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Background: Alzheimer’s Disease (AD) is an age-related progressive
neurodegenerative disorder characterized by mental deterioration, memory
deficit, and multiple cognitive abnormalities, with an overall prevalence of ~2%
among industrialized countries. Although a proper diagnosis is not yet available,
identification of miRNAs and mRNAs could offer valuable insights into the
molecular pathways underlying AD’s prognosis.

Method: This study aims to utilizemicroarray bioinformatic analysis to identify potential
biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759,
GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore,
this study conducted gene ontology, pathways analysis, and protein-protein interaction
network to reveal major pathways linked to probable biological events. The datasets
were meta-analyzed using bioinformatics tools, to identify significant differentially
expressed genes (DEGs) and hub genes and their targeted miRNAs’.

Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes
were identified as hub genes in this study. The analysis of DEGs using GO (gene
ontology) revealed that these genes were significantly enriched in actin cytoskeleton
regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually,
hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p,
hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-
9-3p exhibited significant interactions with most of the hub genes.

Conclusion: Overall, these genes can be considered as pivotal biomarkers for
diagnosing the pathogenesis and molecular functions of AD.
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1 Introduction

Alzheimer’s disease (AD) is defined as an age-related progressive
neurodegenerative disorder that causes permanent damage to memory
cells and cognitive dysfunctions, leading to dementia (Bondi et al.,
2017). In terms of clinical symptoms, AD is associated with mental
deterioration, memory deficit, delusion, and other cognitive alterations
such as early loss of prospective memory. Eventually, in the advanced
stages of Alzheimer’s disease, more severe ramifications such as cardiac
failure can result inmortality (Ghazal et al., 2022). This disease currently
disturbs ~2% of the people in industrialized countries and its prevalence
is predicted to rise dramatically over the next 40 years (Vaz and
Silvestre, 2020).

Pathologically, hyperphosphorylation of tau protein and
extracellular deposits of beta-Amyloid peptides as plaques,
resulting in the formation of neurofibrillary tangles and loss of
neuronal cells, constitute the microscopic features of AD (Verheijen
and Sleegers, 2018). Despite making significant progress in order to
clarify important aspects of AD, a proper diagnosis is not yet
available. However, early diagnosis through magnetic resonance
imaging (MRI), Position Emission Tomography (PET), and
functional MRI (fMRI) of the brain can improve a patient’s life
with appropriate treatment and symptom alleviation (Long and
Holtzman, 2019).

Although existing treatments remain mostly limited,
advancements have been made in defining genetic factors related
to the development of Alzheimer’s disease (Rao et al., 2014).
Mutations in APP (OMIM: 104760, 21q21), PSEN1 (OMIM:
104311, 14q24), PSEN2 (OMIM: 600759, 1q42), and APOE
(OMIM:107741, 19q13) which mostly follow the pattern of
autosomal dominant inheritance are known to have substantial
impact on AD’s vulnerability (Avramopoulos, 2009). The APOE
gene which encodes apolipoprotein E, provides a critical link
between the central nervous system (CNS) and the periphery,
leading to AD by disrupting the integrity of the blood-brain
barrier (Husain et al., 2021). In addition, PSEN1 and PSEN2,
which encode Presenilin-1 and Presenilin-2, in turn, play a
crucial role in memory maintenance and even in the process of
beta-amyloid generation (Dai et al., 2018). Consequently, Mutation
in these genes may lead to alterations in beta-amyloid formation and
the accumulation of these precursors converts beta-amyloid into
plaques, leading to the progression of AD (Xiao et al., 2021).

MicroRNAs are a class of small, non-coding RNAs that play a
pivotal role in regulating gene expression by either inducing mRNA
degradation or suppressing translation (Xiao et al., 2021). They are
also responsive to microenvironmental stressors and are involved in
maintaining homeostasis, as well as regulating various processes
such as cell proliferation, differentiation, and neurodegenerative
procedures (Kumar and Reddy, 2016). Given their multi-system and
overlapping regulatory roles in critical areas such Cerebral
Neocortex, limbic system, and central nervous system,
microRNAs found in blood, cerebrospinal fluid (CSF), or brain
tissue are presented as promising biomarkers for AD, as alterations
in particular miRNAs have been linked to the development of
progressive neurological disorders such as AD (Delay et al., 2011;
Wang et al., 2019).

The primary objective of this study is to examine the
involvement of miRNAs and their target genes in the context of

Alzheimer’s disease, through a bioinformatic meta-analysis
approach. Therefore, we identified differentially expressed genes
(DEGs) between AD cases and healthy controls, as well as their
protein-protein interactions and signaling pathways. By revealing
the molecular mechanisms underlying AD, this study could not only
pave the way for the development of more effective treatments for
this neurodegenerative disorder but also highlight the potential of
these pathways as therapeutic targets.

2 Materials and methods

2.1 Data sources and selection of eligible
gene expression datasets for meta-analysis

In this study, multiple independent datasets were used to
identify differentially expressed genes and microRNA’s when
comparing Alzheimer patients with healthy controls, by
performing cross-study meta-analysis research. The research data
in this paper, including the expression profile data sets of
Microarray, were retrieved from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/gds/) database with
“Alzheimer’s disease,” “homo sapiens,” and “expression profiling
by array” as keywords. This inclusive set of criteria should be
followed when selecting qualified studies and datasets (Bondi
et al., 2017): Human case-control studies (Ghazal et al., 2022);
gene expression profiling analysis (Vaz and Silvestre, 2020);
comparable, untreated test conditions (Verheijen and Sleegers,
2018); available complete raw and processed microarray data.
Other clinical covariates, including age, sex, and therapeutic
status were not available for all samples, therefore, to avoid the
introduction of false positives by imputation, have not been
included. Studies were disqualified if they met any of the
following criteria (Bondi et al., 2017): letters, abstracts, meta-
analyses, review articles, and human case reports (Ghazal et al.,
2022); cell lines used in experimental design (Vaz and Silvestre,
2020); RT-PCR used only for profiling studies (Verheijen and
Sleegers, 2018); studies without case-control (Long and
Holtzman, 2019); studies that examined the impact of specific
factors on Alzheimer disease; and (Rao et al., 2014) studies
including other forms of RNA such as circular RNA. The
datasets and references that met the aforementioned
requirements were all manually reviewed. For selecting eligible
datasets, the entire pipeline is depicted in Figure 1.

2.2 Data extraction and processing

For each dataset, the series matrix file was downloaded and
processed in several steps including background correction,
log2 transformation, and quantile normalization which were
performed using R language v4.2.2. We used the R packages
including, Limma, GEOquery, BiocGenerics, Biobase, parallel,
reshape, reshape2, ggplot2, grid, plyr, dplyr, data.table, sva, and
affy from Bioconductor to process the data from Illumina platforms.
After computation, all Alzheimer data sets were merged according to
Hughey and Butte’s previously published pipeline (Zetterberg et al.,
2004). During this step, the expression data were mean-centered and
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reduced to the number of common probes across all data sets. The
gene expression data of the merged datasets were batch-adjusted
using the ComBat method, implemented in the sva package v3.
Assessing the success of batch correction was confirmed by boxplots.

2.3 Differential gene expression

The meta-analysis approach was utilized to evaluate the
differential expression of genes between Alzheimer’s disease
patients and controls. This analysis was performed using R
packages, applying a significance threshold of a false discovery
rate (FDR (, p-value less than 0.05 and a logarithm fold change
(LogFC) of 1.23 or greater. We generated heatmaps using Python
version 3.11 to visually represent the data.

2.4 Differential miRNA expression

Differentially expressed miRNAs between AD patients and
controls were determined by using R packages, using a cutoff
false discovery rate (FDR), p-value of less than 0.05 and
logarithm fold change (LogFC) of 2 or more.

2.5 Enriched gene ontology and pathways
analysis

Gene ontology (GO) analysis is a widely used method for annotating
and enriching functional information of the genes which is categorized
into three sections: Biological process (BP),Molecular function (MF), and

Cellular component (CC). In this study, GO enrichment and Kyoto
Encyclopedia of Genes andGenomes (KEGG) pathway analyses ofDEGs
were performed using the Enrich database (https://maayanlab.cloud/
Enrichr/). To establish statistical significance, certain criteria were
employed, with the requirement of at least three genes in a cluster, a
GO tree interval range between 3 and 8, and a kappa score of 0.4 for
pathway network connectivity. Furthermore, a p-value less than 0.05 was
deemed significant according to these criteria.

2.6 Clustering gene expression data

Python libraries including matplotlib, and seaborn were imported
to cluster DEGs and visualize the results. In this section of our research,
we used hierarchical clustering, a potent technique for examining high
throughput expression data. Python determined the degree of similarity
among the genes in each set of data, displayed the expression value
using colors, and then clustered the genes.

2.7 Protein-protein interaction (PPI) network
construction, cluster networks, and
identification of hub genes

The possible interactions among DEGs were explored and visualized
using the STRING (search tools for the retrieval of interacting Genes/
Proteins) darabase (https://string-db.org). The STRING database aims to
provide a critical assessment and integration of protein-protein interaction,
including direct (physical) as well as indirect (functional) associations. The
PPI network was visualized by the Cytoscape V3.9.1 software (https://
www.cytoscape.org). Generally, hub genes are defined as genes with high

FIGURE 1
Data set selection flow chart showed that a total of 85 data sets from GEO were evaluated. Finally, 6 data sets for mRNA and a single dataset for
miRNA were selected to be included in this meta-analysis.
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correlation in candidatemodules. This study utilized certain criteria as cut-
off thresholds for selecting hub genes, including genes with Degree>100, k
score>2, and max depth>100. Cytohubba was used to determine the top
10 potential hub genes, also referred to as common top 10 nodes, based on
their degree, closeness, and betweenness. Moreover, the Molecular
Complex Detection (MCODE) tool was utilized to visualize clusters of
PPI networks with specific parameters including, degree cut-off of 2, node
score cut-off of 0.2, k score of 2, and max depth of 100. By using the web
tool available at (https://bioinformatics.psb.ugent.be/webtools/Venn), a
Venn diagram was illustrated to determine the shared hub genes.

2.8 Hub genes validation

We used receiver operating characteristic (ROC) curve analysis
to assess the predictive impact of hub genes on the risk of AD. The
area under the ROC curve was computed to compare the diagnostic
efficacy of the hub genes. The analysis was conducted using v.3.11 of
the Python packages.

2.9 Evaluation of miRNA-hub genes
interaction network

To identify the targeted miRNAs of the hub genes, the
miRTarBase database (https://www.mirtarbase.cuhk.edu.cn),
mirWalk (https://mirwalk.umm.uni-heidelberg.de/), and
TargetScan (https://www.targetscan.org/) were used. In addition,
the miRNet database (https://www.mirnet.ca/) was used to create a
visual representation of the interactions between miRNAs and hub
genes.

3 Results

3.1 Characteristics of datasets for analysis

Our pre-specified criteria led to the identification of six datasets,
namely, GSE4757, GSE5281, GSE28146, and GSE16759 from GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array), consisting of
123 samples from AD patients and 96 samples from healthy
controls. Additionally, we identified GSE12685, and GSE1297 from
GPL96 (AffymetrixHumanGenomeU133AArray), comprising 29AD
samples and 16 normal samples. In terms of miRNA datasets,
GSE16759 (USC/XJZ Human 0.9 K miRNA-940-v1.0) was the only
qualified one for further analysis. Furthermore, the microarray data
analysis utilized different sample sources, including the brain’s
entorhinal cortex, Hippocampal CA1 tissue, and frontal cortex
Synaptoneurosome. Table 1 represents the essential features of the
datasets that were incorporated.

3.2 Identification of common DEGs and
microRNAs in AD

We achieved the result by analyzing six microarray datasets
obtained from two distinct sets of microarray platforms (GPL570,
GPL96). The outcome of our mRNA analysis revealed a total of

100 differentially expressed genes, of which 73 were upregulated and
27 were downregulated (Figure 2). These DEGs are represented in
improved volcano plots that display the DEGs across all samples
(Figure 3). Table 2 provides a classification of the upregulated and
downregulated genes that were commonly identified as highly
significant in the micro array meta-analysis. Among the
73 upregulated genes, MALAT1 displayed the highest log (FC)
with the value of 2.25. On the other hand, SST was identified as
having the lowest log (FC) value of −1.73 among the
27 downregulated genes.

Additionally, through analyzing a single miRNA dataset with
the platform of GPL8757, 73 miRNAs were identified as top ones,
involved in Alzheimer’s disease, based on their p-value and LogFC.
hsa-miR-601 and hsa-miR-374 were found to be the most significant
upregulated and downregulated miRNAs among all, respectively
Figure 4.

Table 3. provides a classification of the upregulated and
downregulated miRNAs that were commonly identified as highly
significant in the micro array meta-analysis.

3.3 Gene ontology (GO) enrichment and
pathways analysis

The present study conducted a Gene Ontology enrichment analysis
of differentially expressed genes (DEGs) to identify the underlying
biological pathways of Alzheimer’s diseases. The results demonstrated
that in terms of biological processes (BP), the DEGs were significantly
enriched in positive regulation of cellular response to transforming
growth factor beta stimulus (GO:1903846), positive regulation of
transforming growth factor beta receptor signaling pathway (GO:
0030511), and positive regulation of transmembrane receptor
protein serine/threonine kinase pathway (GO:0090100) (Figure 5A).
For molecular function, the DEGs were mainly enriched in C-X3-C
chemokine binding (GO:0019960), chemokine binding (GO:0019956),
and co-SMAD binding (GO:0070410) (Figure 5B). As for cellular
components the result revealed that the DEGs were mainly enriched
in endocytic vesicle (GO:0030139), integral component of proximal
membrane (GO:0005779), and intrinsic component of proximal
membrane (GO:0031231 (Figure 5C). Furthermore, the KEGG
analysis results indicated that these DEGs were enriched in several
pathways, including regulation of actin cytoskeleton, ECM-receptor
interaction, and hypertrophic cardiomyopathy (Figure 5D).
Accordingly, the GO analysis of DEGs indicated their critical
enrichment in signaling pathways, including TGFβ signaling, which
its dysregulation has been associated with neurodegenerative and
cognitive impairment, including Alzheimer’s disease. It is worth
mentioning that endocytic vesicle dysfunction, which its critical role
has been demonstrated in KEGGs, can lead to abnormal accumulation
of tau protein which is a substantial hallmark of Alzheimer’s disease.

3.4 PPI network construction and hub genes
extraction

PPI networks are mathematical representations of the physical
contacts between proteins in the cell which play a crucial role in
various fundamental molecular mechanisms in living cells. The PPI
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networks of 100 DEGs included 86 nodes connected by 52 edges
with an average clustering coefficient of >0.4 (Figure 6). To
determine whether the number of connections identified in our
PPI analysis is higher than random chance, we conducted a
thorough statistical analysis. Specifically, we performed a
simulation-based approach to establish the background
distribution of the number of connections (edges) that would
occur by random chance. This was achieved by simulating
1,000 sets of randomly selected 100 genes from our dataset, and
for each set, we calculated the number of connections. The empirical
p-value was calculated as the proportion of simulations in which the
number of connections equaled or exceeded the observed 52 edges.

This p-value provides a measure of the statistical significance of our
finding.

Our results indicate that the observed number of connections in
the PPI network is significantly higher than what would be expected
by chance (empirical p-value <0.05). This suggests that the
interactions among the 100 DEGs are not random and likely
reflect biologically meaningful relationships.

The top 10 hub genes were listed in Table 2. The
findings indicated that the hub genes identified through
three different methods (Degree, closeness, and
betweenness), were CXCR4, SELE, ITGβ1, MYH11, and
TGFβ1 (Figure 7).

TABLE 1 Characteristics of each selected microarray dataset for the meta-analysis.

GEO accession
number

Sample
(Normal/AD)

Sample source Platform

mRNA

GSE4757 20 (10/10) Entorhinal cortex GPL570

GSE5281 161 (74/87) Entorhinal cortex, Hippocampus, Medial Temporal Gyrus, posterior Cingulate, Superior Frontal
Gyrus, primary visual cortex

GPL570

GSE16759 8 (4/4) Parietal lobe GPL570

GSE28146 30 (8/22) CA1 tissue gray matter GPL570

GSE12685 14 (8/6) Frontal cortex synaptoneurosome GPL96

GSE1297 31 (9/22) Hippocampal CA1 tissue GPL96

miRNA

GSE 16759 8 (4/4) Parietal lobe GPL8757

FIGURE 2
Heatmap of the DEGs with significant LogFC.
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3.5 Molecular complex detection (MCODE)
cluster for identification of hub genes

Significant modules of the PPI network were determined by
MCODE. According to this, MCODE score of >5 was set as a
significant threshold. The gene MYH11 in this cluster
overlapped with CytoHubba network hub genes, that
simultaneously have strong connectivity in the STRING
network (Figure 8).

3.6 Validation of hub genes

By utilizing the ROC curve to assess the prognostic value of
hub genes in the PPI network, 3 out of 5 shared hub genes,
namely, CXCR4, MYH11, and TGFB1, showed potential
indications as potential biomarkers for Alzheimer’s disease.
However, the remaining two genes (SELE and ITGB1), were
not validated, probably owing to the limited number of
samples retrieved from GPL96. To ensure the accuracy and
reliability of these genes as potential biomarkers, conducting
further investigations using larger sample groups is highly
recommended.

The area under the ROC curve (AUC) reflects diagnostic value
of the test. Accordingly, for these genes, AUC values varied between
0.2 and 0.7 (Figure 9).

3.7 Identification of miRNA-hub genes
interaction

Based on the result obtained from miRNet tool, hsa-mir-122-5p,
hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p,
hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p,
and hsa-mir-9-3p exhibit considerable interaction with the majority
hub genes which is determined as principal miRNAs in the
commencement and development of AD (Figure 10).

4 Discussion

This meta-analysis aimed to reveal the potential biomarkers of
AD, which is known as a progressive neurodegenerative disorder,
characterized by the accumulation of amyloid beta and
neurofibrillary tangles of hyperphosphorylated tau proteins. In
November 1901 Auguste D, presented a long-term study of the
female patient and then in 1906, Alois Alzheimer identified and
characterized the linkage between histological changes that became
known as plaques to the dementia. In the early 1980s, the term “AD”
was used to describe cognitive impairment caused by plaques and
neurofibrillary tangles. In 1984, Stroke-Alzheimer’s Disease and
Related Disorders Association working committee and the
National Institute of Neurological and Communicative Disorders
both accepted the term “probable AD.” In Alzheimer’s disease, the
limbic lobe structures in the brain often exhibit significant
shrinkage, while the frontal and temporal cortices commonly
show enlargement of the ventricles and atrophy of the gyri.
However, the major motor and somatosensory cortices are
typically unaffected in most AD patients. The precuneus and
posterior cingulate gyrus have been extensively studied in
functional imaging investigations. Frequently, medial temporal
atrophy which impacts the amygdala and hippocampus, is
associated with temporal horn expansion and a reduction in
brain weight (Sengoku, 2020). We utilized DEG detection, GO
and KEGG analysis, PPI network construction, and hub genes
identification to integrate multiple datasets and identify
functional genes associated with AD. Furthermore, we also
identified miRNAs that target the hub genes.

The SELE (Selectin-E) gene is responsible for producing
E-selectin, which is found in cytokine-stimulated endothelial
cells and play a critical role in promoting the accumulation of
leukocytes in inflamed areas by mediating their adhesion to the
vascular wall. E-selectin has a complex structure, consisting of
lectin- and EGF-like domains followed by short consensus repeat
domains with six conserved cysteine residues. E-selectin is
classified as a cell adhesion molecule belonging to the selectin

FIGURE 3
The volcano plots show the upregulated and downregulated differentially expressed genes of the Alzheimer and normal groups. The x-axis
represents the log 2-fold change (FC), and the y-axis represents log 10 (p values).
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family of glycoprotein sugar chains or sheath sugars that are
present on the surface of white blood cells (Wang et al., 2020).
This molecule is believed to be accountable for facilitating the
adhesion of leukocytes to the vascular linings, thus, enabling their
accumulation at sites of inflammation. According to Li et al.
(2015), E-selectin levels in CSF are considerably higher in
clinically diagnosed AD patients who did not have the usual
AD CSF biomarker signature (i.e., low tau/Aβ42 ratio) compared
to those who did have a positive biomarker signature. SELP
(Selectin P), another gene in this family, was found to be
overexpressed in AD patients with fast cognitive decline and
therefore, proposed as a prognostic biomarker and a potential
target for treatment in a previous study (Stellos et al., 2010).

Hence, studying the baseline of E-selectin in AD patients may
result in finding novel biomarkers.

TGF-β genes (Transforming growth factor beta genes) are
pleiotropic cytokines that orchestrate numerous key physiological
processes including as embryogenesis, immunological response,
extracellular matrix metabolism, and cell circle formation.
Indeed, TGF-βs are a subgroup of a larger family of more than
40 structurally similar regulatory proteins expressed in mammals,
which includes bone morphogenetic proteins (BMPs), growth and
differentiation factors (GDFs), Mullerian inhibitory factor (MIF),
activins, and inhibins (Zhang et al., 2016). TGF-β1 stimulates the
formation of amyloid precursor protein and subsequent amyloid-
beta generation in murine and human astrocyte cultures, and
transgenic animals overexpressing TGF-β1 in astrocytes cause
amyloid-beta deposition. Furthermore, post-mortem brain
examinations of AD patients indicate elevated TGF-β1 expression
(Zetterberg et al., 2004). According to Wyss-Coray et al. (2001)
TGF-β1 has been linked to enhanced a clearance from the brain
parenchyma by activated microglia cells and decreased amyloid-beta
plaque formation in aged transgenic mice expressing the human
amyloid precursor protein. It is worth noting that TGF-β1 plays a
vital role in decreasing inflammation and possesses protective effects
on the brain. This growth factor affects the brain’s functioning by
utilizing a signaling pathway that involves SMAD proteins.
Abnormalities in the TGF-β1/SMAD pathways, which are
activated by TGF-β and act as transcription factors within the
cell, have been detected in relation to Alzheimer’s disease (AD)
(Yang and Xu, 2023).

MYH11 (myosin heavy chain 11) is a component of a hexameric
protein composed of two heavy chain subunits and two pairs of non-
identical light chain subunits. MYH11 has been extensively studied for
its potential involvement in vascular disease and stroke which are
associated with AD (de la Torre, 2006; Kuang et al., 2012). Missense
mutations in MYH11 have been linked to higher levels of insulin-like

TABLE 2 Expressional profiles for top up- and downregulated DEGs identified
by meta-analysis. Were ranked by combined Log (FC) and p. value.

Upregulated Downregulated

Genes Log (FC) P. value Genes Log (FC) P.value

MALAT1 2.257117 1.80*10^-7 SST −1.73726 8.03*10^-9

LIFR 2.11362 1.32*10^-9 DZIP3 −1.64435 4.89*10^-13

COL1A1 1.997217 1.45*10^-5 NDUFA7 −1.58031 4.08*10^-12

HIPK2 1.962706 2.38*10^-12 COL5A2 −1.06153 0.007384

CXCR4 1.934889 1.80*10^-10 FAR2 −0.93558 0.001476

XIST 1.837898 0.005052 GRIN1 −0.92876 0.005726

ITGB8 1.754946 4.72*10^-7 TTR −0.85573 0.006913

TGFB1 1.666153 6.67*10^-6 SELE −0.83317 0.032153

MYO6 0.751279 0.009892 RPA3 −0.81267 0.002207

ITGB3 0.700192 0.021208 E2F5 −0.80603 0.00029

FIGURE 4
The volcano plots show the upregulated and downregulated miRNAs of the Alzheimer and normal groups. The x-axis represents the log 2-fold
change (FC), and the y-axis represents log 10 (p values).
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growth factor-1 (IGF-1), angiotensin-converting enzyme (ACE), and
macrophage inflammatory protein-1α and β (MIP-1-α and MIP-1-β)
expression in the aorta and explanted aortic smooth muscle cells of a
patient with non-syndromic thoracic aortic aneurysms and dissections
(Pannu et al., 2007). The contribution ofMYH11 to AD through TGF-β
pathway has not been studied yet. Besides, the association between the
mutations in this gene and TGF-β pathway is controversial. Renard
et al. (2013) discovered that an in-frame splice-site mutation in the

MYH11 gene was related to higher levels of the TGF-β pathway activity
in individuals with non-syndromic familial thoracic aortic aneurysms.
Pannu et al. (2007), on the other hand, found no link between missense
mutations in theMYH11 gene and an upregulation in TGF-β pathway
activity in patients with non-syndromic thoracic aortic aneurysms and
dissections. In general, most research has indicated that MYH11 can
contribute to AD by promoting vascular disease and upregulating the
TGF-β pathway.

FIGURE 5
(A) Top 10 of biological process. (B) Top 10 of molecular function. (C) Top 10 of a cellular component. (D) Top 10 of KEGG pathway enrichment.

TABLE 3 Expressional profiles for top up- and downregulated miRNAs identified by meta-analysis. Were ranked by combined Log (FC) and p. value.

Upregulated Downregulated

ID Log (FC) P.value ID Log (FC) P.value

hsa-miR-601 5.389203 0.001562 hsa-miR-374 −6.25921 0.004687

hsa-mir-23974|RNAz 4.604908 0.001794 hsa-miR-582 −5.98935 0.003615

hsa-mir-40796|RNAz 4.592553 0.00018 hsa-mir-05109|RNAz −5.52592 0.005163

hsa-mir-44578|RNAz 4.43394 0.021127 hsa-mir-12504|RNAz −5.27599 0.007518

hsa-miR-575 4.254831 0.00554 hsa-mir-12497|RNAz −5.13248 0.003349

hsa-miR-765 4.215826 0.006291 hsa-mir-40321|RNAz −4.92932 0.008768

hsa-mir-06383|RNAz 4.037764 0.00117 hsa-miR-380-3p −4.29229 0.008855

hsa-miR-188 3.819711 0.00038 hsa-miR-30e-5p −4.07881 0.005431

hsa-mir-35582|RNAz 3.79497 0.022237 hsa-miR-424 −3.65906 0.000958

hsa-miR-671 3.101654 0.003987 hsa-miR-153 −3.62604 0.012613

Frontiers in Genetics frontiersin.org08

Hashemi et al. 10.3389/fgene.2023.1225196

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1225196


ITGB1 (Integrin β1) is a well-known integrin heterodimer sub
chain. ITGB1 bidirectional signaling, as well as cross-talk with other
cellular receptors, has been demonstrated to be critical in survival,

cell adhesion, differentiation, and proliferation (Miranti and Brugge,
2002). It also enhances tumor treatment resistance and is required
for the survival and metastatic potential of lung, breast, and colon
tumors (Jiang et al., 2021). Pan et al. (2011) discovered that when

FIGURE 6
This figure demonstrated the network of predicted associations for a particular group of proteins. The network nodes are proteins and the edges
represent the predicted functional associations. Colored lines between the proteins indicate the various types of interaction evidence. The thickness of
the line indicated the degree of confidence prediction of the interaction. The other proteins with no associations to other protein in the network were
removed.

FIGURE 7
The overlap of hub genes between three methods (degree,
closeness, and betweenness) is shown by Venn diagram. Five genes
are common between these methods.

FIGURE 8
The cluster modules extracted by MCODE.
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FIGURE 9
This figure showed the evaluation of sensitivity and specificity of hub genes in the diagnostic of AD.

FIGURE 10
The interaction network between hub genes and miRNAs in miRNet. The fuchsia nodes represent hub genes and the yellow nodes are hsa miRNAs.
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microglial cells are exposed to oligomeric amyloid-beta or an
inflammatory and oxidative environment, the mRNA expression
of the ITGB1 receptor is reduced. This reduction in ITGB1
expression may contribute to AD-related poor phagocytosis and
clearance of amyloid-beta fibrils. Another gene in this family,
ITGB3, (or platelet glycoprotein IIIa), was shown to be
overexpressed in Alzheimer’s disease patients with rapid decline
in cognition. Stellos et al. (2010) examined the basal level of activated
glycoprotein IIb-IIIa complex in a 1-year study of Alzheimer’s
disease patients. Patients with fast cognitive decline had
considerably greater expression baseline than those with slow
cognitive decline. As a result, they proposed that Gp IIb-IIIa
might be a possible biomarker for the pace of cognitive decline
and a potential novel therapy target in AD patients. Thus, baseline
ITGB1 expression might be a potential biomarker and a therapy
target for AD.

CXCR4 (CXC motif chemokine receptor type 4) is a strongly
conserved chemokine that is essential for stem cell trafficking, lung
repair, and cancer metastasis (Strieter et al., 2006). Studies have
suggested that the CXCL12/CXCR4 signaling pathway is implicated
in the pathologic process which is important for influencing
numerous nervous system developmental processes as well as
regulating synaptic plasticity. CXCR4 is thought to contribute to
the formation and progression of AD by influencing clearing of
amyloid-beta plaques and the immune cell migration in the brain (Li
and Wang, 2017).

Additionally, as a member of the G-protein-coupled receptor
(GPCR) family, CXCR4 plays a crucial role in cell migration,
neurotransmission, and inflammatory responses within the
central nervous system (CNS). In the context of AD, CXCR4 has
been implicated in promoting inflammation mediated by microglia
through pathways such as JAK/STAT and NF-κB. Interestingly,
CXCR4may also exhibit protective effects on neurons (Li andWang,
2017). Moreover, the activation of CXCR4 in astrocytes, another
type of CNS cell, can modulate neurotransmission and contribute to
the intricate interactions between glial cells and neurons in AD.
While the precise mechanisms by which CXCR4 influences AD
progression require further investigation, targeting CXCR4 shows
promise as a potential therapeutic approach for AD. Gaining a
deeper understanding of the role of CXCR4 in AD has the potential
to inspire innovative strategies for the prevention, diagnosis, and
treatment of this debilitating disease (Wang et al., 2022).

MicroRNAs are complex non-coding RNAs that play a pivotal
role in modulating numerous cellular functions (Wang et al., 2009).
Due to miRNAs involvement in various biological pathways, they’re
aberrant expression may be linked to the pathogenesis of numerous
disorders. Hence, obtaining a comprehensive understanding of the
vital mechanisms underlying the interaction between miRNAs and
their targets could offer valuable insights into the pathogenesis of
neurodegenerative diseases such as AD (Yang et al., 2022).

The current study investigated 73 differentially expressed
miRNAs (DEmiRS), through meta-analyzing a single miRNA
dataset. Notably, hsa-miR-601 displayed the highest LogFC and
its upregulation is believed to be correlated with specific
developmental stages particularly in modulating actin-
cytoskeleton. It is worth noting that the disruption in actin-
cytoskeleton dynamics might be a contributing factor to synaptic
disfunction, observed in AD (Bamburg and Bloom, 2009;

Ohdaira et al., 2009). Moreover, hsa-miR-374 showed the lowest
LogFC among all analyzed miRNAs which has been implicated in
neural differentiation, however, further research is needed to
elucidate its precise role in AD (Sun et al., 2022).

Additionally, we examined the correlation betweenmiRNAs and
hub genes, in which our results revealed that hsa-mir-122-5p is a
critical miRNA closely associated with four hub genes (TGFB1,
ITGB1, CXCR4, and MYH11). Although little is known about the
exact molecular mechanism underlying the pathogenesis of this
miRNA in AD, its downregulation in Alzheimer’s diseases patients
has been confirmed as a potential new miRNA candidate (Kumar
et al., 2017). In contrast, a significant increase in miR-122–5p
expression has been observed in AD patients as compared to
healthy controls (Guévremont et al., 2022).

hsa-mir-3200-3p is another miRNA which is closely associated
with three hub genes (TGFB1, ITGB1, CXCR4). In the context of
Alzheimer’s disease, mir-3200-5p was found to be notably
downregulated, which has been implicated in neural synaptic
functions (Satoh et al., 2015). Furthermore, recent investigations
have demonstrated that hsa-mir-106a-5p which based on our results
is linked to (TGFB1, ITGB1, and CXCR4), reduces the level of
VEGFA, a protective factor against cognitive impairment in AD
patients. As a result, decreased levels of this miRNA may potentially
be associated with cognitive impairment in AD (Abyadeh et al.,
2022).

Moreover, recent human trials have demonstrated that both
miRNAs hsa-miR-9-3p and hsa-miR-9-5p play role in the
delicate balance between BACE1 and Aβ peptides. The study
by Sun et al. (2023) have proven that hsa-miR-9-3p which based
on our findings is associated with (ITGB1, CXCR4, and SELE),
target BACE1 which contributes to the elevation Aβ42 and
aggravate AD. Besides, hsa-miR-9-3p has a negative regulatory
effect on the expression of GDF11 (growth differentiation factor
11), a member of the TGF-β superfamily which was previously
discussed. All monomeric forms of Aβ, including Aβ42, are
produced by the enzyme BACE1 (β-site amyloid precursor
protein cleaving enzyme 1). The concept that BACE1 might
encourage AD development is supported by the fact that
BACE1 levels and activity rates are higher in AD brains and
body fluids (Hampel et al., 2021).

Based on our findings, hsa-mir-21-5p was identified as a
miRNA associated with two hub genes, namely, TGFB1 and
MYH11. Previous studies have reported significant
downregulation of this miRNA in AD patients. Considering
that the associated hub genes are involved in SMAD protein
phosphorylation, it is possible that this miRNA play a vital role in
regulating these proteins, as well (Burgos et al., 2014). SMAD
proteins are known to be important in AD, as they have been
detected within amyloid plaques and neurofibrillary tangles,
which are pathological hallmarks of AD. Thus, Gámez-Valero
et al. (2019) suggested that hsa-mir-21-5p could potentially be
involved in the development of AD.

We also have identified several other miRNAs that interact with
common hub genes, suggesting their substantial roles in the
initiation or progression of AD, including has-mir-27a-3p
(TGFB1, ITGB1, and CXCR4), hsa-mir29b-3p (ITGB1, CXCR4,
and SELE), hsa-mir-130a-3p (MYH11, TGFB1, and CXCR4), and
hsa-mir-17-3p (SELE and ITGB1). These findings highlight the
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potential significance of miRNAs, providing insights into the
molecular mechanisms underlying AD pathogenesis.

In conclusion, our meta-analysis employing accessible datasets
was able to clarify and identify putative biomarkers related to AD. As
a result, the identification of five prospective gene biomarkers that
are differently expressed in AD, such as SELE, TGFβ1, MYH11,
ITGB1, and CXCR4, offers possibilities for clinically diagnostic
biomarkers that can identify AD patients. Furthermore, protein
interaction research revealed major pathways linked to probable
biological events such as various dysregulated biochemical pathways
(actin cytoskeleton, ECM-receptor interaction, endocytic vesicle
dysfunction, hypertrophic cardiomyopathy, and TGF-β pathway).
Validation of these biomarkers and metabolic pathways by
experimental and functional research might add to the current
study’s findings.
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