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Whole genome sequencing has revolutionized infectious disease surveillance for
tracking andmonitoring the spread and evolution of pathogens. However, using a
linear reference genome for genomic analyses may introduce biases, especially
when studies are conducted on highly variable bacterial genomes of the same
species. Pangenome graphs provide an efficient model for representing and
analyzing multiple genomes and their variants as a graph structure that
includes all types of variations. In this study, we present a practical
bioinformatics pipeline that employs the PanGenome Graph Builder and the
Variation Graph toolkit to build pangenomes from assembled genomes, align
whole genome sequencing data and call variants against a graph reference. The
pangenome graph enables the identification of structural variants,
rearrangements, and small variants (e.g., single nucleotide polymorphisms and
insertions/deletions) simultaneously. We demonstrate that using a pangenome
graph, instead of a single linear reference genome, improves mapping rates and
variant calling for both simulated and real datasets of the pathogen Neisseria
meningitidis. Overall, pangenome graphs offer a promising approach for
comparative genomics and comprehensive genetic variation analysis in
infectious disease. Moreover, this innovative pipeline, leveraging pangenome
graphs, can bridge variant analysis, genome assembly, population genetics, and
evolutionary biology, expanding the reach of genomic understanding and
applications.
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Introduction

Over the last two decades, whole genome sequencing (WGS) has
become an indispensable tool in infectious disease research,
surveillance, and control (Didelot et al., 2012; Gardy and Loman,
2018). Rapid advancements in sequencing technologies and
bioinformatic analysis have facilitated the generation of high-
quality genomic data at an unprecedented scale (Goodwin et al.,
2016; Nurk et al., 2022). WGS has enabled researchers to track and
monitor the spread and evolution of pathogens, investigate
outbreaks, identify drug resistance markers, and develop
diagnostic assays and vaccines (Koser et al., 2014; Walker et al.,
2015; Quick et al., 2016; Chen et al., 2021; Yang et al., 2021). Its
utility has been especially evident in the SARs-CoV-2 pandemic,
enabling real-time tracking of the pandemic (Geoghegan et al., 2021)
and identification of transmission chains (Geoghegan et al., 2020).
Additionally, WGS has provided valuable insights into the genetic
diversity, population structure, and functional characteristics of
various pathogens, thereby shaping our understanding of the
molecular mechanisms driving their virulence and transmission
(Holt et al., 2015).

Currently, genomic surveillance concentrates on monitoring
lineages and establishing transmission links between cases.
Analysis is mainly dependent on mutations in the core genome
(the genomic regions that are common to all isolates being analyzed
at that time), using one linear genome as a reference. Bacteria
genomes are highly variable, with genomic rearrangements and
different-scale deletion or insertion events being common
(Darmon and Leach, 2014). Using a single reference approach,
variations in the accessory genome (regions not shared by all the
genomes) are not detected, suggesting we may miss important
variations and introduce biases due to the selection of the
reference genome. Consequently, the alignment of sequencing
data against a single reference genome may lead to inaccurate or
incomplete variant identification (Garrison and Math, 2012).
Moreover, the linear representation of a genome fails to capture
the complexity of genomic rearrangements, duplications, and
structural variants (SVs) that are critical for understanding
pathogen evolution and adaptation, especially in highly
recombinogenic species (Eizenga et al., 2020; Colquhoun et al.,
2021). Viruses, responsible for many infectious diseases, possess
highly variable genomes that complicate genomic surveillance
(Sanjuán and Domingo-Calap, 2016). These tiny pathogens can
rapidly evolve and adapt to changing environments, with the
potential to jump species barriers, as seen with the emergence of
SARS, MERS, and COVID-19 (Xu et al., 2004; Mohd et al., 2016;
Plowright et al., 2017; Lu et al., 2020). Viral genomes, particularly
those of RNA viruses, are characterized by high mutation rates
which can lead to the emergence of new viral strains with altered
virulence or transmissibility (Domingo et al., 2021). Accounting for
the variability and unique characteristics of viral genomes is essential
for comprehensive disease monitoring and management.

To overcome these limitations, pangenome graphs have
emerged as an alternative approach for representing and
analyzing multiple genomes and their variants (Garrison et al.,
2018; Rakocevic et al., 2019; Liao et al., 2023; The Computational
Pan-Genomics Consortium, 2018). A pangenome graph is a graph-
based data structure that captures the entire genomic diversity of a

set of related genomes by incorporating all types of variation,
including SVs, rearrangements, and small variants (e.g., single
nucleotide polymorphisms (SNPs) and insertions/deletions)
(Paten et al., 2017; Marschall et al., 2018). By representing
collections of genomes and their alignments as graphs,
pangenome graphs allow for more accurate and comprehensive
genetic variation analysis, as they provide a unified framework to
compare and analyze diverse genomes, overcoming the biases
associated with single linear reference genomes (Paten et al., 2017).

Different methods are available for constructing pangenomes,
each tailored to suit specific research objectives and employing
unique techniques. Minigraph generalizes minimap2, which only
calls SVs (Li et al., 2020). Cactus uses a phylogenetic tree to guide the
creation of multiple alignments (Armstrong et al., 2020), and the
Cactus Pangenome Pipeline adapts Cactus to eliminate the need for
a guide tree and adds base-level alignments to the minigraph graph,
though it is still single reference-based (Hickey et al., 2023).
PPanGGOLiN uses gene families as nodes and genomic
neighborhoods as edges (Gautreau et al., 2020), and Pandora
focuses on SNPs of pangenomes by constructing graphs based on
individual multiple sequence alignments of coding sequences and
intergenic regions (Colquhoun et al., 2021). Meanwhile, minimizer-
space de Bruijn graphs offer a graph representation for highly
accurate, long sequencing reads (Ekim et al., 2021). In contrast to
these tools, the PanGenome Graph Builder (PGGB) stands out as the
least unbiased method (Garrison et al., 2023). PGGB incorporates an
“all-versus-all” alignment method, treating each input genome with
equal importance. The graphs produced by PGGB provide a base-
level representation of the pangenome, even within repetitive
regions, and include variants of all scales, from SNPs to large
SVs. This allows every included genome to serve as a reference
for subsequent analysis (Garrison et al., 2023). PGGB has previously
been used to build the draft human pangenome (Liao et al., 2023),
and Guarracino and colleagues have used it to validate a
longstanding hypothesis regarding the evolution of human
acrocentric chromosomes (Guarracino et al., 2023). Therefore, we
used PGGB for pangenome graph construction because of its
comprehensive and unbiased capabilities.

The implementation of pangenome graphs in infectious disease
research is crucial, offering significant advantages. The use of
pangenome graphs not only allows for the identification of novel
genetic variants and SVs that may be overlooked by traditional linear
reference-based methods (Garrison et al., 2018), but also provides
the potential to address some longstanding unresolved questions,
such as the origin of antibiotic resistance (Forsberg et al., 2014), the
evolution of pathogenicity (Zhou et al., 2020), and the impact of
horizontal gene transfer and evolution of genome architecture
(Soucy et al., 2015). Neisseria (N.) meningitidis, also known as
the meningococcus pathogen, is the primary agent responsible
for invasive meningococcal diseases such as meningitis and
septicemia, causing isolated incidents, outbreaks, and epidemics
worldwide (Halperin et al., 2012). The genome of this bacterium
spans approximately 2.1–2.4 Mb and possesses a GC content
ranging from 51%–52%. One striking characteristic of Neisseria
meningitidis genomes is their high recombination rate, which largely
fuels the extensive genetic diversity within this species (Schoen et al.,
2009; Didelot andMaiden, 2010; Harrison et al., 2017). In this study,
we utilized both real and simulated genomic data of N. meningitidis
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to assess the pangenome pipeline, covering pangenome graph
construction to variant calling. Our findings demonstrated that
using pangenome graphs improves mapping rates and enhances
variant calling. This heightened accuracy, encompassing all types of
variants, has the potential to improve outbreak investigations,
predict drug resistance, and facilitate vaccine design (Rasko et al.,
2008; Naz et al., 2019). By employing the least unbiased pangenome
graph construction tool PGGB and utilizing a graph reference for
subsequent NGS data analysis, our pangenome graph pipeline offers
a promising and practical approach for comparative genomics and
comprehensive genetic variation analysis in infectious disease
research. This paves the way for more accurate and in-depth
investigations of pathogen diversity, evolution, and adaptation
(Paten et al., 2017; Rakocevic et al., 2019).

Materials and methods

Background of Neisseria meningitidis
NZMenB epidemic strain

In Aotearoa New Zealand (NZ), from 1991 to 2007, an
extended serogroup B epidemic occurred due to a single strain
known as NZMenB (designated B:4:P1.7-2,4), identified by the
PorA variant (P1.7-2), which still accounts for around one-third
of meningococcal disease cases in NZ (Dyet and Martin, 2006;
Yang et al., 2021). Based on our unpublished WGS data, we have
categorized NZMenB into three phylogenetic clades, namely,
clade154, clade41 and clade42 based on the multilocus
sequence types (MLST) of seven housekeeping genes for
sequence type (ST), ST154, ST41 and ST42 respectively
(Maiden et al., 1998). The epidemic was primarily driven by
two monophyletic clades, namely, ST154 and ST42, which
accounted for the majority of the disease cases. On the other
hand, although fewer isolates were associated with ST41, it
displayed greater diversity, with the presence of multiple
distinct lineages.

Nanopore long-reads

To analyze theWGS dataset, the original reference genome NC_
017518 (a ST42 isolate) was used. To obtain complete reference
genomes for NMI01191 (a ST41 isolate) and NMI97348 (a
ST154 isolate), we conducted Nanopore long-read sequencing.
High molecular weight genomic DNA was extracted using the
Gentra Puregene Yeast/Bact. Kit (QIAGEN) and purified with
Agilent Magnetic Beads. We used 400 ng of high molecular
weight genomic DNA to construct sequence libraries utilizing the
SQK-RBK004 Rapid Barcoding kit (Oxford Nanopore
Technologies). The libraries were sequenced on R9.4.1 MinION
flow cells. We used Flye version 2.8.1 (Kolmogorov et al., 2019) for
de novo assembly, and Illumina sequencing reads were employed to
polish the assembly using Unicycler version 0.4.8 (Wick et al., 2017).
Consequently, we were able to obtain complete NZMenB genomes
(3STs) comprising NMI01191 for ST41, NMI97348 for ST154, and
NC_017518 for ST42. The 3ST genomes were aligned using
progressiveMauve (Darling et al., 2004).

Simulation of genomes for pangenome
graph construction

Mauve alignments demonstrated large inversions among the
3ST genomes. To evaluate pangenome graph construction, we
simulated three genomes from NC_017518 (ST42) by introducing
either randomly generated SNPs or mutated according to the SNP
differences of ST41 and ST154 relative to ST42. The simulation was
followed by introducing 200 indels and two inversions using simuG
(Yue and Liti, 2019). We named the three simulated genomes
ST42Sim, ST41Sim, and ST154Sim. The three simulated genomes
contained 200 indels and two inversions relative to ST42, with
ST42Sim, ST41Sim and ST154Sim containing 5000, 2892 and
4283 SNPs respectively. We grouped the three simulated
genomes with ST42, which we refer to as the 4Sim genomes, and
used them for further analysis.

Downloading diverse Neisseria meningitidis
genomes from NCBI

To expand our evaluation of pangenome graph construction to
more diverse genomes, 130 N. meningitidis (NM) genomes were
downloaded from NCBI (Supplementary Table S1). The 130NM
genomes comprised 8, 20, 20, 62, 2, 13, and 5 of group A, B, C, W, X,
Y, and ungrouped, respectively.

Pangenome graph construction with PGGB

We constructed pangenome graphs for the 4Sim genomes, 3STs
of NZMenB, and 130NM genomes using the PanGenome Graph
Builder (PGGB) (Garrison et al., 2023). PGGB is a reference-free
method for graph construction by employing all-to-all alignments
with wfmash, graph induction via seqwish, and progressive
normalization using smoothxg and gfaffix, graph visualization
and generating statistics using Optimized Dynamic Genome/
Graph Implementation (ODGI) (Guarracino et al., 2022;
Garrison et al., 2023). To construct the pangenome graphs, we
initially aligned the start of ST41 and ST154 with ST42 for the 3STs,
and all 130NM genomes were fixed to start with the dnaA gene using
circlator version 1.5.5 (Hunt et al., 2015).

There are three essential parameters for PGGB pangenome
graph construction, -n, the number of genomes, -s, the segment
length (defines the seed length for alignment used in wfmash), and
-p, the minimum pairwise identity between seeds. Here, we explain
how we optimized these parameters for our specific datasets. We
adopted the mash triangle approach (Ondov et al., 2016) to estimate
pairwise distances within each dataset. The maximum distance
observed was 0.0038 for the 4Sim genomes, 0.0016 for the 3ST,
and 0.0232 for the 130NM. Following the guidance provided by the
PGGB developers, we slightly decreased the -p value in accordance
with these pairwise distances for more inclusive all-to-all alignments
with wfmash. When adjusting -s (1000, 2000, 5000, and 10000) and
-p (96, 95 and 90) parameters for the 4Sim genomes, the resulting
pangenome graphs were similar across the different parameter
settings. Another parameter, -k, influences the graph structure
significantly; it excludes matches shorter than a certain threshold
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from the initial graph model, which we used the default -k 19. The
PGGB developers suggest setting -k larger for larger genomes. Larger
values for -k also allow us to ignore, when necessary, short
homologies due to the intervention of transposable elements,
which would increase the complexity of the graph. A lower -p
value will result in more inclusive alignments, and a larger -s value
can reduce graph complexity by focusing on longer homologies
between the genomes being aligned. To finely adjust the PGGB tool
for different datasets, these parameters (-s and -p) may require
modification based on the specific properties of the genomes, such as
their divergence and frequency of SVs. According to the divergence
among genomes and known rearrangement in the dataset of 4Sim,
3ST, we set the parameters -s, -p, and -n to 1000, 96, and 4,
respectively, for the 4Sim genomes, and to 2000, 95, and 3,
respectively, for the 3ST genomes. For the 130NM genomes, we
opted for a larger -s 10,000 value, both for scalability reasons and to
keep graph complexity lower. As a result, we set the parameters -s,
-p, and -n to 10000, 95, and 131, respectively. By employing these
selected parameter values, we successfully generated the most
concise pangenome graph for each dataset, guaranteeing the
optimal alignment of a significant proportion of segments from
each path within the graph (https://github.com/pangenome/pgge).
Additionally, the “odgi stats -S” option was used to generate statistics
for the seqwish and smoothxg graph and “multiqc -m” option was
used to generate a MultiQC report of the graphs’ statistics and
visualizations. All runs were executed with 48 threads on a Dell
R840 server with an Xeon Gold 6244 3.60 GHz CPU with 64 cores,
and 3TB RAM at ESR. We also utilized gfaestus for the 2D
visualization of the pangenome graphs of both the 4Sim and
130NM (https://github.com/chfi/gfaestus).

Vg deconstruct to call variants in the graphs

Variation graphs offer a compact representation of genetic
variation across a population in the form of bidirected DNA
sequence graphs, encompassing large-scale SVs like inversions
and duplications (Paten et al., 2017). To identify both small and
large variants from the pangenome graph, we employed the
Variation Graph (VG) toolkit (Garrison et al., 2018) to
deconstruct the variants into VCF files using the path NC_
017518 (ST42). The VG toolkit, standing for Variation Graph,
enables genomic analysis, such as alignment, assembly, and
variant calling, directly on the graph structure, thereby
facilitating the study of complex and highly variable genomic
regions while maintaining the context of each variation’s position
in the genome. When employing the “vg deconstruct” feature, we set
the parameters -a to process all snarls (genomic regions containing
variant sites and corresponding alternative alleles), including nested
ones, -e to consider traversals that correspond to paths in the graph,
and -K to retain conflicted genotypes, thereby ensuring the inclusion
of all variants present in the graph.

Given that the simulated genomes (ST42Sim, ST41Sim, and
ST154Sim) were derived from ST42, the known variations for these
simulated genomes relative to ST42 were served as the ground truth.
By utilizing this ground truth information, we conducted a
comparative analysis, evaluating the observed variations within
the 4Sim genome graph. Initially, we filtered for variations larger

than 100 bp, and then we utilized vcfallelicprimitives from vcflib
v.1.0.0 (Garrison et al., 2022) to deconvolute complex variations that
were less than 100 bp. We compared the variants identified in the
graph with the established ground truth to evaluate their
consistency. Variants were categorized as consistent if they were
present in both the graph and the ground truth, as false negatives if
they were present in the ground truth but not detected in the graph,
and as false positives if they were found in the graph but not in the
ground truth.

Simulated NGS dataset of Neisseria
meningitidis for pangenome graph based
variant calling

In addition to the comparative genomics analysis of the paths
(genomes) based on the genome graphs, these graphs can also serve
as a pangenome reference for NGS data analysis. To evaluate the
genome graph-based pipeline for NGS data mapping and variant
calling using the VG toolkit (Garrison et al., 2018), we simulated
100 × read depth 2 × 150 bp paired NGS data with an error rate of
0.5% using wgsim from samtools (Li et al., 2009).

We began with eight genomes, which included the 3ST genomes
and the three simulated genomes, and two mutated genomes,
ST41Mut and ST154Mut, based on the SNP difference of
ST41 and ST154 relative to ST42. To generate a set of
40 genomes, we initially introduced 2000 SNPs for each of the
eight genomes with five repeats, followed by two additional rounds
of 2000 SNPs (40 genomes per round) using SimuG (Yue and Liti,
2019). Consequently, we obtained 128 genomes distributed among
eight groups, including ST42, ST42Sim, ST41, ST41Mut, ST41Sim,
ST154, ST154Mut, and ST154Sim.

Real NGS dataset of NZMenB for
pangenome graph based variant calling

To test the graph-based analysis for a real NGS dataset, we
mapped the NGS dataset of 149 NZMenB isolates to the 3ST
pangenome graph (Supplementary Table S2). The 149 isolates
included 49 from clade154, 48 from clade41 and 52 from clade42.

Map the NGS data to graph using the VG
toolkit

To map the NGS data to genome graph using the VG toolkit, we
initially converted graphs (4Sim and 3ST) into 256 bp chunks using
the command “vg mod -X 256”. We then employed “vg index” to
generate the index for the graph. Subsequently, “vg map” was
utilized to map the NGS data against the graph, resulting in the
generation of gam files. We also used ‘vg stats’ to check the mapping
statistics.

To compare the mapping rates for NGS dataset against linear
references versus the graph, we also mapped the NGS data to each
linear reference using Bowtie2 version 2.3.2 (Langmead and
Salzberg, 2012). All sequenced and aligned reads were further
processed using the Picard-tools version 2.10.10
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(https://broadinstitute.github.io/picard/) to remove duplicated
reads and were assessed with Qualimap version 2.2.1 (Garcia-
Alcalde et al., 2012).

Variant calling for NGS data against genome
graph

There are currently two popular approaches to call variants in
pangenome graphs: genotyping known variants and novel variant
calling. We utilized both methods to call variants for the
128 simulated NGS dataset against the 4Sim genome graph.

To genotype known variants in the graph, we employed “vg
pack” to calculate the support reads for each gam file. We then
utilized “vg call” to genotype the known variants for each sample
based on the snarls file generated from the 4Sim genome graph.

To consider novel variants from the reads, we employed “vg
augment” to augment each gam file. Subsequently, we indexed the
augmented graph, calculated read support for all variants, and performed
variant calling. High confidence variants were identified using the PASS
information and genotype (GT = 1|1) from the VCF file. To evaluate the
performance of variant calling in the context of simulated genomes, we
compared the high confidence variants identified against the 4Sim graph
with the simulated SNP records. As the actual variations of ST41 and
ST154 relative to ST42 remain unknown, both sets of simulated NGS
data were excluded from this analysis.

Distance matrices for cluster relationship

To analyze the cluster relationship among the 130NM genomes, we
utilized “odgi similarity” from odgi version 0.8.3 (Guarracino et al., 2022)
to extract a sparse similarity matrix for paths of the 130MN graph. We
then converted the paired Jaccard similarities from column six into a
Jaccard distance matrix. These Jaccard similarities are measures that
represent the proportion of shared elements between pairs of paths. We
then employed hierarchical clustering to construct the phylogenetic
relationship among the genomes based on the Jaccard distances. To
assess the accuracy of the clustering relationship, we compared it to the
one obtained by kmer-based SNP phylogenetic analysis.

For the kmer-based SNP analysis, we used ska, a reference-free, contig-
based analysis, to extract the SNPsderived fromdefault kmer length 31 that
were present in 90% of the isolates (Harris, 2018). Phylogenetic analyses
were constructed from the kmer-based SNP alignment using maximum
likelihood under the best-fitmodel by Bayesian InformationCriterionwith
iqtree version 2.0.6 (Minh et al., 2020). The robustness of the clades was
estimated with 2000 ultra-fast bootstrap replicates.

Results

Overview of the pangenome graph
workflow

A pangenome is defined as the comprehensive collection of
whole-genome sequences frommultiple individuals within a clade, a
population or a species (Medini et al., 2005; Tettelin et al., 2005;
Vernikos et al., 2015; Kavvas et al., 2018). This collective genomic

dataset can be further divided into two distinct components: the core
genome, which includes genes present in all individuals at the time
of analysis, and the accessory genome, consisting of genes found
only in a subset of individuals (Vernikos et al., 2015; Figure 1A).
Pangenome graphs are pangenomes stored in graph models that can
capture the entire genetic variation among genomes in a population
or of a set of related organisms (Paten et al., 2017; Garrison et al.,
2018; Eizenga et al., 2020; Garrison et al., 2023; Figure 1B).

In this study, we have developed a pangenome graph pipeline for
microbial genomics, consisting of graph construction using PGGB
(Garrison et al., 2023), graph manipulation through ODGI (Guarracino
et al., 2022), and variant calling for NGS data using the VG toolkit
(Garrison et al., 2018; Figure 1C). ODGI facilitates graph manipulation
tasks such as visualization, and extraction of distances among paths in the
graph, enabling phylogenetic analysis (Guarracino et al., 2022).
Additionally, we utilized the VG toolkit for analyzing NGS data against
the graph for read mapping and variant calling (Garrison et al., 2018).

The pangenome graph construction with PGGB was demonstrated
to be effective across various datasets, though the resulting graphs varied
significantly based on the complexity of the input genomes
(Supplementary Table S3). The total run times for PGGB were
10.8 min, 8.3 min, and 4392 min, and the maximum memory usage
was 1.87 GB, 2.01 GB, and 38.64 GB for the 4Sim, 3ST, and 130NM,
respectively. In the case of the 130NM genomes, employing the PGGB
tool with the “-x auto” option enabled for the giant component heuristic
resulted in a total execution time of 2787 min and a peakmemory usage
of 21.92 GB. Notably, the generated graph remained identical to the one
obtained without this option. In scenarios involving hundreds to
thousands of genomes, it is recommended to utilize mapping
sparsification (-x auto) to alleviate computational demands.

High consistency between variations in the
4Sim genome graph and ground truth

The final smoothed graph for the 4Sim genomes spanned
2,260,981 bp and consisted of 30,033 nodes and 40,273 edges.
This is slightly larger than each of the input genomes:
2,248,966 bp for NC_017518 (ST42); 2,249,014 bp for ST41Sim,
2,248,965 bp for ST154Sim, and 2, 249,050 bp for ST42Sim.
Mauve alignment (Figure 2A) supported our observations, as
inversions were displayed as bubbles in the 2D visualization
(Figure 2B) and as inverted sequences in the 1D visualization
(Figure 2C). The VCF file indicated that inversions were
identified as different genotypes across various genomes. It is
important to note that some variations in the graph did not
correspond to the ground truth due to alignment discrepancies in
the indel regions (Figure 2D). Uponmanual inspection of these sites,
it was found that these variants represented the same variation but
were aligned to either the left or the right of the indels in the graph
compared to the ground truth.We detected four, three, and two false
negative small variations for ST154Sim, ST41Sim, and ST42Sim,
respectively, in comparison to ST42. Additionally, we identified
seven false positive small variants in ST154Sim. Therefore, both
sensitivity and specificity for variations in graph compared to
ground truth are over 99.9%. Despite the relatively simple nature
of the simulated genomes, the agreement between the variations in
the graph and the ground truth implies that the pangenome graph
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generated by PGGB is able to accurately and reliably detect genetic
variant across the input genomes (Supplementary Table S4).

100%mapping rates and comparable variant
calling in graph-based analysis of simulated
NGS data

Utilizing a pangenome graph reference for the analysis of NGS
data can significantly enhance mapping rates. We conducted an
evaluation by comparing the mapping rates of simulated NGS data
based on the 4Sim graph to each of the linear references: ST42,
ST42Sim, ST41Sim, and ST154Sim. All datasets were mapped to the
graph, yielding a 100% mapping rate. Although the rates of NGS
data aligned to each single linear reference were all over 99%, a bias
was observed in the linear reference mapping rates (Figure 3A). Our
findings indicate that the use of a pangenome graph reference can
greatly improve mapping rates in NGS data analysis.

The pangenome graph integrates various genomic variants,
making it possible to genotype variants in NGS datasets.
Interestingly, the genotyped results demonstrated high
consistency across the eight simulated NGS datasets (Figure 3B;

Supplementary Table S6). The ST42Sim group exhibited the highest
number of variants, consistent with the original simulation of
5000 SNPs and 200 indels. Moreover, the ST41Sim group
displayed more identified variants compared to ST41 and
ST42Mut, while the ST154Sim group revealed more variants
compared to ST154 and ST154Mut.

Variant calling for NGS data against the graph using the VG toolkit
differs slightly from single linear reference-based calling. In the absence
of a defined path for variant calling, the process will call variants against
the paths in alphabetical order (e.g., core genome part from A path,
accessory genomes from B path, etc.). The variant call format file
includes a PASS column to mark variants that pass all filters, and the
genotype (GT) describes the identified genotype in each sample. Since
we analysed haplotype bacterial genomes, variants with PASS but GT
not equal to 1|1 were classified as errors, while those with PASS and
GT= 1|1 were classified as high-confidence variants. For each simulated
NGS group, high-confidence variants exhibited consistency.
Interestingly, the ST41 and ST154 groups exhibited the lowest
proportion of high-confidence variant calls, which may be attributed
to these groups’ greater genomic diversity and the absence of a reference
from either group in the graph. Including one reference from each of
these groups in the pangenome graph led to an improvement in the

FIGURE 1
Overview of pangenome graph pipeline. (A) Bacterial pangenome, core genome, and accessory genomes. The pangenome represents the
comprehensive collection of whole-genome sequences frommultiple individuals within a clade. The core genomes comprise of a set of genes present in
all individuals, while accessory genomes consist of genes found in a subset of individual genomes (B) Pangenome graphs representation. Pangenomes
are stored in graph models, where nodes (numerically labeled) represent DNA segments of varying lengths. Edges connect nodes, and paths
represent walks through the nodes of the graph, corresponding to the input genomes (C) Pangenome graph pipeline with PGGB. The pipeline includes
graph construction using the PGGB tool, graph manipulation using ODGI, and variant calling for NGS data using the VG toolkit. The overview
demonstrates an efficient and integrated approach to pangenome analysis.
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proportion of high-confidence variant calls (Figure 3C; Supplementary
Table S8). Furthermore, as NC_017518 (ST42) was the first path from
the graph for variant calling, the ratio of high-confidence variants to the
number of simulated variants was higher in ST42 (0.944–0.959) and
ST42Sim (0.959–0.9706), but relatively lower in ST154Mut
(0.8755–0.9000) and ST154Sim (0.8792–0.9049) (Figure 3D).

Enhanced mapping of NZMenB real NGS
data to pangenome graph

The three sequence types (STs) represent the three major clades of
NZMenB (Figure 4A). The final graph for 3STs spanned 2,304,073 bp,

consisting of 23,323 nodes and 31,325 edges. This is marginally larger
than each of the input genomes: 2,248,966 bp for NC_017518 (ST42);
2,217,832 bp for NMI01191 (ST41) and 2,233,582 bp for NMI97348
(ST154). The inverted regions are consistent in both the Mauve
alignment (Figure 4B) and the 1D graph visualization (Figure 2C).

We mapped each group of genomes (ST154, ST41, and ST42) to
the respective linear references - ST154, ST41, ST42, and the 3STs
graph. Despite the higher diversity of the compared genomes,
particularly within the ST41 group, the mapping rate was higher
when mapped to the graph as opposed to a single linear reference
(Figure 4D; Supplementary Table S9). For example, when examining
the reads of ST154 and their mapping to the ST154, ST41, ST42, and
3ST genome graphs, we observed values ranging from 0.9721 to

FIGURE 2
Pangenome graph of the 4Sim genomes. (A)Mauve alignment of the 4Sim Genomes. The Mauve alignment of the 4Sim genomes is depicted, with
blocks under each line representing inverted regions (B) 2D visualization of the 4Sim pangenome graph. The pangenome graph of the 4Sim genomes is
visualized in 2D using gfaestus. Bubbles in the graph indicate inversions. (C) 1D visualization of the 4Sim pangenome graph with path orientation,
highlighting the inversions. The 4Sim pangenome graph is visualized in 1D using ODGI. Forward paths are represented in black, while reverse paths
are in red. Regions displaying both black and red represent inversions (D) Inconsistency in indel region alignment: graph vs. ground truth. This panel
provides two examples of inconsistent indel region alignment between the graph and the ground truth. For example, the deletion that appears at position
3547490 in ST42 according to the ground truth, is marked as being at position 3547491 in the graph. The labels are as follows: TR, true reference; TV, true
variant; GR, reference in the graph; GV, variation in the graph. (E) Consistency of variations: graph vs. ground truth. A bar plot demonstrates the high
consistency of variations between the graph and the ground truth, highlighting the accuracy of the pangenome graph representation.
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0.9973, 0.972 to 0.9967, 0.9738 to 0.998, and 0.9795 to 0.9999,
respectively. The isolates of the ST154 group may be less diverse, as
indicated by the smaller range of mapping rate variation, while the
isolates of the ST41 group display greater diversity, as evidenced by
the larger ranges of mapping rate variation (0.958–0.9956, 0.971 to 1,
0.9744 to 0.9988, and 0.9785 to 0.9998, respectively). The isolates
belonging to the ST42 group displayed comparable mapping rates
when mapped to both the ST42 and 3ST genome graphs. However,
slightly lower mapping rates were observed when these isolates were
mapped to ST154 (ranging from 0.9536 to 0.994) and ST41 (ranging
from 0.9559 to 0.9959). In summary, these findings suggest potential
reference bias when using a single linear reference and demonstrate
that utilizing a graph as a reference can improve the mapping
process.

The clustering relationships among paths in
the genome graph effectively reveal
phylogenetic connections

We evaluated the performance of the PGGBmethod on a diverse
group of 130NM genomes, constructing a pangenome graph that
proved more complex than the 4Sim and 3ST pangenomes. The
130NM pangenome graph spans 4,751,450 base pairs, over twice the

size of a typical individual N. meningitidis genome and comprises
629,349 nodes and 894,725 edges.

The 1D visualization of the 130NM graph, which colours paths
based on orientation, shows genome chunks as either forward
(black) or reverse (red) (Figure 5A), illustrating the high
recombination rate of N. meningitidis genomes. The 2D
visualization using gafestus reveals large bubbles, potentially due
to the substantial number of genomes aligned in reverse (Figure 5B).
We classified the variations in the graph into (multiple) SNPs, indels
and SVs. An example of a multiple nucleotide polymorphism
(MNP) is when a sequence variation involves changes in multiple
adjacent nucleotides. For example, a DNA sequence changes from
“GGG” to “ACA”. The 130NM pangenome graph contains 133, 745
(M) SNPs, 25,478 indels, and 1,446 SVs.

The all-vs-all alignment pangenome graph construction is
unbiased, allowing distances among paths in the graph to
effectively reveal genome relationships. Using the Jaccard
similarity of the 130NM paths, we constructed a phylogenetic
relationship among them. Clonal complexes are well-resolved by
Jaccard similarity, with groups containing more than one genome
clustering together (Figure 5C). This finding is largely consistent
with phylogenetic relationships revealed by the kmer SNP-based
analysis (Figure 5D). Most of the highly supported clades identified
by the kmer SNP-based analysis are also clustered together on the

FIGURE 3
Mapping rates and comparable variant calling in graph-based analysis of simulated NGS Data. (A) Mapping rates: simulated NGS data to linear
reference vs. 4Sim pangenome graph. This panel presents a comparison of mapping rates for simulated NGS data to each linear reference and the 4Sim
pangenome graph. (B) Known variant genotyping in the 4Sim graph. A box plot displays the number of variations in genotyping based on known variants
within the 4Sim graph. (C) Novel variants from graph-based calling. The box plot shows the proportion of high-confidence variants for each
simulated group of data, illustrating the effectiveness of graph-based variant calling (D)Overlap of high-confidence variants with simulated variants. This
box plot represents the proportion of high-confidence variants that overlap with simulated variants for each group, demonstrating the accuracy of graph-
based variant calling in identifying true variations.
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Jaccard similarity tree, such as clonal complex ST8, ST23, ST175,
ST420/6688, ST4, ST269, ST41/44, but the branches in the kmer
SNP-based analysis are more diverse. There are two clonal
complexes, ST-344 and ST-32, being clustered together on the
Jaccard similarity tree but not on the kmer SNPs tree. Overall,
the all-vs-all alignment pangenome graph is suitable for a relatively
large number of genomes, capturing all types of variation and
offering an unbiased method for genome comparison. The
distance of pangenome graph paths reveals the genomic
relationships well.

Discussion

Whole genome sequencing has revolutionized many aspects of
infectious disease research, including the tracking and monitoring of
pathogen spread and evolution (Didelot et al., 2012; Quick et al., 2016;
Gardy and Loman, 2018; Geoghegan et al., 2020; Geoghegan et al., 2021;

Yang et al., 2021), identification of drug susceptibility and resistance
(Koser et al., 2014; Holt et al., 2015; Walker et al., 2015), and the
advancement of vaccine development (Chen et al., 2021). However, the
use of linear reference-based approaches for genomic analyses may lead
to biases, particularly in studies focused on highly variable bacterial
genomes (Darmon and Leach, 2014). To overcome the limitation of
single linear reference genomes, pangenome graphs offer an efficient
model for representing and analyzing multiple genomes and their
variants within a graph structure encompassing all types of
variations (Paten et al., 2017; Eizenga et al., 2020). In this study, we
present a practical and unbiased bioinformatic pangenome graph
pipeline (Figure 1C) that uses PGGB to construct pangenome
graphs from assembled genomes for comparative genomics
(Garrison et al., 2023), and employs the VG toolkit to align whole
genome sequencing data and call variants against a graph reference
(Garrison et al., 2018). We have demonstrated the efficacy of the
pangenome pipeline across a diverse collection of N. meningitidis
genomes, using both simulated and actual genomic datasets.

FIGURE 4
Pangenome graph of 3STsN.meningitidis genomes. (A) Phylogenetic analysis of NZMenB. The phylogenetic analysis of NZMenB reveals threemajor
STs responsible for the epidemics: ST154, ST41, and ST42 (B)Mauve alignment of 3ST genomes. The Mauve alignment of the 3ST genomes is depicted,
with blocks under each line representing inverted regions. (C) 1D visualization of the 3STs pangenome graph with path orientation. The 3STs pangenome
graph is visualized in 1D using ODGI, displaying path orientation. Forward paths are represented in black, while reverse paths are in red. Regions
displaying both black and red represent inversions (D) Mapping rates: real NZMenB NGS data to linear reference vs. 3STs to the pangenome graph. This
panel presents a comparison of mapping rates for real NZMenB NGS data to each linear reference and the 3STs pangenome graph. Each group, ST154,
ST41, and ST42, were mapped to their respective references and the graph.
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Numerous methods exist for constructing pangenomes, each
with specific strengths and strategies (Armstrong et al., 2020;
Gautreau et al., 2020; Li et al., 2020; Colquhoun et al., 2021;
Ekim et al., 2021; Hickey et al., 2023); however, the
PanGenome Graph Builder (PGGB) distinguishes itself by
providing a comprehensive, unbiased approach that includes all
types of genomic variations and treats each input genome equally
(Guarracino et al., 2023). Using PGGB, we have successfully
constructed pangenome graph for diverse datasets of Neisseria
meningitis (the 4Sim, the 3STs and 130NM datasets). The resulting
graphs varied considerably based on input genome complexity
(Supplementary Table S3). The resulting pangenome graph proved
to be a powerful tool for visualizing and analyzing the complex
genomic relationships among these highly recombinant Neisseria
genomes (Figures 2, 4, 5). By capturing all types of genomic
variation and enabling unbiased genome comparisons, this

approach offers significant advantages for comparative
genomics studies. The accurate representation of inversions,
SNPs, and indels in the graph for the 4Sim genomes (Figure 2;
Supplementary Table S4) serves as strong evidence for the
effectiveness of PGGB. Moreover, the flexibility offered by
PGGB to adjust parameters according to the user’s dataset is
noteworthy. When using PGGB for pangenome graph
construction, one can specifically adjust essential parameters
such as -n, -s, and -p. These adjustments provide tuning
opportunities to generate optimized graphs for different input
datasets (Guarracino et al., 2023). In addition, enabling the -x auto
option, the heuristic based on a model of random graphs to set a
sparsification threshold for initial mappings of the 130NM dataset
can significantly reduce computational time and maximum
memory usage, but without compromising the accuracy of the
final pangenome graph results (Supplementary Table S3).

FIGURE 5
Pangenome graph of 130 N. meningitidis genomes and their phylogenetics relationships. (A) 1D visualization of the 130NM genomes with path
orientation. The 130NM pangenome graph is visualized in 1D using ODGI, displaying path orientation. Forward paths are represented in black, while
reverse paths are in red. Regions displaying both black and red represent inversions (B) 2D visualization of 130NM pangenome graph. The pangenome
graph of the 130NM genomes is visualized in 2D using gfaestus. (C) Phylogenetic analysis of 130 NM genomes based on Jaccard distance of paths.
The clustering relationship of 130 NM genomes is conducted based on Jaccard distance of paths in the 130NM pangenome graph. Isolate names and
clades are coloured according to their clonal complex designation, with “New” indicating isolates where the clonal complex is not yet assigned (D)
Phylogenetic analysis of 130NM genomes based on kmer SNPs. A maximum-likelihood phylogeny is constructed using iqtree v.2.0.6 under the best-fit
model determined by the Bayesian Information Criterion. Branches with greater than 95% bootstrap consensus (from 2000 ultra-fast bootstrap
replicates) are highlighted with a red dot. Isolate names and clades are coloured according to their clonal complex designation.
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In addition to representing various types of genomic variation in
the pangenome graph generated by PGGB, we can also utilize distance
metrics, such as the Jaccard distance of paths in the graph, to examine
genomic relationships. Strains of N. meningitidis were classified into
distinct clonal complexes based on similarity of STs byMLST (Maiden
et al., 1998), reflecting their close evolutionary relationships. However,
the high recombination rate of meningococcal genomes complicates
the interpretation of phylogenetic relationships among strains and
clonal complexes, and there is a need for novel genomic approaches to
better understand their evolution (Harrison et al., 2017). For the
diverse 130NM genomes, most highly supported clades identified by
the kmer SNP-based analysis were also clustered together on the
Jaccard distance tree (Figures 5C, D). This consistency underscores the
utility of the pangenome graph approach for uncovering the
underlying genomic relationships among N. meningitidis strains.
Interestingly, we observed that the branches in the kmer SNP-
based analysis are more diverse, suggesting that combining
different methods of analysis may provide a more comprehensive
understanding of the phylogenetic relationships among clonal
complexes.

To circumvent reference bias, utilizing a pangenome as a
reference is a significant direction for future genomics studies. In
addition to pangenome graph construction using the PGGBmethod,
our pipeline also employs the VG toolkit for the analysis of NGS
data, which includes mapping and variant calling. Both simulated
NGS and real data demonstrate improvedmapping rates when using
graph-based references compared to linear references, indicating
that the adoption of a pangenome graph reference can substantially
enhance mapping rates in NGS data analysis (Figure 3A; Figure 4D).
The pangenome graph effectively integrates various genomic
variants, enabling the genotyping of variants in NGS datasets
that cannot be achieved using a single linear reference
(Figure 3B). Furthermore, the novel variant calling approach
based on the graph provides increased flexibility, allowing for
either pangenome-based or reference-based variant calling. This
feature significantly reduces reference bias and improves data
analysis efficiency. Our results also reveal that the proportion of
novel variant calls is remarkably high (Figure 3C), and a large
number of simulated variations are identified (Figure 3D), indicating
the reliability of graph-based NGS data analysis.

The incorporation of unbiased pangenome graphs into
infectious disease research represents a remarkable
advancement, yielding numerous benefits. Our pipeline employs
PGGB for pangenome construction, which treats all input
genomes in tandem, giving equal importance to every base.
This comprehensive approach allows us to discern all genetic
variation particularly structural variation and copy number
variation that were likely overlooked by previous methodologies
based on the use of a single reference genome. This enhanced
detection capability proves crucial for the identification of
virulence and antimicrobial resistance genes (Ekim et al., 2021).
Simultaneously including all variations enhances our
understanding of the genomes’ evolutionary history, helping
elucidate transmission patterns and establish connections
between cases. This could prove invaluable in infectious disease
research, where identifying the source or potential origins of new
outbreaks is a priority, rapid genotyping against a graph could offer
essential clues. Moreover, with multiple genomes integrated into

the graph, each genome or the entire pangenome can serve as a
reference for novel variant calling. This feature becomes especially
valuable in public health surveillance, eliminating the need to try
different references. This unbiased pangenome graph approach
holds the potential to address longstanding challenges in infectious
disease research, such as the origin of antibiotic resistance, a
concern with significant public health implications. Pangenome
graphs can be used to track and understand the genetic
determinants contributing to resistance, providing insights that
could guide the selection of therapeutic modalities or preventive
strategies. They allow researchers to visualize and interpret the
complex genetic interactions and variations that propel the
evolution of pathogenicity, thereby fostering a deeper
understanding of pathogen behavior (Zhou et al., 2020).
Additionally, they can elucidate processes such as horizontal
gene transfer and evolution of genome architecture, both crucial
for bacterial adaptability and survival (Soucy et al., 2015).
Pangenome graphs are particularly beneficial for viral genomics
studies, as viral genomes are smaller. The unbiased analysis of
these genomes could provide evidence about their origin and
spread, guiding the design of better vaccinations, and enhancing
our ability to prevent, monitor, and treat infections.

Although the concept of pangenomes initially emerged from
microbial research (Medini et al., 2005; Tettelin et al., 2005; Vernikos
et al., 2015; Kavvas et al., 2018), pangenome graphs have since been
applied to various species, such as humans (Guarracino et al., 2023;
Liao et al., 2023), and cattle (Talenti et al., 2022). Integrating all
genomic variants facilitates a comprehensive and unbiased view of
the genetic landscape, as demonstrated by the draft human
pangenome that not only captures known variants, haplotypes,
and new alleles at complex loci but also adds 119 million base
pairs of polymorphic sequences and 1,115 gene duplications
compared to the existing GRCh38 reference (Liao et al., 2023).
The research conducted by Guarracino et al. (2023) using PGGB
confirmed a long-held hypothesis regarding the evolution of human
acrocentric chromosomes—that these chromosomes contain
pseudo-homologous regions where heterologous pairs recombine
as if they were homologs. Pangenome graphs hold potential in the
broader field of genomics, including human genetics and
personalized medicine, where they can help uncover subtle
genetic variations associated with disease susceptibility or
treatment response. These methods are also expected to find
applications in metagenomics, transcriptomics, and epigenomics,
aiding in a more comprehensive understanding of genomic
diversity.

In conclusion, the current pangenome pipeline has several
advantages over other pipelines, offering a more comprehensive
and accurate approach for comparative genomics and
comprehensive genetic variation analysis for infectious disease.
Pangenome graphs provide a promising and practical approach
for advancing our understanding of pathogen diversity, evolution,
and adaptation.

Data availability statement

The 4Sim, 3ST, 130NM datasets used for pangenome graph
construction, 128 simulates genomes, and the scripts used in this
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study are available at https://github.com/ZoeYang2020/Pangenome-
Graphs-in-Infectious-Disease. 149 isolates of NZmenB NGS data are
available for download from the National Center for Biotechnology
Information Sequence Read Archive (Bioproject accession no.
PRJNA592848 and PRJEB28859). All the related materials are
already publicly available.
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