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Neuropeptides contain more chemical information than other classical
neurotransmitters and have multiple receptor recognition sites. These
characteristics allow neuropeptides to have a correspondingly higher selectivity
for nerve receptors and fewer side effects. Traditional experimentalmethods, such
as mass spectrometry and liquid chromatography technology, still need the
support of a complete neuropeptide precursor database and the basic
characteristics of neuropeptides. Incomplete neuropeptide precursor and
information databases will lead to false-positives or reduce the sensitivity of
recognition. In recent years, studies have proven that machine learning
methods can rapidly and effectively predict neuropeptides. In this work, we
have made a systematic attempt to create an ensemble tool based on four
convolution neural network models. These baseline models were separately
trained on one-hot encoding, AAIndex, G-gap dipeptide encoding and
word2vec and integrated using Gaussian Naive Bayes (NB) to construct our
predictor designated NeuroCNN_GNB. Both 5-fold cross-validation tests using
benchmark datasets and independent tests showed that NeuroCNN_GNB
outperformed other state-of-the-art methods. Furthermore, this novel
framework provides essential interpretations that aid the understanding of
model success by leveraging the powerful Shapley Additive exPlanation (SHAP)
algorithm, thereby highlighting themost important features relevant for predicting
neuropeptides.
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Introduction

Neuropeptides are bioactive peptides that mainly exist in neurons and play a role in
information transmission (Svensson et al., 2003). They are ubiquitous not only in the
nervous system but also in various systems of the body, with a low content, high activity, and
extensive and complex functions (Hökfelt et al., 2000). According to the specific type, they
play role as transmitters, modulators, and hormones. Neuropeptides share the common
characteristic that they are produced from a longer neuropeptide precursor (NPP) (Kang
et al., 2019). Generally, an NPP contains a signal peptide sequence, one or more
neuropeptide sequences and some other sequences that are often homologous among
neuropeptides. After the NPP enters the rough endoplasmic reticulum (Rer), the signal
peptide is quickly cleaved by signal peptidase and converted into a prohormone, which is
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transferred to the Golgi complex for proteolysis and
posttranslational processing, which ultimately results in a mature
neuropeptide. The neuropeptides modified by various physiological
processes are transported to the terminal, stored in larger vesicles
and released, and their length ranges from 3 to 100 amino acid
residues (Salio et al., 2006; Wang et al., 2015). At present, there is
much evidence indicating that neuropeptides play a particularly
important role in the regulation of nervous system adaptation to
pressure, pain, injury and other stimuli. These characteristics
indicate that neuropeptides may represent a new direction in the
treatment of nervous system diseases. A popular experimental
method for the identification of neuropeptides is LC‒MS, whose
accuracy has been greatly reduced because it has certain
requirements for the quantity and quality of peptides to be
extracted (Van Eeckhaut et al., 2011; Van Wanseele et al., 2016).

With the development of high-throughput next-generation
sequencing technology and expressed sequence tag databases,
machine learning methods have been applied to rapidly and
effectively predict neuropeptide peptides. NeuroPID,
NeuroPred and NeuroPP are the earliest computational tools
for identifying neuropeptide precursors (Southey et al., 2006;
Ofer and Linial, 2014; Kang et al., 2019). NeuroPIpred was the
first predictor designed for identifying insect neuropeptides
based on amino acid composition, dipeptide composition, split
composition, binary profile feature extraction and the support
vector machine (SVM) classification algorithm (Agrawal et al.,
2019). PredNeuroP was designed by building a two-layer stacking
model that was trained on nine kinds of hybrid features for
animal phyla neuropeptide prediction (Bin et al., 2020). In
PredNeuroP, extremely randomized trees (ERT), artificial
neural network (ANN), k-nearest neighbor (KNN), logistic
regression (LR), and extreme gradient boosting (XGBoost)
were employed to develop ML-based models. In terms of
feature coding, PredNeuroP uses amino acid composition,
dipeptide composition, binary profile-based features, amino
acid index features, grouped amino acid composition, grouped
dipeptide composition, composition-transition-distribution, and
amino acid entropy. In 2021, Hasan et al. developed a meta-
predictor NeuroPred-FRL on the basis of 11 different encodings
and six different classifiers (Hasan et al., 2021). Although the
existing models have achieved relatively satisfactory prediction
performances, most of them are developed based on traditional
machine learning methods, and deep learning predictors have
not been fully explored.

In this work, we have made a systematic attempt to create a
tool that can predict neuropeptides using a stacking strategy
based on four convolution neural network models. These base
models were separately trained on one-hot encoding, AAIndex,
G-gap dipeptide encoding and word2vec. By comparing five
integration strategies, including LR (Perlman et al., 2011),
AdaBoost (Freund and Schapire, 1997), GBDT (Lei and Fang,
2019), Gaussian NB and XGBoost, on 5-fold cross-validation
tests, we finally selected Gaussian NB to construct our predictor
designated NeuroCNN_GNB, with an AUC of 0.963, Acc of
90.77%, Sn of 89.86% and Sp of 91.69% on 5-fold cross-
validation test. Moreover, to enhance the interpretability of
the ‘black-box’ machine learning approach used by
NeuroCNN_GNB, we employed the Shapley Additive

exPlanation (SHAP) method (Lundberg and Lee, 2017) to
highlight the most important and contributing features
allowing NeuroCNN_GNB to generate the prediction
outcomes. The analysis results showed that one-hot encoding
and word2vec play key roles in the identification of
neuropeptides.

Materials and methods

Overall framework

The construction process of NeuroCNN_GNB is shown in
Figure 1. First, we collected the training dataset and the
independent test dataset from original work (Bin et al., 2020).
Then, we extracted four types of sequence information from
different aspects and combined them with convolutional neural
networks to construct base classifiers. In the third step, we
considered different stacking strategies to build the final
optimal model. Next, we evaluated the performance of the
model on the training and independent test datasets and
compared it with that of other state-of-the art methods. In
the final step, the NeuroCNN_GNB webserver and the
corresponding source code were developed and publicly
released.

Data collection

Building the benchmark datasets is one of the most important
and critical steps in building a prediction algorithm. In this work,
we applied the dataset that was first constructed by (Bin et al.,
2020) and subsequently used by (Hasan et al., 2021; Jiang et al.,
2021). This dataset contains 2425 neuropeptides collected from
(Wang et al., 2015) and 2425 nonneuropeptides collected from
Swiss-Prot (UniProt Consortium, 2021). It should be noted that
the samples in this dataset were processed in two steps. The first
step was to remove those protein sequences that contained less
than 5 and more than 100 amino acids, as neuropeptides are
small peptides generally containing less than 100 amino acids
(Salio et al., 2006; Wang et al., 2015). The second step was to
remove the protein sequences with a high similarity. Using the
threshold of 0.9, CD-HIT was applied to delete redundant
samples inside positive and negative samples, and CD-HIT-2D
was applied to delete redundant samples between positive and
negative samples (Huang et al., 2010). To optimize and compare
the predictor, the dataset was further divided into training and
independent test datasets according to the proportion of 8:2.

Feature extraction

In this study, we use four different encoding schemes to
obtain information on neuropeptides and nonneuropeptides,
including one-hot encoding, physicochemical-based features,
amino-acid frequency-based features, and embedding methods.
These encoding schemes consider 20 types of natural amino acid
residues (‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘p’, ‘Q’,
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‘R’, ‘S’, ‘T’, ‘V’, ‘W’,’Y’) and add a pseudo character (‘B’) to obtain
the characteristics with the same dimension. Specifically, we fixed
the sequence length to 100 and filled the gaps with ‘B’ if the
protein sequence length was less than 100. The details of the
feature encodings are described in the following sections.

One-hot encoding

One-hot encoding can reflect the specific amino acid position of
a given protein sequence. Each amino acid residue was transformed
into a binary vector as follows:

FIGURE 1
The developmental flowchart of NeuroCNN_GNB.
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A � 1, 0, 0, . . . , 0, 0( )
C � 0, 1, 0, . . . , 0, 0( )
. . .
. . .
W � 0, 0, 0, . . . , 1, 0( )
V � 0, 0, 0, . . . , 0, 1( )
B � 0.05, 0.05, 0.05, . . . , 0.05, 0.05( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

The reason that we set each element of B as 0.05 is that we
assumed the average frequency of each amino acid is uniformly
distributed as the work (Pan et al., 2018; Pan and Shen, 2018;
Yang et al., 2021). Thus, one-hot encoding generates a 100 × 20-
D feature matrix for a given peptide sequence with a length
of 100.

Amino acid index (AAIndex)

AAIndex is a database that includes 566 various
physicochemical and biochemical properties of amino acids
and amino acid pairs (Kawashima et al., 2007). In this section,
we chose 14 properties because they have been verified to be very
effective in improving the prediction performance of
neuropeptide recognition (Bin et al., 2020; Khatun et al.,
2020). Their accession numbers are HOPT810101,
EISD840101, MIYS990104, LIFS790101, MAXF760101,
CEDJ970104, GRAR740102, KYTJ820101, MITS020101,
DAWD720101, BIOV880101, CHAM810101, EISD860101, and
BIGC670101. For each physicochemical property, each amino
acid was assigned a numerical index, and their values are listed in
Supplementary Table S1.

G-gap dipeptide encoding

The G-gap dipeptide encoding scheme incorporates the amino
acid frequency information of the peptide sequence, where g’ is a
parameter that represents a dipeptide with a gap of ‘g’ amino acids
(A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, B) (Lin et al.,
2013; Lin et al., 2015; Xu et al., 2018). In this study, we tried 0, 1, 2,3,
and 4-gap dipeptides to encode each protein peptide. For the
21 amino acids (20 natural amino acids and a temporary amino
acid B′), there were 441 dipeptide combinations. We discarded the
combination BB’ and reserved 440 amino acid pairs to effectively
capture the component information in protein peptides. Based on
the statistical analysis, the highest number of amino acid pairs in the
existing training dataset was 10. Therefore, the number of amino
acid pairs was encoded into one-hot encoding of 10 dimensions.
Finally, we could generate a characteristic matrix of 440*10 for a
given peptide sequence.

Word embedding

Word embedding is a strategy to convert words in text into
digital vectors for analysis using standard machine learning
algorithms (Mikolov et al., 2013). This strategy has been
extensively applied in natural language processing and has
been introduced to the fields of proteomics and genomics
(Lilleberg et al., 2015; Ng, 2017; Jatnika et al., 2019; Wu et al.,
2019). Word2vec is an efficient method to create word
embedding that includes two algorithms, namely, skip Gram
and CBOW (continuous bag-of-words). The difference

FIGURE 2
Performance comparison of g-Gap Model on 5-fold cross-validation test.
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between them is that skip Gram predicts the words around the
head word through the central word, while CBOW predicts the
central word through the surrounding words. According to the
preliminary experimental performance, we selected skip Gram to
encode each protein peptide in the subsequent experiments.

Model framework

To capture the information contained in multiple feature
scenarios, we used a stacking strategy to develop our model to
efficiently identify neuropeptides. Stacking is an ensemble
learning method that combines predicted information from
multiple models to generate a more stable model (Ganaie
et al., 2022). The stacking method has two main steps, in
which we used the so-called base classifier and meta-classifier.
In our work, four base classifiers were constructed based on
convolutional neural networks (CNNs). For each type of feature,
the corresponding CNN model was trained using grid search to
optimize the hyperparameters. All training processes are
conducted through the Python package ‘pytorch’.

Performance evaluation

To objectively evaluate and compare the predictive performance
of the models, five frequently used performance metrics were used,
including sensitivity (Sn), specificity (Sp), accuracy (Acc), andMCC.
Their formulas are given as follows:

Sn � TP

TP + FN
(2)

Sp � TN

TN + FP
(3)

Acc � TP + TN

TP + TN + FP + FN
(4)

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ (5)

TABLE 1 The Performance of base classifiers on 5-fold cross validation.

Feature AUC Acc Sn Sp MCC

One-Hot 0.956 0.887 0.891 0.883 0.775

AAIndex 0.954 0.885 0.872 0.899 0.771

G-Gap 0.933 0.858 0.863 0.853 0.716

Word2vec 0.952 0.882 0.867 0.898 0.765

TABLE 2 Results of 5-fold and 10-fold cross-validation on base classifiers.

Cross-
validation

Encoding AUC Acc Sn Sp MCC

5-fold one-hot 0.956 0.887 0.891 0.883 0.775

10-fold one-hot 0.952 0.882 0.879 0.885 0.765

5-fold AAIndex 0.954 0.885 0.872 0.899 0.771

10-fold AAIndex 0.948 0.877 0.868 0.885 0.755

5-fold word2vec 0.952 0.882 0.867 0.898 0.765

10-fold word2vec 0.942 0.871 0.865 0.875 0.741

The bold values indicate the higher values of the 5-fold and the 10-fold cross validation

results.

FIGURE 3
Performance comparison of the different stacking algorithms on 5-fold cross-validation test.
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where TP, TN, FP and FN denote the numbers of true positives,
true negatives, false-positives and false-negatives, respectively.
Furthermore, we used the area under the ROC curve (AUC) as
one of the main metrics to evaluate model performance.

Results and discussion

Performance analysis of base classifiers

CNN contains a number of tunable hyperparameters, which can
affect the validity and robustness of the model. We used a grid search
to tune the hyperparameters and explore their optimal combination
using 5-fold cross-validation. The average AUCs were designed as the
criterion for selecting the parameter combinations. For the G-gap-
model (g = 0, 1, 2, 3, 4), we compared their performance on 5-fold
cross-validation and show their results in Figure 2. The model based

on g = 0 reached the best AUC of 0.933, Acc of 0.858, Sp of 0.853 and
MCC of 0.716, while the model based on g = 3 achieved the best Sn of
0.865. Upon comprehensive consideration, an appropriate selection of
g = 0 was adopted to build one of the base classifiers. The details of the
G-gap based model are summarized in Supplementary Table S3.

Supplementary Table S2 summarizes the optimal combination
of parameters for each base classifier, and Table 1 lists their 5-fold
cross-validation results. It was observed that the one-hot-based
model achieved the best AUC of 0.956, which was slightly
superior to the AAIndex and word2vec models. In total, the
AUC values of the four base classifiers were greater than 0.93,
showing satisfactory prediction results.

In addition, we also performed 10-fold cross-validation test to
evaluate the generalization ability of ourmodel. As shown in Table 2,
there is almost no difference in the prediction results between 5-fold
and 10-fold cross-validation results. Specifically, the AUC of 10-fold
cross-validation results based on one-hot is 0.004 lower, based on
AAIndex is 0.006 lower, based on word2vec is 0.01 lower than that of
5-fold, respectively.

Stacking models providing robust and
reliable prediction results

In this section, each base classifier was considered a weak classifier
and then integrated into a strong classifier. LR, AdaBoost, GBDT,
Gaussian NB and XGBoost were used as stacking algorithms to
construct the meta model. The specific process is that we concatenate

FIGURE 4
t-SNE plots of the positive and negative samples. (A) The initial features, (B) the features extracted by convolutional layer, (C) outputs of the four base
classifiers and (D) the final output of the model.

TABLE 3 Comparing with other exiting methods on the independent test
dataset.

Method AUC Acc Sn Sp MCC

NeuroPred-FRL 0.960 0.916 0.929 0.903 0.834

NeuroPpred-Fuse 0.958 0.906 0.882 0.930 0.813

PredNeuroP 0.954 0.897 0.886 0.907 0.794

Our model 0.962 0.918 0.919 0.917 0.836
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the prediction results of four base classifiers for the same sample as the
input to the stacking algorithm to obtain the final classification label
(Rokach, 2010; Lalmuanawma et al., 2020; Aishwarya and Ravi Kumar,
2021; Ganaie et al., 2022). It can be observed from Figure 3 that
Gaussian NB achieved the best performance with an AUC of 0.963,
Acc of 90.77%, Sn of 89.86% and Sp of 91.69% on the 5-fold cross-
validation test. Moreover, this set of results achieved by the stacking
strategy was better than those obtained by the four base classifiers.
However, not all integration results were superior to a single model. The
stacking results of AdaBoost were inferior to those of the four base
classifiers, whose AUC was only 0.928. Taken together, the results
showed that selection of a stacking strategy is necessary for different
biological sequences. How to find the relationship between the data
distribution and classification algorithm is a problem worth studying in
the future.

Performance comparison with existing
methods on the independent test datasets

We then used the independent test dataset to verify the robustness
of NeuroCNN_GNB and compared the prediction results with those of
NeuroPpred-Fuse, NeuroPred-FRL and PredNeuroP. These predictors
were developed based on the same training dataset as our model, which
guarantees the fairness and objectivity of the independent test. The
comparison results in Table 3 show that our model obtained the best
AUC of 0.962, Acc of 0.918 andMCC of 0.836, which implied a similar
effect of predicting positive and negative samples. NeuroPred-FRL
achieved the second best AUC of 0.960 and the best Sn of 0.929,
and NeuroPred-Fuse showed the best Sp of 0.930. Thus, each of the
three models has its own advantages in prediction performance based
on four types of features and four base classifiers, whose complexity was

FIGURE 5
The outputs from four base classifiers according to SHAP values for the neuropeptides, (A) SHAP value for each sample; (B) the average of the
absolute values of SHAP for all samples.
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lower than that of the other four models. In particular, this work not
only establishes an efficient prediction model but also provides a freely
convenient web server for researchers.

Visualization of features

To clearly show how the model performs at each stage, we used
t-SNE to visually observe the classification results of the two types of
data (Van derMaaten andHinton, 2008). In Figure 4A, the points were
mixed in disorder by using the initial features to concatenate all 4 kinds
of encodings, which were almost impossible to divide. However, after
the four base classifiers, the neuropeptides and nonneuropeptides
were almost separated except for the middle part, which occasionally
overlaps, as shown in Figures 4B, C. Finally, after the stacking strategy,
ourmodel clearly identified the neuropeptides and nonneuropeptides,
as shown in Figure 4D. This figure shows that our model can
effectively acquire the intrinsic information of the neuropeptides.

Model interpretation: the effect of feature
encoding on model prediction

In this study, four different feature-encoding schemes were used
to generate the feature vectors. The performance of each type of
feature is listed in Table 1. To display the influence of various
features on the model more intuitively, the SHAP (SHapley Additive
exPplanation) algorithm was applied to evaluate feature behavior in
our datasets (Lundberg and Lee, 2017).

In Figure 5A, the abscissa represents the SHAP value, the ordinate
represents each type of feature for the positive sample (abbreviated as 1)
and negative sample (abbreviated as 0), and each point is the SHAP
value of an instance. Redder sample points indicate that the value of the
feature is larger, and bluer sample points indicate that the value of the
feature is smaller. If the SHAP value is positive, this indicates that the
feature drives the predictions toward neuropeptides and has a positive
effect; if negative, the feature drives the predictions toward
nonneuropeptides and has a negative effect. For a more intuitive
display, the average absolute values for each type of feature are shown
in Figure 5B. It can be clearly observed that among the output of the
four base classifiers, the one-hot and word embedding-based models
were the primary contributors to the final output of the model.

Conclusion

In this study, we introduced a robust predictor based on a
stacking strategy to accurately predict neuropeptides. The predictor
extracted four types of protein sequence information, employed

CNN to train base classifiers, and then selected Gaussian NB to build
an ensemble model. The validity of our model was assessed using 5-
fold cross-validation and an independent test dataset. In addition,
t-SNE was used to visually observe the clustering of samples at each
stage, and SHAP was also used to interpret what role each type of
feature plays in the classification process. A user-friendly webserver
and the source code for our model are freely available at http://47.92.
65.100/neuropeptide/. Our model showed satisfactory results when
evaluated from different aspects, but there is still room for
optimization of the model as a predictor with the increase in
experimental neuropeptide data.
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