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Innate lymphoid cells (ILCs) are a unique type of lymphocyte that differ from
adaptive lymphocytes in that they lack antigen receptors, which primarily reside in
tissues and are closely associated with fibers. Despite their plasticity and
heterogeneity, identifying ILCs in peripheral blood can be difficult due to their
small numbers. Accurately and rapidly identifying ILCs is critical for studying
homeostasis and inflammation. To address this challenge, we collect single-
cell RNA-seq data from 647 patients, including 26,087 transcripts. Background
screening, Lasso analysis, and principal component analysis (PCA) are used to
select features. Finally, we employ a deep neural network to classify lymphocytes.
Our method achieved the highest accuracy compared to other approaches.
Furthermore, we identified four genes that play a vital role in lymphocyte
development. Adding these gene transcripts into model, we were able to
increase the model’s AUC. In summary, our study demonstrates the
effectiveness of using single-cell transcriptomic analysis combined with
machine learning techniques to accurately identify congenital lymphoid cells
and advance our understanding of their development and function in the body.

KEYWORDS

innate lymphoid cells, machine learning, DNN, LASSO, gene expression

Highlights

• Our study demonstrates the feasibility of combining machine learning methods with
feature extraction models for cell immunotyping.

• To compare various classification models and feature extraction methods, we
conducted comparative experiments and determined that the optimal model was
the combination of DNN and LASSO.

• Our findings indicate that the incorporation of the four genetic information found in
the literature can enhance the accuracy of the classification model.

1 Introduction

In the past decade, innate lymphoid cells (ILCs) have garnered significant attention from
researchers due to their crucial role in the innate immune system (Hazenberg and Spits, 2014;
Artis and Spits, 2015; Eberl et al., 2015; Vivier et al., 2018). These heterogeneous lymphocytes
originate from lymphoid progenitor cells in the bone marrow. Notably, they lack the
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rearrangement of antigen-specific receptors that depend on
recombination activation genes, do not express antigen-specific
receptors unique to acquired immune cells, and do not exhibit
surface markers similar to those found on other immune cells. The
transcription factors and secreted cytokines necessary for the
development of various ILCs differ. Based on these factors and
cytokines, ILCs can be classified into natural killer (NK) cells,
ILC1s, ILC2s, ILC3s, and others (Montaldo et al., 2015; Miller et al.,
2018; Vacca et al., 2019). ILCs are predominantly found in barrier
regions such as the respiratory tract, digestive tract mucosa, and skin.
They respond to local cytokine signals in their microenvironment and
serve early immune surveillance and regulatory functions by secreting
cytokines and other mediators. ILCs also act as a bridge between innate
and acquired immunity, regulating systemic immune responses by
coordinating the functions of acquired immune cells.

The accurate classification of ILCs is of great medical significance,
as the functions and behaviors of various ILCs in the body can vary
greatly. Abnormalities in the functions of ILCs can impact the onset and
progression of various conditions, including inflammation, autoimmune
diseases, metabolic disorders, and allergies (Elemam et al., 2017; Li et al.,
2017; Golebski et al., 2019; Bartemes and Kita, 2021; Kabata et al., 2022;
Kumar, 2022; Surace and Wilhelm, 2022). To effectively utilize the
potential of ILCs in disease diagnosis and treatment, it is crucial to
classify ILCs with the highest possible accuracy. Misclassification
can lead to the use of inappropriate treatment strategies in clinical
trials (Everaere et al., 2016; Everaere et al., 2018; Kogame et al., 2022).
Despite their significant role, there is currently no effective method
for identifying different cell subpopulations among ILCs. At present,
the identification of ILCs primarily rely on flow cytometry, which
uses specific antibodies to identify surface markers of different types
of ILCs. However, as there are many types of ILCs, there often be some
overlap in the functions of each subgroup. Therefore, the accuracy
of marker-based identification techniques needs to be improved. In
addition, although new sequencing technologies are developing (Hu
et al., 2023), revealing patterns of gene expression at the cellular level,
these new sequencing technologies are often costly. All in all, there is a
need for accurate and low-cost methods for identifying ILCs.

In recent years, computational methods have been widely
applied to mine biological information using omics data
(Tyanova et al., 2016; Hériché et al., 2019; Efremova and
Teichmann, 2020; Kaur et al., 2021; Badia-i Mompel et al., 2022;
Watson et al., 2022). The expansion of genomic, proteomic,
transcriptomic, and metabolomic data has provided an amazing
opportunity for the application of machine learning methods.
Researchers have developed a large number of tools, methods,
and resources to fully utilize these data for precision medicine.

In this paper, we obtained genes associated with innate immune
cells and used their expression levels to predict immune typing.
Differential gene expression levels can directly reflect the
developmental state of cells, and changes in gene expression can
also affect the levels of proteins and metabolites. This work has
yielded a precise and low-cost approach to classifying ILCs.

2 Methods

In this section, we provided a detailed overview of the
implementation of this work, which includes the framework, data

preprocessing, feature compression, and evaluation. To construct
our machine learning model, we needed three main components:
data points, features, and labels (Jung, 2022). In this study, we built
our model using the expression matrix of innate immune cells
obtained from the GEO database, where data points represent
individual cells, features represent the intensity of gene
expression, and labels indicate the immune subtype that each cell
corresponds to. With these components, we were able to develop
and evaluate our machine learning models.

2.1 Workflow

Firstly, we obtained single-cell transcriptome data associated
with innate lymphoid cells from the GEO database (Barrett et al.,
2012), and then obtained known genes associated with innate
lymphoid cells from DisGeNet (Piñero et al., 2020). We
performed Related genes, PCA and LASSO analysis using the
expression of genes associated with innate lymphoid cells as
features and extracted the most significant features related to
immune typing. In addition, in their latest study, Korchagina
et al. identified STATS, BATF, IKAROS, RUNX3, C-MAF,
BCL11B, and ZBTB46 as genes closely associated with Innate
Lymphoid Cells. And STATS, IKAROS, and C-MAF have been
included already in our previous gene set. Therefore, we
incorporated the expression of four additional hub genes in our
subsequent analysis. After feature dimensionality reduction, we
inputted all these features into a deep neural network (DNN).
The DNN displayed immune typing based on important gene
expression features. The workflow of our method is shown in
Figure 1.

2.2 Dateset processing

For our study, we utilized the Bjroklund dataset (Björklund et al.,
2016), which comprises sequencing data of lymphoid cells from
three independent human volunteers. We conducted a
comprehensive search of ILCs-related datasets across multiple
databases. Unfortunately, many of these datasets were
incomplete, with inadequate or absent classification of ILCs.
However, the Bjorklund dataset, which is from human tonsil,
emerged as a standout resource. Published in Nature
Immunology, it has been widely cited and is considered
authoritative. Therefore, we chose it to performe downstream
analysis. In this dataset, the specimens for transcriptional analysis
came from three donors: a 56-year-old (Donor A), a 44-year-old
(Donor B), and a 23-year-old (Donor C). All procedures were
carried out at the Karolinska University Hospital, located in
Huddinge. The regional ethical committee at the Karolinska
Institutet granted approval for the collection of these anonymous
tissue samples. Informed consent was provided by all patients, or by
their legal guardians in cases where the patients were under 18 years
of age. We selected 647 samples annotated with immune typing,
including 74 NK cells, 126 ILC1 cells, 139 ILC2 cells, and
308 ILC3 cells. Each sample in this dataset contains
26,087 transcripts. We mapped these transcripts to their
corresponding genes using the GRCh37 assembly of the human
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genome. Additionally, we obtained 292 genes associated with innate
lymphoid cells from DisGeNet. Moreover, our analysis of additional
studies revealed that BCL11B, BATF, RUNX3, and ZBTB46 are
associated with lymphoid cell immune typing (Korchagina et al.,
2023).

2.3 Feature compression

This section presents a comparative analysis of three commonly
used feature compression methods. For each method, we provide
detailed information about its implementation.

• Related Genes

To reduce the dimensionality of features using the related gene
method, we followed a specific process. First, we obtained a gene set
related to the disease from the DisGeNet website. Then, we
intersected this gene set with the gene set of the original data to
obtain a new, reduced gene set.

• PCA

Principal component analysis (PCA) is a commonly used data
dimensionality reduction technique, which aims to transform high-
dimensional data into lower-dimensional data for better data
processing and analysis (Daffertshofer et al., 2004). The basic
idea of PCA is to map the original data to a new coordinate
system via linear transformation, such that the mapped data has
the maximum variance. This linear transformation is achieved by
computing the covariance matrix of the data and its eigenvectors.
Specifically, assume that we have an n × p data matrix X, where n is
the number of samples and p is the number of variables. We first

need to center X by subtracting the mean of each variable from the
entire variable, resulting in a new matrix ~X, where,

~Xij � Xij − 1
n
∑
n

k�1
Xkj (1)

Next, we compute the covariance matrix S of ~X, i.e.,

S � 1
n − 1

~X
T ~X (2)

Then, we perform eigendecomposition on S to obtain the
eigenvalues λ1 ≥ λ2 ≥/ ≥ λp and their corresponding eigenvectors
v1, v2, . . ., vp. Finally, we select the top k eigenvectors v1, v2, . . ., vk and
project the data X onto these eigenvectors to obtain a new n × kmatrix
Y, where Yij � vTj Xi. In this way, we complete PCA dimensionality
reduction, transforming the original n × p data matrix X into a new n ×
k matrix Y, where k is the number of variables we choose.

• LASSO

Lasso (Least Absolute Shrinkage and Selection Operator) is a
widely used linear regression technique for feature selection and
sparse modeling (Osborne et al., 2000). Lasso constrains the model
parameters using L1 regularization, which shrinks some parameters
to zero, achieving feature selection. Specifically, we can represent
Lasso regression using the following formula:

min
β

1
2n
‖y −Xβ‖22 + λ‖β‖1 (3)

Here, β is the model parameter vector, X is the feature matrix, y is
the response variable vector, and λ is the regularization parameter. The
L1 regularization term ‖β‖1 shrinks some parameters to zero, achieving
feature selection and model sparsity. By adjusting the regularization
parameter λ, we can control the degree of sparsity of the model.

FIGURE 1
The framework of our work.
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2.4 DNN four-class classification

A Four-class deep neural network (DNN) can be defined as a
function f: Rn → R4 that maps an input vector x ∈ Rn to an output
vector y ∈ R4. This function can be represented as a composition of
layers, where each layer i consists of a linear transformation z(i) =
W(i)h(i−1) + b(i) and a nonlinear activation function g(i), with h(0) = x as
the input and h(i) = g(i)(z(i)) as the output of layer i. The weights and
biases of each layer are denoted by W(i) and b(i), respectively. The
process can be formulated as:

z L( ) � W L( )h L−1( ) + b L( ) (4)
In the last layer, we apply the softmax function, as below:

y � softmax z L( )( ) (5)
To transform the output z(L) into a probability vector y, where L

is the index of the last layer. During training, we use the cross-
entropy loss function, as:

L y, t( ) � −∑
4

i�1
ti logyi (6)

To measure the difference between the predicted probability
vector y and the true label vector t, where ti ∈ {0, 1} indicates whether
the i-th class is the correct class.

The training process we use backpropagation to compute
gradients and update weights and biases. At each training
iteration, we feed the input vector x to the DNN, compute the
output vector y, compare it with the true label vector t, then use
backpropagation to compute the gradients and use optimization
algorithms such as gradient descent to update weights and biases.

2.5 Evaluating metrics

Accuracy is a performance metric used to evaluate classification
models, which represents the proportion of correctly classified
samples to the total number of samples.

Specifically, given a classification model with predicted labels ŷi

and corresponding true labels yi, the accuracy of the model can be
calculated using the following formula:

Accuracy � ∑n
i�11 ŷi � yi( )

n
(7)

Here, n is the total number of samples, and 1 is the indicator
function that takes the value 1 when ŷi � yi and 0 otherwise. The
numerator of the formula represents the sum of correctly classified
samples, and the denominator represents the total number of
samples, i.e., the proportion of correctly classified samples to the
total number of samples.

2.6 Parameter

To ensure the reproducibility of our experiments, we provide
detailed information on the model parameters used in this work.
We implemented PCA and Lasso dimensionality reduction methods
using the sklearn library. To ensure fairness in dimensionality

reduction, all three methods were reduced to the same dimension
200. So PCAwas set 200 principal components, while the alpha value in
the Lasso model was set to 0.1. For the four classification models, three
machine learning models were built using sklearn library, while the
DNNwas designedmanually. The network layer parameters were set to
(512, 64, 4), and the learning rate was set to 0.001.

3 Results

In this section, we conducted a thorough analysis of the sample
size to ensure its appropriateness. Subsequently, we evaluated
various methods for feature dimensionality reduction and
machine learning classification, and selected the optimal model.
Finally, we examined the impact of incorporating hub genes and
validated their effectness.

3.1 Sample size verification

Our analysis involved raw data from the GEO database, which
included properties of immune typing. To ensure clear labeling, we
assigned the labels 0, 1, 2, and 3 to NK cells, ILC1, ILC2, and ILC3,
respectively. This resulted in a dataset containing four types of
samples, consisting of 74 NK cells, 126 ILC1 cells, 139 ILC2 cells, and
308 ILC3 cells. Importantly, the sample was relatively balanced
among the different types of cells.

To assess the statistical performance of our data, we used an
online web server called SSizer (Li et al., 2020). And the result
illustrates that our data met Type 3 statistical indicators, indicating
that our sample size was sufficient for our analysis. Furthermore, this
demonstrates that when the sample size exceeded 300, the overlap
was 0.5, indicating that our sample size was appropriate.

3.2 Comparative results

To provide a comprehensive evaluation of our method, we
compared it with several other methods. Since there is no consensus
on the best feature selectionmethod, we simultaneously compared three
different feature selection methods. The feature selection process is
described in detail in Section 2 of our study. In addition, our method is
based on deep neural networks (DNN) and compared with several
other common machine learning classification models, including
support vector machines, XGBoost, and random forests (Wang and
Hu, 2005; Chen et al., 2015; Biau and Scornet, 2016). We tested each
classification model using the three methods of feature selection,
resulting in a total of 12 groups of classification results.

To assess the accuracy of our method, we performed 5-fold
cross-validation. This is a common machine learning model
evaluation method where the dataset is randomly divided into
five mutually exclusive subsets. Each subset is used once as a
validation set while the remaining four subsets are used for
training. This process is repeated five times, with each subset
used once as the validation set, to evaluate the performance of
the model. The results, as shown in Figure 2, unequivocally
demonstrate that the optimal classification combination is
achieved using the DNN + LASSO method. Our comparison
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analysis provides valuable insights into the effectiveness of different
feature selection methods and classification models for our specific
dataset, and our results can inform future research in this field.

Although other feature dimensionality reduction methods seem
to achieve better performance, the related gene method provides an
intuitive characterization. We further verified the performance of
the model on the related gene method. The confusion matrices of
different machine learning classification models are presented in
Figure 3, which is a widely used tool for evaluating classification
model performance and measuring prediction accuracy. A
confusion matrix is a two-dimensional table that represents the
true and predicted labels of a classification model, where the rows
correspond to the true labels and the columns correspond to the
predicted labels. Each element of the matrix represents the count of
samples for which the classification model predicted the category
shown in the corresponding column, while the actual category was
shown in the corresponding row. Based on the results shown in
Figure 4, it is evident that the DNN classification model outperforms
the other models. These findings suggest that the DNN model may
be a more effective approach for this specific classification task.

3.3 Model performance with key genes

We performed a literature investigation and identified four
genes, BCL11B, BATF, RUNX3, and ZBTB46, that are associated
with Innate Lymphoid Cells. To investigate whether transcripts of

FIGURE 2
Comparison of DNN method with several other models by AUC.

FIGURE 3
The confusion matrix of four models.
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these genes could improve the prediction of immune typing, we
incorporated them into our model. We conducted several
experimental comparisons to fully evaluate the impact of these
transcripts on the model’s accuracy, and the results are shown in
Figure 4.

Our experiments demonstrated that the addition of these
transcripts significantly enhanced the accuracy of the model.
Among all the methods tested, LASSO-DNN showed the best
performance. These findings suggest that incorporating the
transcripts of these four genes, particularly in combination
with LASSO-DNN, has the potential to improve the
performance of the immune typing model. Therefore, our
study highlights the importance of these genes in immune
typing and provides a framework for future research in this field.

4 Conclusion

Cellular immunoassay detection currently relies on
sequencing technology and biological experiments. With the
continuous development of medicine, immunotherapy has
significantly improved the survival rate of patients with
advanced cancer. Therefore, it is of utmost clinical and basic
research significance to predict immune typing in advance. To
achieve this, two critical steps are necessary, namely, identifying
key transcripts and building effective machine learning models to
accurately predict immune typing based on these transcripts.

In this study, we identified genes associated with Innate
Lymphoid Cells and obtained their corresponding
transcription expression levels. We used three feature
extraction methods for feature dimension reduction and
designed a DNN model for predicting immune typing. We
compared the performance of the DNN method with several
other methods and found that the combination of DNN and

LASSO provided the best classification performance. Moreover,
we tested whether the information of four genes found in
literature research could improve the accuracy of our model.
These four genes provided valuable information and effectively
enhanced the accuracy of the model in predicting immune
typing.

While our method was developed specifically for the
classification of ILCs, it has the potential to be applied in
other contexts. In general, the machine learning model we
have developed processes numerical matrices based on
biological data from cells, and can produce results for any
such dataset. However, one important factor to consider is the
similarity between ILCs and other cell types. If other cell types
share similar gene expression patterns with ILCs, our approach
may also be effective for these cell types. Conversely, if the gene
expression patterns are significantly different, our approach may
not be suitable.

In summary, our study presents a novel method for predicting
immune typing and demonstrates the accuracy of genes previously
identified in literature research. Our findings contribute to the
advancement of immune typing prediction and provide a
framework for future research in this field.
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FIGURE 4
Model performance with or without four key genes.
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