increased NT chose
to perform STR, CS, and CMA simultaneously at the time of
prenatal diagnosis, including 332 pregnant women with NT ≥
3.5 mm. In 248 cases with euploidy fetuses, CMA detected
additional pCNVs in three cases, with an increment of 1.21% (3/
248) compared with CS. Among the 314 fetuses with increased NT
of 95th percentile-2.99 mm, 259 were euploidy fetuses, and the
additional detection rate of pCNVs by CMA versus CS was only
1.16% (3/259). Of the 297 euploidy fetuses with increased NT of
3.0–3.49 mm, the incremental yield of pCNVs by CMA was only
3.37% (10/297) (Table 2).

In our study, there were 525 fetuses with increased NT who
underwent STR, CMA, and WES simultaneously. In 335 fetuses with
NT ≥ 3.5 mm, there were 325 euploidy fetuses with normal CMA, and
the additional detection increment of pathogenic/likely pathogenic
variation (P/LP) of WES concerning CMA was 4% (13/325). Among
the 45 fetuses with a NT 95th percentile-2.99 mm, all of which were
euploidy fetuses with normal CMA, no additional pathogenic or likely
pathogenic variations were detected in WES. Among the 145 fetuses
with NT values between 3.0 and 3.49 mm, 143 were euploidy fetuses
with normal CMA and eight pathogenic or likely pathogenic
variations (P/LP) were detected in WES, which CMA could not
identify. The additional increment yield was 5.59% (8/143)

FIGURE 1
Distribution of the degree of increased NT. NT, nuchal
translucency
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(Table 3). In addition, 53 pathogenic or potentially pathogenic
variants unrelated to the fetal phenotype were unexpectedly
identified in WES, with an additional incremental yield of 14.42%
(74/513) compared with CMA.

Pregnancy outcomes

We followed up on the pregnancy outcomes of 511 pregnant
women with fetal increased NT who underwent concurrent STR or
CS, CMA, and WES at the time of prenatal diagnosis, all of whom

had negative results. Table 4 shows the pregnancy outcomes of
fetuses with different degrees of increased NT for which no genetic
factors have been found. Among 511 fetuses, the number of
pregnant women who chose to terminate their pregnancy
increased with increased NT thickness. 92.76% (474/511) had
positive pregnancy outcomes (no special conditions) and adverse
pregnancy outcomes (miscarriage/intrauterine death) occurred in
fewer than 1%. The probability of positive pregnancy outcomes in
pregnant women with different degrees of increased NT thickness
did not differ between groups and was statistically significant
(Table 4).

TABLE 1 Genetic abnormalities associated with fetal increased NT.

NT (mm) Genetic abnormalities Total (%)

Aneuploidies pCNVs Monogenic diseases

95th-2.99 57/522 (10.92) 15/522 (2.87) 0/52 (0.00) 13.79

3.0–3.49 63/716 (8.80) 21/716 (2.93) 9/163 (5.52) 17.25

3.5–3.99 43/410 (10.49) 8/410 (1.95) 2/158 (1.27) 13.70

4.0–4.49 37/219 (16.89) 5/219 (2.28) 3/99 (3.03) 22.21

4.5–5.49 42/189 (22.22) 11/189 (5.82) 5/75 (6.67) 34.71

5.5–6.49 27/88 (30.68) 4/88 (4.55) 2/36 (5.56) 40.78

≥6.5 48/91 (52.75) 4/91 (4.40) 3/21 (14.29) 71.43

Data are given as n (%) or %; NT, nuchal translucency; pCNVs, pathogenic copy number variants.

FIGURE 2
Proportion of genetic abnormalities for different NT thicknesses. CNV, copy number variant.

TABLE 2 Copy number variants (CNVs) detection rates in 804 euploid fetuses with increased NT.

NT (mm) Fetuses with normal karyotype n All CNVs detected by CMA n (%) P/LP CNVs n (%) VOUS n (%) Others n (%)

95th-2.99 259 13 (5.02%) 3 (1.16%) 9 (3.47%) 1 (0.39%)

3.0–3.49 297 19 (6.4%) 10 (3.37%) 6 (2.02%) 3 (1.01%)

≥3.5 248 12 (4.83%) 3 (1.21%) 4 (1.61%) 5 (2.02%)

Total 804 44 (5.47%) 16 (1.99%) 19 (2.36%) 9 (1.12%)

Data are given as n (%) or n; NT, nuchal translucency; CMA, chromosomal microarray analysis; P/LP CNVs, pathogenic/likely pathogenic copy number variants; VOUS, variant of uncertain

significance.
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Discussion

NT measurement is one of the common screening aids for
aneuploidy, and recent studies have shown that NT thickening is
associated not only with chromosomal aneuploidy but also CNVs,
structural abnormalities, and some monogenic disorders. Most of
the abnormalities in those with thickened NT are chromosomal
aneuploidy and CNVs. Therefore, invasive prenatal diagnosis is
recommended for fetuses with increased NT, mainly to detect
karyotypes and CNVs.

Previous studies have shown (Bardi et al., 2020) that the
proportion of genetic causes of NT thickening is correlated
positively with increasing NT thickness. When increased NT of
the 95th percentile was 3.5 mm, the percentage of genetic
abnormalities was about 15.3%. When increased NT of
3.5–6.4 mm and ≥6.5 mm, the genetic abnormalities were 42.1%
and more than 65.6%, respectively. In our study, we demonstrated
that the proportion of increased NT caused by genetic abnormalities
increased with increasing NT thickness, up to 71.43% at a NT ≥
6.5 mm, of which chromosomal aneuploidy abnormalities
accounted for the majority. Interestingly, we found that the
difference in pCNVs in groups of NT 95th percentile-2.99 mm,
3.0–3.49 mm, 3.5–3.99 mm, and 4.0–4.49 mm was not significant.
However, the percentage of pCNVs and monogenic disease were
elevated when NT ≥ 4.5 mm, showing the necessity for combining
CMA and WES for NT ≥ 4.5 mm. Currently, different countries
have different criteria for the cutoff value of increased NT (Su et al.,
2021), most countries use NT ≥ 3.5 mm or the 99th percentile as the
cutoff value of increased NT, while some countries use the 95th

percentile. Most scholars in China use NT ≥ 3.0 mm or ≥3.5 mm as
the standard. The American College of Obstetricians and
Gynecologists (ACOG) and the Society for Maternal-Fetal
Medicine (SMFM) currently recommend 3.0 mm or the 99th
percentile as the cutoff value and recommend detailed genetic
counseling for these pregnancies, either by NIPT or invasive
prenatal diagnosis (American College of Obstetricians and
Gynecologists’ Committee on Practice Bulletins—Obstetrics,
2020; Prabhu et al., 2021). While NT ≥ 3.5 mm is an
internationally recognized sign for invasive testing, there is no
consistent standard on genetic counseling for pregnant women
with NT < 3.5 mm, and research literature is scarce on prenatal
screening or diagnosis for a NT 95th percentile-3.5 mm.

In the present study, we found that in the NT 95th percentile-
2.99 mm group, aneuploidy and pCNVs accounted for 10.92% and
2.87%, respectively, while the percentage of monogenic disease
detected by WES was 0%, which may be related to the low
number of fetal cases in this group. Moreover, in 259 fetuses
with a NT 95th percentile-2.99 mm, CMA detected 13 CNVs that
were not detectable by conventional karyotyping, including only
three pCNVs (1.16%). In the previous studies, Wang et al. (2022)
found that chromosomal aneuploidy and genomic imbalance were
the primary fetal abnormalities when NT was 2.5–3.0 mm and that
for fetuses with increased isolated NT between 2.5 and 3.0 mm,
NIPT (3.98%) had a similar rate of karyotype detection (5%) in a
study of 201 fetuses with examined by NIPT and karyotype. Xie et al.
(2022) applied NIPT-Plus to 72 fetuses with increased NT and
achieved a sensitivity and specificity of 95.2% and 100% for common
chromosomal aneuploidy, respectively. In addition, only two out of

TABLE 3 The incremental yield of whole exome sequencing (WES) in 513 fetuses with increased NT.

NT (mm) Fetuses with normal CMA n All variants detected by WES n (%) P/LP variants n (%) VOUS n (%)

95th-2.99 45 1 (2.22%) 00) 1 (2.22%)

3.0–3.49 143 15 (10.49%) 8 (5.59%) 7 (4.90%)

≥3.5 325 24 (7.38%) 13 (4.00%) 11 (3.38%)

Total 513 40 (7.80%) 21 (4.09%) 19 (3.70%)

Data are given as n (%) or n; NT, nuchal translucency;WES, whole exome sequencing; CMA, chromosomal microarray analysis; P/LP, pathogenic/likely pathogenic; VOUS, variant of uncertain

significance.

TABLE 4 Pregnancy outcomes in 511 fetuses with increased NT without genetic abnormalities.

NT (mm) No special conditions TOP IUFD MC Missed

95th-2.99 45/49 (91.80) 0 (0.00) 0 (0.00) 0 (0.00) 4/49 (8.20)

3.0–3.49 133/140 (95.00) 2/140 (1.43) 2/140 (1.43) 0 (0.00) 3/140 (2.14)

3.5–3.99 126/135 (93.33) 4/135 (2.96) 1/135 (0.74) 0 (0.00) 4/135 (2.96)

4.0–4.49 78/82 (95.12) 1/82 (1.22) 0 (0.00) 0 (0.00) 3/82 (3.66)

4.5–5.49 56/62 (90.32) 4/62 (6.45) 0 (0.00) 1/62 (1.61) 1/62 (1.61)

5.5–6.49 24/27 (88.89) 2/27 (7.41) 1/27 (3.70) 0 (0.00) 0 (0.00)

≥6.5 12/16 (75.00) 4/16 (25.00) 0 (0.00) 0 (0.00) 0 (0.00)

Total 474/511 (92.76) 17/511 (3.33) 4/511 (0.78) 1/511 (0.19) 15/511 (2.94)

Data are given as n (%); NT, nuchal translucency; TOP, termination of pregnancy; IUFD, intrauterine fetal death; MC, miscarriage.
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five pCNVs cases could be detectable with NIPT-Plus, which may be
related to the detection platform and the different definitions.
Although in our study we did not have statistics on the missed
diagnosis of NIPT applied to increased NT fetuses, NIPT techniques
based on high-throughput sequencing are now widely used to screen
for fetal chromosomal aneuploidy and a previous study (Taylor-
Phillips et al., 2016) showed that the sensitivity of NIPT was 99.3%,
97.4%, and 97.4% for trisomy 21, trisomy 18 and trisomy 13,
respectively. NIPT-Plus has a combined sensitivity of 99.2% for
the detection of common chromosomal microduplications and
microdeletions, and a high composite positive predictive value of
92.9% for Digeorge syndrome (Liang et al., 2019). The detection
rates of aneuploidy and CNVs in fetuses with NT 95th percentile-
2.99 mm were high, while the incremental yield of monogenic
disorders was 0%. Therefore, we suggest, as most of the literature
(Wang et al., 2022; Xie et al., 2022; Yin et al., 2022) recommends that
instead of invasive prenatal diagnosis for those fetuses, NIPT-Plus,
which not only has high sensitivity and specificity for aneuploidy
and CNVs, but also has already in large-scale clinical use in China
and abroad, may be performed first especially if other structural
abnormalities have not been added at the time of NT measurement.
If the non-invasive results are negative, the invasive prenatal
diagnosis can be left alone and follow-up ultrasound monitoring,
including systemic ultrasound test and cardiac ultrasound test, can
be performed to assess pregnancy outcome.

To assess the risk of chromosomal abnormalities in fetuses with
NT of 3.0–3.49 mm and to determine whether invasive prenatal
testing is necessary, our results showed an 11.7% risk of
chromosomal abnormalities (including aneuploidy and pCNVs).
The study by Petersen et al. (2020) performed a meta-analysis of
literature cases with NT of 3.0–3.49 mm and a retrospective study of
two groups of pregnant women with invasive testing and CMA,
which showed 13.5% of 522 fetuses were diagnosed with
chromosomal aberrations, similar to the results of our study. In
contrast, in the study by Zhang et al. (2019), only approximately 7%
were diagnosed. Combined with the conclusion of a previous study
(Sagi-Dain et al., 2021) that NIPT in isolated NT of 3.0–3.49 mm
would have a 1.9% missed diagnosis rate, the meta-analysis by
Petersen et al. (2020) reported a 2.8% miss rate for five-
chromosome NIPT and a 0.2% miss rate for NIPT, and the fact
that these low rates did not distinguish isolated or non-isolated NT
thickening, it is reasonable to assume that invasive prenatal
diagnosis in such fetuses is necessary. Furthermore, in this study,
we found that all chromosomal abnormalities detected by karyotype
were detectable by CMA, with the additional detection of total CNV
increment and extra detection of pCNVs increment of 6.40% (19/
297) and 3.37% (10/299), indicating the additional diagnostic value
of CMA in NT of 3.0–3.49 mm. Therefore, it may be possible the
karyotyping can be replaced by the CMA technique which could
detect both chromosomal aneuploidy and large deletion repeats and
submicroscopic copy number variants (CNV). In addition, we
performed WES in 143 fetuses with NT of 3.0–3.49 mm with
normal CMA, and eight clinically significant pathogenic or likely
pathogenic variants were identified, showing an incremental yield of
5.59%, which has not been reported previously in this range. The
associated monogenic diseases have been presented in
Supplementary Table S2. It is necessary to use prenatal ES for
the fetus with NT of 3.0–3.49 mm. As stated by Petersen et al.

(2020) andMaya et al. (2017), we recommend a threshold of 3.0 mm
rather than 3.5 mm for invasive testing, and for NT of 3.0–3.49 mm
comprehensive genetic testing, including CMA and WES, testing is
provided to avoid a missed diagnosis and provide earlier diagnosis of
clinically important chromosomal aberrations.

Furthermore, we unexpectedly found 53 additional cases of
pathogenic variants irrelevant to the fetal phenotype in WES
versus CMA for cases with NT thickening ≥95th percentile. In
total, the additional incremental yield of WES versus CMA was
14.42% (74/513). In this regard, we can be informed that WES
detects many monogenic syndromes associated with increased NT.
But since NT thickening is not a disease-specific phenotype (no
relevant hotspot disease), it seems less work to use a single panel
genetic testing technique for NT-thickened fetuses, while usingWES
may reveal many other variants that are not associated with the fetal
phenotype and also contain variants with pathogenicity uncertainty,
and this uncertainty may increase maternal anxiety and still require
follow-up ultrasound to provide accurate interpretation of WES
results of unknown significance. As mentioned by Yang and Li
(2022), this is a limitation of the WES application. The prenatal
phenotype may be different from the postnatal phenotype, and
interpreting the variants of unknown pathogenicity significance
(VUS) may be complex. Whether reporting VUS is more
beneficial than bad for the patient or more harmful than good is
also something we need to consider carefully in our clinical work.
Data from larger samples of studies are still needed to elucidate
further, but we believe that as the application of WES develops and
the database is constantly updated and improved, the number of
variants of unknown significance will decrease.

In clinical practice, another question we always face is how to
perform genetic counseling when a pregnant woman with fetal
increased NT has chosen to undergo an interventional prenatal
diagnosis and has undergone comprehensive genetic testing with
negative results (i.e., no relevant cause of the thickening is found or
it is considered tentatively to be due to a non-genetic abnormality).
Based on this, we followed up 511 fetuses with NT thickening that
underwent concurrent STR or CS, CMA, and WES, all with
negative pregnancy outcomes. Notably, regardless of NT
thickness and without differentiating isolated or non-isolated
NT thickening, more than 90% of fetuses with NT thickening
without genetic cause had a good pregnancy outcome, especially
when NT thickening was less than 6.5 mm. It is generally
consistent with what has been reported in other literature
(Bilardo et al., 2007). When NT ≥ 6.5 mm, most fetuses may be
diagnosed with lymphoedema cysticercosis, which has a poor
pregnancy outcome (Graesslin et al., 2007). We speculate that
this may account for the decreasing proportion of good pregnancy
outcomes.

Conclusion

In the group of NT 95th percentile-3.0 mm, since chromosomal
aneuploidy and chromosomal copy number variation are the
primary causes and the additional contribution of CMA and
WES is not significant, we recommend NIPT-Plus for pregnant
women with NT thickening of 95th percentile-3.0 mm first. In
addition, comprehensive prenatal genetic testing involving CMA
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and WES can benefit pregnancies with NT thickening of
3.0–3.49 mm.
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