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Renal carcinomas are a group of malignant tumors often originating in the cells
lining the small tubes in the kidney responsible for filtering waste from the
blood and urine production. Kidney tumors arise from the uncontrolled growth
of cells in the kidneys and are responsible for a large share of global cancer-
related morbidity and mortality. Understanding the molecular mechanisms
driving renal carcinoma progression results crucial for the development of
targeted therapies leading to an improvement of patient outcomes. Epigenetic
mechanisms such as DNA methylation are known factors underlying the
development of several cancer types. There is solid experimental evidence
of relevant biological functions modulated by methylation-related genes,
associated with the progression of different carcinomas. Those mechanisms
can often be associated to different epigenetic marks, such as DNA
methylation sites or chromatin conformation patterns. Currently, there is no
definitive method to establish clear relations between genetic and epigenetic
factors that influence the progression of cancer. Here, we developed a data-
driven method to find methylation-related genes, so we could find relevant
bonds between gene co-expression and methylation-wide-genome
regulation patterns able to drive biological processes during the
progression of clear cell renal carcinoma (ccRC). With this approach, we
found out genes such as ITK oncogene that appear hypomethylated during
all four stages of ccRC progression and are strongly involved in immune
response functions. Also, we found out relevant tumor suppressor genes
such as RAB25 hypermethylated, thus potentially avoiding repressed
functions in the AKT signaling pathway during the evolution of ccRC. Our
results have relevant implications to further understand some
epigenetic–genetic-affected roles underlying the progression of renal cancer.
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Introduction

Clear cell renal carcinoma (ccRC) is the most common subtype of renal cancer. It
accounts for around 75% of all cases. In spite of this, ccRC is considered a relatively low-
prevalence neoplasm, with a worldwide incidence of around 2–3 cases per 100,000 people.
Still, ccRC represents about 5% of all male cancer cases in the world International Agency for
Research on Cancer (2023). Therapeutic options for ccRC include surgery, radiation therapy,
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and systemic therapy, such as immunotherapy and targeted therapy
(Sternberg et al., 2010; Motzer et al., 2007; Motzer et al., 2015;
Motzer et al., 2021; Kase et al., 2023).

The molecular origins of ccRC are complex and involve a
number of genetic and epigenetic alterations. Perhaps, the
most common genetic alteration found in ccRC is the
inactivation of the VHL gene, which leads to the
stabilization of a hypoxia-inducible factor (HIF) and
subsequent activation of several downstream tumorigenic
pathways (Varshney et al., 2017). Other molecular
alterations in ccRC include mutations in PBRM1, BAP1,
and SETD2, among other genes (Walton et al., 2023). Apart
from these alterations, it has been known for some time that
epigenomic regulation may also be playing a relevant role.
Likewise, genetic abnormalities have been recognized at the
chromosomal level, specifically in the short arm of
chromosome 3 (in the 3p21 region) (Nabi et al., 2018).
Additionally, several biomarkers for ccRC have been
proposed, such as aquaporin 1 (Huang et al., 2009),
perilipin 2 (Cao et al., 2018), and KIM1 (Cuadros et al.,
2014), although they do not always exhibit the desired
sensitivity and specificity to be clinically useful. In those
terms, an accurate ccRC classification may improve the
aforementioned shortcoming.

As previously mentioned, ccRC remains the most common
subtype (Grammatikaki et al., 2023). For this subtype of renal
carcinoma, staging of neoplasms is of great importance for
prognosis, applied therapies, and the outcome of each clinical
case (Moch et al., 2009). For instance, stage I has been identified
as a stage with well-nourished cases and multi-omics data available
in several cohorts, e.g., The Surveillance, Epidemiology, and End
Results (SEER) and the Fudan University Shanghai Cancer Center
(FUSCC). However, stages III and IV are marked by late diagnosis,
much fewer samples, and poor prognosis. It proves the existence of
subgroups in the classical classification with significantly different
prognoses (Shao et al., 2018). Due to the conditions mentioned
previously, it is important to understand the molecular changes
occurring during transitions between ccRC stages, both as a means
of prevention and to improve prognosis in the advanced stages.

Progressive features of ccRC reveal signs of its pathological
complexity. Epigenomic phenomena, including DNA methylation,
histone covalent modifications, and chromatin structure, as well as
the regulatory activity of non-coding RNAs and their networking
with each other, may play important roles in the progression of
aberrant cell phenotypes. Methylation marks can control the density
and compressibility of chromatin and its stability or instability for
transcription, replication, and repair. A vast majority of DNA
methylation (98%) occurs in CpG islands located in the
promoter of certain genes in somatic cells. In cancer, associated
DNA hypermethylation is influenced not only by cell-type-specific
DNA methylation patterns but also by pre-existing transcriptional
programs, including DNA methyltransferase malfunction (Esteller,
2002).

In terms of the regulation of gene expression, a research study
has shown that the accumulation of SET oncoprotein reduces DNA
methylation and histone acetylation while increasing TET1 levels
(Almeida et al., 2017). However, the expression of some suppressor
genes in cells with high levels of SET decreases, which suggests that

methylation is not the only mechanism that regulates gene
expression by this protein. This has led researchers to consider
other epigenetic factors such as miRNAs and lncRNAs (Drago-
García et al., 2017; Fardi et al., 2018; de Anda-Jáuregui et al., 2018; de
Anda-Jáuregui et al., 2021; Zamora-Fuentes et al., 2022).
Determining which cells have undergone epigenetic changes,
ensuring that therapeutic agents maintain their sustainability and
their capacity to penetrate the tumor mass and target malignant
cells, will increase the clinical success of the treatment (Fardi et al.,
2018). In concrete, identifying the epigenetic modifications driven
by hypomethylation and hypermethylation in cancer may provide
information relevant to the elaboration of more accurate and specific
treatments.

The association between cancer-related aberrant gene
expression and epigenetic modulators along with cancer
progression has not been successfully unveiled. In this context,
molecular data may shed light on that matter. Whole-genome
gene co-expression relationships have been previously discussed,
shedding light on tumor biology and even being associated with
biomarkers (Andonegui-Elguera et al., 2021; García-Cortés et al.,
2020; Zamora-Fuentes et al., 2020). However, the extent to which
epigenomic modulation affects gene expression and co-expression
patterns has been less discussed. Recent studies, however, have
pointed out that epigenetic factors may be behind the
progression of, for instance, ccRC (Nabi et al., 2018). In view of
this, it is desirable to study the relationships between DNA
methylation and gene expression patterns at a global, whole-
transcriptome level in these tumors and their evolution. The
results along these lines may indeed contribute to improving the
prognosis and quality of life of patients in the later stages of ccRC.

Given that methylation marks are closely related to the
regulation of subtle gene expression, in this work, with the main
objective of providing complementary knowledge regarding the
relationship between methylation and gene co-expression in
ccRC progression, we constructed a fully automated method to
find methylation-driven genes (MDGs) involved in ccRC
progression. We developed a data-driven method to explore
methylation and RNA-seq data from The Cancer Genome Atlas
(TCGA) project for ccRC patients. We used the TCGA database as a
source of ccRC filtered-harmonized data (Network et al., 2013). We
implemented an anticorrelation model to find genes that resulted
overexpressed due to significant hypomethylation.
Complementarily, we observed those hypermethylated and
underexpressed genes. We identified highly correlated genes to
the aforementioned MDGs, and analyzed those biological
processes associated to those genesets. Finally, we evaluated the
key implications of these results in the context of further
experimental investigation.

Materials and methods

We jointly analyzed DNA methylation for 383,862 CpG sites
and gene expression data for 16,170 genes coming from both ccRC
and the normal adjacent tissue.We split the ccRC samples according
to the progression stage: 24 non-tumor, 158 samples for stage I,
31 for stage II, 72 for stage III, and finally, 57 for stage IV. A
graphical representation of this workflow is shown in Figure 1.
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Data acquisition

We used data from TCGA collaboration as a source of gene
expression (from RNA sequencing) and DNA methylation (from
high-density methylation arrays). In order to obtain the gene
expression profiles corresponding to each progression stage, we
downloaded Illumina RNA-Seq level 3 gene expression files from
TCGA–ccRC samples.

We usedmethylation data from TCGA in the form of beta values
(β), which measure the level of DNA methylation at known CpG
sites via Illumina HumanMethylation450 (HM450) arrays. These

values are calculated from array intensities (level 2 data) as M
M+U,

where M corresponds to methylated probes. Meanwhile, U takes
account for non-methylated ones, marked by bisulfite conversion
(Zhou et al., 2016). The indexes of both datasets were harmonized to
match patient codes as a key for paste RNA-seq and methylation
beta values. This is the reason for the number of samples not
corresponding with the original RNA-Seq number of samples.
Download, annotation, and low-level analysis were performed
using the TCGAbiolinks R library (Colaprico et al., 2015). We
processed the clinical information directly from the TCGA-KIRC
project. We categorized all samples by tumor_stage variable. The

FIGURE 1
Graphical pipeline of this work. Details are explained in Materials and methods. Created with BioRender.com.
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samples were cleaned to exclude those samples with non-reported
stages or values. The TCGAbiolinks library was also used to retrieve
clinical data from TCGA.

Data pre-processing

We pre-processed RNA-seq data as follows: 1) we removed genes
without annotation in BioMart (Smedley et al., 2015), 2) we removed
genes with more than 50% of zero counts per sample, and 3) genes with
the mean expression less than 10 counts were removed. For sequencing
bias corrections, we used the EDASeq R package (Risso et al., 2011) to
remove biases in the GC content, gene length, and biotype. Finally, in
order to correct for potential batch effects, we used the ARSyn method,
implemented in R as a function of the NOIseq library (Nueda et al.,
2012). Methylation data were cleaned up by removing those CpGs with
at least one missing beta value.

Association between CpGs and genes was manually performed
with the first occurrence in pre-defined annotation created by
TCGAbiolinks. After all filters and bias removal procedures were
applied, the total number of CpGs for assessment was 383,862;
meanwhile, the total number of genes was 16,170. Those entities
were used to infer different CpG–gene relations and to perform the
corresponding analyses.

Differential gene expression

Differential expression analysis was calculated with the DESeq R
package (Love et al., 2014). We considered differentially expressed
genes (DEGs) with the following filters: LogFC > 2.0 and FDR < 0.05.
We compared the non-tumor (NT) dataset with all progression
stages (stI, stII, stIII, and stIV). Additionally, we contrasted
consecutive ccRC stages (see Results).

Differentially methylated CpGs

Differential methylation (DM) analysis was performed using a
mean-based method implemented in the TCGAbiolinks R package.
We considered differentially methylated CpGs with a mean-diff cut-
off of 0.15 and a p-value of 0.05 (Wilcoxon test). All volcano plots for
each contrast (NTStage1, NTStage2, NTStage3, and NTStage4) in
ccRC progression can be calculated with a source code provided by
this work. The threshold for identifying DM–CpGs was a beta-value
below 0.4 or above 0.6.

Methylation-related genes

We grouped all CpGs for each gene on the promoters’ position.
We evaluated whether at least one CpG for a given gene was DM,
and then, we considered this gene as a candidate to be a differentially
methylated gene (DMG). Other inclusive criteria in this candidate
were for the gene to be differentially expressed. We considered genes
as hypermethylated when their median methylation in all their
CpGs was > 0.6. Conversely, a gene with median methylation
< 0.4 was considered hypomethylated.

It is worth noticing this filtering procedure for the DM CpGs of a
gene is taken as a preliminary proxy. However, the sufficient conditions
to determine the methylation status in a gene were given by taking the
median values of all promoter CpGs within each gene.

Oncogenes and tumor suppressors

A fundamental question regarding the role of methylationmarks
in ccRC progression is whether or not those marks alter cancer-
related genes. Therefore, we investigated those genes with the feature
to be oncogenes or tumor-suppressor genes. A comprehensive list of
oncogenes was obtained of the Human Oncogene database (Liu
et al., 2017). The corresponding catalog of tumor suppressors was
downloaded of the TSGene database (Zhao et al., 2016). We
matched genes presenting the functions of oncogene as well as
tumor suppressor and these were subsequently labeled as both in the
gene-function database (Supplementary Material S1).

Network inference

To analyze the role of DMGs and the expression program, we
constructed four DMG–DMG networks for each progression
contrast, which were filtered. All networks were inferred by using
theMutual Information (MI) value as a correlationmeasure. TheMI
value was calculated over the expression values of all DMG pairs
(275 × 16, 227 ≈ 4.5 × 106 interactions) for each phenotype. We
implemented a multi-thread co-expression calculation with the
ARACNe (Margolin et al., 2006) tool. The code to infer MI-
based networks can be found at https://github.com/josemaz/
aracne-multicore.

In addition, to validate our results, we obtained networks using a
cutoff of 1,000, 10,000, and 100,000 top edges. We have previously
described considerations for setting this parameter in our work
(Zamora-Fuentes et al., 2020; Dorantes-Gilardi et al., 2021).
Network visualization was performed with Cytoscape 3.9.1
(Shannon et al., 2003).

Enrichment analysis

We filtered Gene Ontology (GO) results with p-values < 0.01 to
identify statistically enriched biological functions. We performed
this analysis using both the Gprofiler2 web server and
Gprofiler2 R package (Supplementary Material S2.

The complete code to develop this pipeline can be found in
https://github.com/josemaz/kirc-methyl. We also added a
snakemake protocol there to accomplish reproducibility and
improve scientific coding practices.

Results

First view of methylation in stages

To trace changes in cancer progression associated with stages
(and contrasts to normal tissue (NT)), we performed a
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hierarchical clustering on the data by cancer phenotype. We
observed a well-defined cluster of NT samples, which is clearly
separated from cancer stage samples (Figure 2A). To account for
potential sample size bias, we selected subsets of methylation
values of different sizes: 1e2, 1e3, 1e4, and 1e5 (Supplementary
Material S3). We confirmed the same pattern, where the only
samples that consistently grouped were the normal ones.
Interestingly, when considering only the distributions of
methylation values by the CpG site for each phenotype, it is
not possible to obtain statistically significant differences between
stages (Figure 2C).

Considering the previous clustering results, we calculated
methylation distributions by contrast, i.e., the distribution of
hypermethylated and hypomethylated CpG sites for each
comparison between phenotypes. We used a bootstrap method to
mitigate sample size effects (Figure 2B). In order to account for
group imbalances, we used 24 samples for each phenotype in the
bootstrap process, scaling down to the smallest group. The main
differences were observed between the control and the different
tumor stages. No statistically significant differences were observed in
the progression comparisons (NT–stage1, stage1–stage2,
stage2–stage3, and stage3–Stage4). Based on these results, we
decided to use only the controlvs.-each-stage contrast to develop
a progression vs. baseline model.

Methylation profiles are characteristic of
ccRC progression stages

In Figure 2B, we can observe significant differentially methylated
CpG sites (CpGs). All of these CpG sites are associated with
promoter regions in several genes. This evidence led us to follow
a systematic procedure to obtain genes with clear differences
between phenotypes (St1 V. NT, St2 V. NT, . . .).

We observed a clear separation between normal tumor samples
in terms of methylation. In both, the heatmap of Figure 2A and the
boxplots shown in Figure 2B, the difference between consecutive
progression stages is very small, contrary to the cases between the
control and any stage. In addition, there is a difference between
hypomethylated and hypermethylated CpGs between progression
stages, increasing their number of differentially methylated CpGs
according to the progression stage. This evidences methylation
differences between the cancer stages. To further advance our
understanding of this phenomenon, we designed a more accurate
filtering method to obtain genes with methylation differences
compared with the assessed contrast.

We observed a clear clustering separatrix between normal tumor
samples in terms of methylation. In addition, there is a difference
between hypomethylated and hypermethylated CpGs between
progression stages, increasing their number of differentially
methylated CpGs according to the progression stage. This result
provides us the evidence of clear methylation differences between
cancer stages. To further advance our understanding of this
phenomenon, we designed a filtering method with a higher
granularity to obtain genes with promoter methylation
differences compared with the assessed contrast.

Genes with a median methylation value less than 0.4 and
overexpressed were considered hypomethylated, while genes with
a median methylation value greater than 0.6 and underexpressed
were labeled hypermethylated. We associated these methylation
modifications with phenotypic changes and assumed that they
were driven by an underlying cellular mechanism that needs to
be further explored. A list containing all filtered genes for each
phenotype is included in Supplementary Material S4. Figure 3 shows
examples of methylation behavior in two genes considered
hypomethylated (IL32 and TNFRSF9) and two observed
hypermethylated (ERMP1 and RAB25). The full set of scatter
plots for all genes filtered by this approach can be generated with
the code cited in the Data Availability Statement.

DMGs shared between different stages and also stage-exclusive
are shown in Figure 4. We considered both the stage-specific genes
for each contrast and the genes shared in all stages. Since there are no
hypermethylated genes stage-exclusive in stages I, II, and III, we then
analyzed those shared genes in all four stages.

ITK is a methylation-related oncogene;
RAB25 and EHF are methylation-related
tumor suppressors

We identified specific methylation-related genes in the four
progression stages of ccRC, including IL32, CD68, EHF, and
MUC15. These genes were labeled as oncogenes (OGs), tumor
suppressor genes (TSGs), or both (if evidence supported both

FIGURE 2
(A) Heatmap overview showing the methylation level for each
CpG site. Hierarchical clustering was performed by the progression
stage including NT. (B) CpG quantification by contrast. As a first
approach, we considered two models of progression: 1)
sequential (St1 V. NT, St2 V. St1,. . .) and 2) compared with control
(St1 V. NT, St2 V. NT, . . .). It is shown that the highest amount of DM-
CpGs in contrasts is given by the second model. Therefore, we
adopted this second strategy. (C) Distributions of β-values in CpGs by
tumor stage and for NT.
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features). Only three genes, namely ITK, RAB25, and EHF, met the
criteria of having these properties. To gain a comprehensive
understanding of the phenomenon, we constructed a

co-expression network involving these genes and their
neighboring genes (Figure 5). Additionally, we examined the
differential expression patterns of these genes.

FIGURE 3
Scatter plots of methylation and expression values with examples of hypomethylated and hypermethylated genes. IL32 and TNFRSF9 have a
hypomethylated condition in cancer, while ERMP1 and RAB25 resulted hypermethylated in cancer stages.

FIGURE 4
Venn diagrams showing common methylation-related genes. (A) Genes which decreased (hypo) their methylation pattern from normal tissue to
tumor tissue. (B) Genes which increased (hyper) their methylation pattern from normal tissue to tumor tissue.
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With this approach, we identified potential DNA methylation-
regulated genes in clear cell renal carcinoma. However, there
remains uncertainty regarding the correlation of RAB25 and ITK,
with prognosis. Indeed, the correlation between molecular features
and cancer prognosis is a cornerstone in cancer research.

RAB25 and FOXP3 expression are associated
with poor prognosis in ccRC

In the case of RAB25, we did identify a substantial disparity in
prognosis between high- and low-expression levels (Figure 6A). As
previously mentioned, RAB25 exhibits dual functionality in
carcinogenesis. It acts as an oncogene in some cancer types
(Lapierre et al., 2011; Li et al., 2015) while functioning as a
tumor suppressor gene in others, such as colorectal cancer,
esophageal squamous cell carcinoma, and head and neck
squamous cell carcinoma (Goldenring and Nam, 2011; Tong
et al., 2012). A Kaplan–Meier curve for RAB25 demonstrates that
the high-expression group exhibits a worse prognosis compared to
the low-expression group (p-value = 0.017).

Regarding ITK gene expression, it is important to note its
significant correlation with the prognosis in other cancer types.

Previous studies have reported a strong association between ITK
expression and poor prognosis in lung adenocarcinoma, breast
cancer, hepatocellular carcinoma, and lymphoma (Pan et al.,
2021; Liu et al., 2019). However, in these data, we did not
observe a significant difference in the prognosis between high-
and low-expression ITK levels (Figure 6B). To provide additional
insights, we included a Kaplan–Meier plot for FOXP3, a well-known
downstream molecule of the ITK signaling pathway (Weeks et al.,
2021), which indeed exhibits distinct behavior in relation to
prognosis: high expression of FOXP3 is related with the poor
prognosis in ccRC (Figure 6C).

Discussion

With the pipeline performed here, we showed that some genes
present a significant association between their expression patterns
and the methylation profiles. Some of those genes have been
reported to be related with the oncogenic process. Additionally,
we showed evidence of the correlation between gene expression and
prognosis. In what follows, we will discuss some ideas in light of the
aforementioned results.

In terms of the co-expressed genes of ITK, it is worth noting
that its first neighbors in the co-expression network have the
same expression pattern (overexpressed). ITK encodes an
intracellular tyrosine kinase expressed in T cells, which also
has a critical role in T-cell growth, signaling, and function.
T-cell activation and regulation of the immune system were
the two most significantly enriched processes. These results
demonstrate the relevance of ITK as this gene maintains its
functions independently of its neighbors.

Additionally, ITK codifies for a kinase of T cells. Therefore, the
result of overrepresentation analysis where T-cell activation is the
most significant process involved in the network of ITK first
neighbors reflects an important fact regarding the immune
response in ccRC: independent of the progression stage, the
hypomethylation of ITK promotes T-cell activation in the
cancerous phenotype. The cell of origin in which this
hypomethylation occur is a matter of further research.

The case of ITK expression and its correlation with the prognosis
is intriguing. ITK is not typically expressed in clear cells within the
kidney, suggesting that this gene may originate from immune cells.
Moreover, as we stated previously, ccRC is characterized by significant
immune infiltration and stromal infiltration, further emphasizing the
potential relevance of downstream genes influenced by ITK, such as
FOXP3 (Weeks et al., 2021).

In the case of RAB25 and EHF, both genes are well-known tumor
suppressors that changed their methylation state. In normal tissues,
both were hypomethylated, but their methylation increased in cancer
at any stage. As observed, expression patterns in the first neighbors of
these genes are similar, either underexpressed or unchanged. This
phenomenon may be due to a kind of anchoring effect in networks, in
which the neighbors follow gene co-expression patterns that affect
their individual expression through some regulatory mechanism such
as transcription factors, close methylation, or conformational effects
(Vipin et al., 2018).

The oncogenic function of Rab25 is likely attributed to its role
in regulating vesicle trafficking, which increases integrin

FIGURE 5
Correlated genes for methylation-related genes. (A)
Overexpressed-hypomethylated genes. ITK was the only gene found
fulfilling our criteria. (B) Networks for genes found underexpressed
and hypermethylated, in this case, EHF and RAB25. Notice the
consistency between the differential expression trend of the MDGs
and their first neighbors.
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recycling to the plasma membrane and stimulates intracellular
signaling pathways associated with oncogenic functions
(Agarwal et al., 2009). Notably, the loss of Rab25 in human
colon cancers has been linked to poorer patient prognosis (Nam
et al., 2010).

Furthermore, the reduced expression of RAB25 was shown to
correlate with the decreased overall survival and was documented
in esophageal squamous cell carcinoma (EScc) cell lines compared
to pooled normal tissues (Tong et al., 2012). RAB25 expression in
both EScc cell lines and clinical samples was found to be associated
with promoter hypermethylation (Gu et al., 2017). The protein
encoded by RAB25 is a member of the RAS superfamily of small
GTPases (Mitra et al., 2012) and is involved in membrane
trafficking and cell survival (Wang et al., 2017). This gene was
found to act as a tumor suppressor and also as an oncogene,
depending on the context (Mitra et al., 2012). Two variants, one
protein-coding and the other non-coding, were identified for this
gene (Agarwal et al., 2009).

We showed that epithelium-related processes were enriched, as
observed in Supplementary Material S2. This result adds evidence to
the often-discussed impacts of extracellular matrix modifications in
tumor evolution (Pickup et al., 2014; Frantz et al., 2010; Espinal-
Enríquez et al., 2015; Winkler et al., 2020). In this case, RAB25 is
somehow losing its functionality due to its underexpression
accompanied by its co-expressed components.

It is important to emphasize the RAB25 underexpression in
ccRC samples. In terms of prognostic value, high RAB25 expression
is associated with an unfavorable outcome, but its expression is
regulated by the methylation profile within those samples. One can
hypothesize that the methylation of RAB25 may impede its
overexpression, thereby influencing prognosis.

As mentioned in Results, we identified methylation-related
genes that were found to be overexpressed and hypomethylated
in association with the progression stage in ccRC. These genes
include IL32, TNFRSF9, LGALS2, CD68, IFI16, and LINE1.
Remarkably, these genes exhibited significant overexpression
throughout all progression stages while also being significantly
hypomethylated with β-values below 0.4. Notably, these genes are

associated with immune system processes, aligning with the role of
ITK in ccRC progression.

For example, IL32 overexpression was identified as a prognostic
factor in patients with localized ccRC (Lee et al., 2012). Similarly,
IL32 has been suggested to show a positive correlation between its
expression and the corresponding methylation state in skin
cutaneous melanoma (Kang and Kim, 2021).

Regarding the TNFRSF9 gene, its overexpression has been
associated with the progression and prognosis in ccRC (Li et al.,
2020b). Moreover, it has been found to be inversely correlated with
DNA methylation at various CpG sites in melanoma. Elevated
TNFRSF9 mRNA expression and TNFRSF9 hypomethylation
were linked to superior overall survival (Fröhlich et al., 2020).

LGALS2 overexpression has been linked to a better prognosis in
breast cancer (Chetry et al., 2022). Additionally, PM2.5 exposure was
positively associated with the methylation of LGALS2-eMS
cg07855639 and negatively associated with LGALS2 mRNA
expression in monocytes in a diverse population cohort (Chi et al., 2016).

In the case of the CD68 gene, high levels of CD68 are associated
with higher tumor grade, larger tumor size, Ki67 positivity, and
other malignant features, indicating tumor progression and
aggressiveness (Zhang et al., 2022). The methylation profile and
its relationship with expression have been associated with prognosis
in papillary renal cell carcinoma (Liu et al., 2020). However, its
relation with progression in this type of cancer has not been
previously reported.

Last, IFI16 promotes cervical cancer progression through the
NF-kB pathway (Cai et al., 2020). The expression of this gene has
also been correlated with the methylation state in breast cancer cell
lines (Khan et al., 2022).

Despite these genes being observed in relation to different types
of cancer and their methylation profile showing a correlation with
gene expression, a distinct correlation between methylation and
gene expression during cancer progression has not been reported.

In this study, we demonstrated that the co-expression networks
formed by methylation-related genes consistently differ between
progression stages, as shown in Figure 5. Therefore, it can be
inferred that the methylation-related genes observed during ccRC

FIGURE 6
Kaplan–Meier plots correlating methylation-related genes and ccRC survival: (A) RAB25 gene. (B) ITK. (C) FOXP3. The case of FOXP3 is shown here
since this gene is a downstream molecule in the ITK signaling pathway but is not modulated by methylation.
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stages act differently at each progression stage, and each stage is
affected differently by these methylation-related genes.

We argued that changes in methylated genes may be
associated with the progression of cancer in at least two
general ways: 1) genes that change their methylation/
expression status in every stage of cancer or 2) genes whose
methylation/expression status remains unaffected in all stages.
These epigenetic fingerprints can be studied as biomarkers in a
prospective analysis (Vasudev et al., 2012). We suggest a
relationship between co-expression and methylated genes
during cancer progression. Since methylation can repress gene
expression, we can infer gene networks of DMGs for each tumor
stage/phenotype. As a result, we can relate some biological
functions to events marked by epigenetic modifications.

With this systematic and automated approach, we were able to
identify individual CpGs associated with candidate genes as
methylation-related genes. This association is based on a test
comparing DEGs with differentially methylated CpGs. This
further supports the evidence of DNA methylation as one of
the main factors affecting the changes between tumor stages
and carcinogenesis (Morris and Latif, 2017). Based on the
latter, we analyzed how methylation affects the co-expression
program as a whole. We found evidence that co-expressed gene
clusters may activate antitumor defense mechanisms, specific
cellular functions such as T-cell activation, and regulation of
the immune system (Waldman et al., 2020). On the other hand,
we identified underexpressed and hypermethylated genes that
resulted in co-expression. This may turn off cell functions and,
thus, alter the morphology and differentiation (Morris and Latif,
2017).

In addition to these key cellular functions affected, we found that
a reported tumor suppressor gene (RAB25) was hypermethylated
and underexpressed in three out of four stages of cancer, via a
deregulated FAK-Raf-MEK1/2-ERK signaling pathway (Gopal
Krishnan et al., 2020).

We also showed evidence that ITK’s expression is driven by
methylation since its hypomethylation in cancer resulted in
overexpression. This epigenetic modification may be driving an
antitumor response in four stages, activating immune response
functions (Sagiv-Barfi et al., 2015). ITK is not currently reported
as an oncogene, but similar to RAB25, we proposed ITK as an
epigenetic biomarker. According to the work of Zamora-Fuentes
et al. (2022), a progressive increase of several chemokines
(Zamora-Fuentes et al., 2020) in ccRC progression was
observed. In this case, CXCL13 stands out by taking advantage
of immune system cell migration. This molecule triggers
intracellular pathways, leading to cell migration in lymphatic
nodes and endothelial and epithelial tissues (Kazanietz et al.,
2019). The importance of the tumor microenvironment is well
known (Hanahan, 2022). The fact that the most enriched
processes associated with ITK’s first neighbors is T-cell
activation suggests us the relevance that immune infiltration
exerts on this carcinoma. In this way, bioinformatic
approaches have been developed to quantify cell infiltration in
tumors, based on molecular signatures (Yoshihara et al., 2013;
Aran et al., 2017; Li et al., 2020a). Interestingly, using TCGA-
derived data, renal carcinoma was the tumor with more cell
infiltration between 14 tissues (Yoshihara et al., 2013).

Concluding remarks

ccRC is a complex disease, involving multiple layers of complexity.
Therefore, in order to gain a comprehensive picture and better
understand its progression, origin, evolution, and associated features
must be dissected. In previous works, important differences at the
cancer progression stages have been found, highlighting phenomena
such as the clear bias to co-expression between genes from the same
chromosome (Espinal-Enriquez et al., 2017; de Anda-Jáuregui et al.,
2019; García-Cortés et al., 2020; Zamora-Fuentes et al., 2020;
Andonegui-Elguera et al., 2021; Garcia-Cortes et al., 2022; Zamora-
Fuentes et al., 2022), or the differences in the enrichment processes
throughout the progression stages in ccRC (Zamora-Fuentes et al.,
2020). However, the connection with epigenetic mechanisms remains a
key question in the field (Morris and Latif, 2017).

Although reproducibility is a cornerstone of scientific research,
validating our findings with another dataset similar to the one we
obtained from TCGA poses significant challenges. First, our study
utilized two different high-throughput technologies, namely, Illumina
Hi-Seq for RNA-Seq data and Illumina HumanMethylation450
(HM450) arrays, for methylation data. Both technologies were
carefully matched for each individual in our dataset. Moreover, the
samples were stratified based on the progression stage, necessitating the
inclusion of clinical information such as the progression stage and vital
status. We ensured that each group contained a substantial number of
samples for downstream analyses to yield statistically significant results.
To the best of our knowledge, no other currently available dataset
possesses all of the aforementioned characteristics. However, taking
into account the number of matched samples for each phenotype, the
technology used for sequencing and the high standards for sample
handling from the data sources allows us to have a robust framework
to study the changes in gene expression depending on the methylation
profiles at different stages in ccRC. At the same time, the astringent
statistics, as well as the reproducibility of the computational pipeline, are
encouraging to perform this analysis on other cancer tissues fromTCGA.

In conclusion, our research highlighted the important role of
methylation-related genes in modulating biological functions and
contributing to the progression of various carcinomas, including
ccRC. Although there is currently no definitive method for
establishing clear relations between genetic and epigenetic factors
affecting cancer progression, we developed a data-driven approach
to identify methylation-related genes and establish their relationship
with gene co-expression and methylation-wide-genome regulation
patterns. Our analysis identified several genes, including ITK and
TSFRN9, that appear hypomethylated and strongly involved in
immune response functions throughout all four stages of ccRC
progression, as well as tumor suppressor gene RAB25, which is
hypermethylated and potentially avoiding repressed functions in the
AKT signaling pathway during ccRC evolution. These findings
provide important insights into the underlying epigenetic–genetic
mechanisms involved in cancer progression.
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