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Background: Lactate, as an essential clinical evaluation index of septic shock, is
crucial in the incidence and progression of septic shock. This study aims to
investigate the differential expression, regulatory relationship, clinical diagnostic
efficacy, and immune infiltration of lactate metabolism-related genes (LMGs) in
septic shock.

Methods: Two sepsis shock datasets (GSE26440 and GSE131761) were screened
from the GEO database, and the common differentially expressed genes (DEGs) of
the two datasets were screened out. LMGs were selected from the GeneCards
database, and lactate metabolism-related DEGs (LMDEGs) were determined by
integrating DEGs and LMGs. Protein-protein interaction networks, mRNA-miRNA,
mRNA-RBP, and mRNA-TF interaction networks were constructed using STRING,
miRDB, ENCORI, and CHIPBase databases, respectively. Receiver operating
characteristic (ROC) curves were constructed for each of the LMDEGs to
evaluate the diagnostic efficacy of the expression changes in relation to septic
shock. Finally, immune infiltration analysis was performed using ssGSEA and
CIBERSORT.

Results: This study identified 10 LMDEGs, including LDHB, STAT3, LDHA, GSR,
FOXM1, PDP1, GCDH, GCKR, ABCC1, and CDKN3. Enrichment analysis revealed
that DEGs were significantly enriched in pathways such as pyruvate metabolism,
hypoxia pathway, and immune-inflammatory pathways. PPI networks based on
LMDEGs, as well as 148 pairs of mRNA-miRNA interactions, 243 pairs of mRNA-
RBP interactions, and 119 pairs of mRNA-TF interactions were established. ROC
curves of eight LMDEGs (LDHA, GSR, STAT3, CDKN3, FOXM1, GCKR, PDP1, and
LDHB) with consistent expression patterns in two datasets had an area under the
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curve (AUC) ranging from 0.662 to 0.889. The results of ssGSEA and CIBERSORT
both showed significant differences in the infiltration of various immune cells,
including CD8 T cells, T regulatory cells, and natural killer cells, and LMDEGs such as
STAT3, LDHB, LDHA, PDP1, GSR, FOXM1, and CDKN3 were significantly associated
with various immune cells.

Conclusion: The LMDEGs are significantly associated with the immune-
inflammatory response in septic shock and have a certain diagnostic accuracy
for septic shock.

KEYWORDS

diagnosis of septic shock, hypoxia, lactate metabolism-related genes, immune infiltration,
inflammation response

1 Introduction

Sepsis is life-threatening and caused 19.7% of all deaths across
the world in 2017 (Rudd et al., 2020). When sepsis causes systemic
vasodilation and subsequent tissue hypoperfusion, septic shock
occurs, which is characterized by hypotension and tissue
hypoperfusion (Singer et al., 2016; Kanjee et al., 2023). Septic
shock is the direct cause of death in sepsis, and once it occurs,
the short-term mortality rate can be as high as 52% (Pavon et al.,
2013). The new definition of sepsis emphasizes that instead of the
infection itself, dysregulated host response to the infection is what
drives the development of disease (Singer et al., 2016). However,
many drugs aimed at blocking inflammation and regulating
immunity that have been proposed based on this definition have
not been observed to have the expected therapeutic benefits in
clinical studies (van der Poll et al., 2017). Therefore, exploring
the mechanisms of sepsis progression to shock from other
perspectives and identifying potential therapeutic targets may be
of great significance in reducing its mortality rate.

As is widely known, in patients suffering from sepsis, especially
septic shock, lactate levels are often significantly elevated and closely
related to the severity of the condition and the prognosis (Casserly
et al., 2015). In fact, in the progression of sepsis, blood lactate serves
not only as a marker of organ perfusion and tissue hypoxia, but also
participates in the progression of sepsis to shock and death through
multiple signaling pathways, such as regulating energy metabolism
and immune inflammatory responses (Brooks et al., 2022). An
animal experiment demonstrated that intraperitoneal injection of
lactate to mice with lactate clearance impairment directly resulted in
their death, whereas intraperitoneal injection of the maximum
tolerated dose of lactate to normal mice did not (Vandewalle
et al., 2021). It is evident that the accumulation of lactate in the
body can directly cause organ dysfunction and even death. On the
one hand, lactate can decrease effective circulating blood volume
and aggravate organ dysfunction by dilating blood vessels and
altering vascular permeability, such as by increasing vascular
permeability through lactate receptors GPR81 or targeting VE-
cadherin (Yang et al., 2022a; Yang et al., 2022b). On the other
hand, lactate participates in essential steps of immune cell energy
metabolism, differentiation, migration, and the release of
inflammatory factors in the uncontrolled inflammation response
of sepsis. During the excessive immune response period of sepsis, in
order to solve the problem of enormous energy demand, the vast
majority of immune cells switch from oxidative phosphorylation to

glycolysis and produce lactate through metabolic reprogramming,
despite the low efficiency of glycolysis compared to oxidative
phosphorylation (Ye et al., 2022). However, the accumulation of
lactate can in turn inhibit the glycolysis of monocytes (Dietl et al.,
2010). Lactate can induce the differentiation direction of naive CD4+

T cells and increase the percentage of Treg cells (Comito et al., 2019),
regulate the polarization of macrophage M2 (Colegio et al., 2014),
and also limit antigen presentation and migration of dendritic cells
(Puig-Kroger et al., 2003; Gottfried et al., 2006). Through GPR81-
mediated YAP inactivation, lactate can prevent the synthesis of
cytokines that promote inflammation in macrophages (Brand et al.,
2016), and high levels of lactate additionally reduce the synthesis of
cytokines in NK and T cells and cause immune cell death (Husain
et al., 2013; Brand et al., 2016; Long et al., 2018).

Given the significant function of lactate in the onset and
progression of septic shock, this research aims to use
bioinformatics methods to identify lactate metabolism-related
differentially expressed genes (LMDEGs) from datasets related to
septic shock. The study will analyze the functional signaling
pathways and regulatory networks enriched by these genes, their
diagnostic efficacy, and the relationship with immune infiltration.

2 Methods

2.1 Data download

The R package GEOquery (Davis and Meltzer, 2007) was
utilized to download two Homo sapiens data sets, GSE26440
(Wong, 2012) and GSE131761 (Martinez-Paz et al., 2021), from
the GEO database (Barrett et al., 2007). The GSE26440 data set
(platform: GPL570 [HG-U133_Plus_2] Affymetrix HumanGenome
U133 Plus 2.0 Array) comprised 130 whole blood samples, of which
98 were from septic shock patients and 32 from healthy people. The
GSE131761 data set (platform: GPL13497 Agilent-026652 Whole
Human Genome Microarray 4x44K v2) was composed of 129 whole
blood samples, including 81 septic shock patients, 33 patients in
shock caused by other factors, and 15 healthy people.

The GPL files were used to annotate all the probe sets. In the
subsequent analysis, all expression profile data samples in
GSE26440, consisting of 98 whole blood samples from patients
with septic shock (septic shock group) and 32 whole blood samples
from matched normal controls (control group), were included.
Additionally, in GSE131761, the whole blood expression profile
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data samples of patients, who were experiencing septic shock or
other types of shock were also included in the following analysis.
This set comprised 81 whole blood samples from patients with septic
shock (septic shock group) and 33 matched whole blood samples
from non-septic shock patients (control group). In septic shock,
lactate may not solely be a consequence of circulatory dysfunction
but could potentially serve as a causative factor, actively
participating in the dysregulated immune-inflammatory response
during some early stage of sepsis, thus promoting the onset of shock.
Conversely, in other types of shock present in this dataset, such as
cardiogenic shock, lactate is more likely to be a consequence of

inadequate effective circulating volume. Therefore, utilizing this
dataset to compare the differential gene regulation of lactate
production and clearance between septic shock and non-septic
shock patients would be more advantageous in eliminating the
overlapped lactate-regulating genes due to circulation dysfunction
during the shock phase. With the exception of the 15 healthy
individual samples that were excluded from the dataset
GSE131761, all gene expression levels encompassing both
datasets were incorporated in the present investigation, thereby
precluding any instances of data omission. More thorough
specifics about the data sets are offered in Table 1.

Additionally, we gathered lactate metabolism-related genes
(LMGs) connected to lactate metabolism via GeneCards.
Moreover, we obtained LMGs from the GeneCards (https://www.
genecards.org/), which provides detailed information on human
genes (https://www.genecards.org/) (Stelzer et al., 2016). We
searched for “Lactate Metabolism” as the keyword and filtered
for “Protein Coding” LMGs to obtain 50 LMGs, as presented in
Table 2.

2.2 Identification of LMDEGs related to
septic shock

To identify differentially expressed genes (DEGs) associated
with septic shock, we employed the limma package to normalize
the data sets GSE26440 and GSE131761. Subsequently, limma
package was utilized to perform differential analysis on the
datasets GSE26440 and GSE131761 to determine DEGs between
various groups. We set |LogFC| >0 and P.adj < 0.05 as the threshold
for selecting DEGs for further investigation. Genes exhibiting
logFC > 0 and P.adj < 0.05 were classified as upregulated,
whereas those with logFC < 0 and P.adj < 0.05 were designated
as downregulated.

To identify lactate metabolism-related differentially expressed
genes (LMDEGs) in septic shock, we performed several steps. Firstly,
we obtained DEGs with |logFC| > 0 and P.adj < 0.05 from the
GSE26440 and GSE131761 datasets. Then, to find the common
DEGs, we created a Venn diagram using the intersection of these
DEGs from both datasets. Next, we intersected the common DEGs
with the LMGs obtained from the GeneCards database to obtain the

TABLE 1 Septic shock data set information list.

GSE26440 GSE131761

Platform GPL570 GPL13497

Species Homo sapiens Homo sapiens

Tissue Whole blood Whole blood

Samples in septic shock
group

98 81

Samples in Control group 32 33

Time of blood samples
obtained

The first 24 h of admission to intensive care unit Within 24 h of shock diagnosis

Reference Identification of pediatric septic shock subclasses based on genome-
wide expression profiling

Distinguishing septic shock from non-septic shock in postsurgical
patients using gene expression

TABLE 2 Lactate Metabolism genes list.

Lactate metabolism genes list

LDHB HCAR1 GCDH

LDHA STAT3 HK2

INS SOD1 G6PC1

SLC16A1 KRAS HTT

SLC16A4 TNF FOXM1

PIK3C2A IL6 GPR68

MMP2 ABCC1 MB

PDP1 ADRB2 CDKN3

NPPA GSR GCKR

DISC1 P4HB PTP4A2

LDHD CAV1 ATOX1

TGFB2 DNM1L SHC3

F2 HIF1A MACC1

CS IL1B PPP1R3B

SPAG6 AKR1B1

BSG FOXO3

PDYN KCNJ5

GPT PC
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LMDEGs, which were also represented in a Venn diagram. The R
package ggplot2 for the volcanic map and pheatmap for the heat
map were chose to present the outcomes of various analyses.

2.3 Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis of LMDEGs

R package clusterProfiler was utilized to perform KEGG and GO
(Yu et al., 2012), We considered P.adj < 0.05 and FDR values
(q.value) < 0.05 to be statistically significant entry screening criteria.
The Benjamin Hochberg method was used for p-value correction.

2.4 Gene set enrichment analysis (GSEA)

In this study, we employed GSEA to investigate the contribution
of predefined gene sets to the phenotype by assessing the
distribution trend of genes (Subramanian et al., 2005). The
following GSEA parameters were chosen: Benjamini–Hochberg
p-value correction, a seed of 2020, a calculation number of 1000,
a minimum of 10 genes per gene set, a maximum of 500 genes, and a
minimum of 10 genes per gene set. From the MSigDB (Liberzon
et al., 2015), we obtained the c2.cp.all.v2022.1.Hs.symbols.gmt [All
Canonical Pathways] (3050) gene set. We used P.adj < 0.05 and FDR
value < 0.05 as screening criteria for significant enrichment.

2.5 Protein-protein interaction (PPI)

Numerous biological functions, including signal transmission,
gene control, metabolism, and cell cycle regulation, rely on PPI
networks. The STRING database is a comprehensive resource for
investigating known and predicted PPIs (Szklarczyk et al., 2019). In
this study, we employed the STRING database to construct a PPI
network with a minimum required interaction score of low
confidence (0.150) and visualised the PPI network model using
Cytoscape version 3.9.1.

2.6 Construction of mRNA-miRNA, mRNA-
RNA binding protein (RBP), mRNA-
transcription factors (TF) interaction
networks

ThemiRDB database is a tool for predicting miRNA target genes
and providing functional annotations (Chen and Wang, 2020). In
this study, we utilized the miRDB database to predict miRNAs that
interact with LMDEGs. We then identified mRNA-miRNA
interaction pairs with a Target Score ≥80 from the miRDB
database interaction network.

The ENCORI database (version 3.0) is a comprehensive
platform that provides diverse visual interfaces for exploring
miRNA targets, based on data mining of CLIP-seq and
degradome sequencing (for plants) (Li et al., 2014). In this study,
the mRNA-RBP interaction network was built using the ENCORI
database to predict the RNA-RBP interactions with LMDEGs.

Millions of transcription factors and genes can be predicted to
have transcriptional regulatory interactions using the CHIPBase
database, version 3.0 (https://rna.sysu.edu.cn/chipbase/) (Zhou
et al., 2017). Additionally, the hTFtarget database (http://bioinfo.
life.hust.edu.cn/hTFtarget) is a comprehensive database with
information on human TFs and their associated regulating
targets (Zhang et al., 2020). In this study, we utilized the above-
mentioned two databases to identify TFs that bind to LMDEGs. The
resulting data were visualized using Cytoscape software.

2.7 Receiver operating characteristic
curve (ROC)

ROC is a coordinate graph analysis tool that can be used to select
the best model, discard suboptimal models, or set optimal thresholds
within the same model (Mandrekar, 2010). By using the
construction method, ROC curves reflect the relationship
between sensitivity and specificity of continuous variables. The
area under the curve (AUC) ranges between 0.5 and 1, where a
higher AUC signifies better diagnostic performance. To evaluate the
diagnostic effectiveness of LMDEGs on septic shock, we drew the
ROC using the R package “proc” and calculated the AUC for the
GSE26440 and GSE131761 datasets.

2.8 Immune infiltration analysis

The single-sample gene-set enrichment analysis (ssGSEA),
employing 28 gene sets from published literature to identify
various human immune cell subtypes is a well-established
method for identifying and quantifying tumour-infiltrating
immune cell subtypes in the tumour microenvironment (Bindea
et al., 2013). In this study, we utilized the ssGSEA algorithm,
available in the R package GSVA, to compute the enrichment
scores, which represent the infiltration levels of different immune
cell types in each sample. We displayed the differences in immune
infiltration by box plots and computed the correlation between
immune cells and LMDEGs using gene expression matrices from
GSE26440 and GSE131761. Furthermore, we generated a correlation
heatmap plot using the R package pheatmap to visualize the
relationship between immune cells and LMDEGs.

CIBERSORT is an algorithm for immune infiltration analysis
that uses linear support vector regression to deconvolve
transcriptional expression matrices, enabling estimate of immune
cell population composition and abundance in mixed cell
populations (Newman et al., 2015). We uploaded the whole
blood sample matrix data from the septic shock and control
groups in the GSE26440 and GSE131761 datasets to
CIBERSORT. The differences in immune cell infiltration
abundance in GSE26440 and GSE131761 were presented through
stacked plots. We calculated Spearman correlation coefficients using
the immune cell infiltration levels within different groups and
visualized the results using the R package ggplot2. Then, we
calculated the correlation between immune cells and LMDEGs
using the gene expression matrices from GSE26440 and
GSE131761 and displayed the results using a heatmap plot
generated by the R package pheatmap.
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2.9 Statistical analysis

All data processing and analysis in this study were performed
using R (Version 4.1.2). Continuous variables were reported as
mean ± standard deviation. For comparing two groups,
Wilcoxon rank sum tests were used, and Kruskal–Wallis tests
were used for comparing three or more groups. The chi-square
or Fisher’s exact test was employed to examine the statistical
significance between two categorical variables. Unless otherwise
indicated, Spearman correlation analysis was performed to
calculate the correlation coefficient between different molecules,
and all results were considered statistically significant when the
p-value was less than 0.05.

The entire research process is depicted in Figure 1.

3 Results

3.1 Identification of LMDEGs

We initially normalised two septic shock datasets,
GSE26440 and GSE131761, using the R package limma. The
GSE26440 dataset comprised of 130 samples, including 98 septic
shock samples (labelled as “Septic shock”) and 32 normal samples
(labelled as “Control”) (Figures 2A, B). Likewise, the
GSE131761 dataset comprised of 114 samples, with 81 septic

shock samples (labelled as “Septic shock”) and 33 other types of
shock samples (labelled as “Control”) (Figures 2C, D). As illustrated
in Figures 2A–D, after normalisation, the batch effects between
samples in both septic shock datasets were substantially mitigated,
and the expression profiles of the samples became more consistent.

In this study, limma package in R was utilized to conduct
differential gene expression analysis on the GSE26440 and
GSE131761 datasets, aiming to identify DEGs between the septic
shock group and the control group. In the GSE26440 dataset,
consisting of 130 samples, 21,652 DEGs were identified, with
8,639 genes meeting the criteria of |logFC| > 0 and P.adj < 0.05.
Among these genes, 4,799 were upregulated (logFC > 0), and
3,840 were downregulated (logFC < 0) (Figure 3A). We generated
a volcano plot to visualize the DEGs. Similarly, in the
GSE131761 dataset, consisting of 114 samples, 21,752 DEGs were
identified, with 3,783 genes meeting the criteria of |logFC| > 0 and
P.adj < 0.05. Among these genes, 1,678 were upregulated (logFC >
0), and 2,105 were downregulated (logFC < 0), and a volcano plot
was plotted to visualize the DEGs (Figure 3B). By taking the
intersection of all the DEGs with |logFC| > 0 and P.adj <
0.05 from both datasets, we obtained a list of 1,969 common
DEGs (Figure 3C). We further intersected these common DEGs
with LMGs, resulting in the identification of 10 LMDEGs
(Figure 3D), including lactate dehydrogenase B (LDHB), signal
transducer and activator of transcription 3 (STAT3), lactate
dehydrogenase A (LDHA), glutathione-disulfide reductase (GSR),

FIGURE 1
Flowchart of data analysis.
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forkhead box protein M1 (FOXM1), pyruvate dehyrogenase
phosphatase catalytic subunit 1 (PDP1), glutaryl-CoA
dehydrogenase (GCDH), glucokinase regulatory protein (GCKR),
ATP-binding cassette subfamily C member 1 (ABCC1), and cyclin-
dependent kinase inhibitor 3 (CDKN3). Heatmaps were generated to
visualize the expression differences of these genes in the septic shock
group and control group in both datasets (Figures 3E, F). Among the
10 LMDEGs, LDHA, GSR, STAT3, CDKN3, FOXM1, and GCKR
were upregulated (logFC > 0) in septic shock groups of both datasets,
while PDP1 and LDHB were downregulated (logFC < 0) in septic
shock groups of both datasets. ABCC1 and GCDH were
downregulated (logFC < 0) in septic shock group of the

GSE26440 dataset, but upregulated (logFC > 0) in septic shock
group of the GSE131761 dataset.

3.2 Functional and pathway enrichment
analysis of LMDEGs

Functional enrichment analysis by GO was performed on
10 LMDEGs (Table 3) to understand their biological significance.
GO analysis revealed that the LMDEGs were enriched in various
biological process (BP), molecular function (MF), and cellular
component (CC) during septic shock. The BP analysis showed that

FIGURE 2
Standardization processing of septic shock datasets. (A,B) Boxplots of the GSE26440 dataset before (A) and after (B) normalization. (C,D) Boxplots of
the GSE131761 dataset before (C) and after (D) normalization.
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the LMDEGs were enriched in metabolic processes, i.e., pyruvate,
lactate, nucleotide, and glycolytic metabolism, as well as protein
import into the nucleus. The MF enrichment analysis included
oxidoreductase activity, acting on the CH-OH group of donors,
NAD or NADP as acceptor, flavin adenine dinucleotide binding,
acyl-CoA dehydrogenase activity, oxidoreductase activity, acting on a
sulfur group of donors, NAD(P) as acceptor, and fatty acid derivative
binding. The CC enrichment analysis showed that the oxidoreductase
complex and the mitochondrial matrix were the LMDEGs’ principal
sites of association. The results of the GO functional enrichment
analysis were represented in Figures 4A–C, where the y-axis

indicates GO terms, and the x-axis represents -log(P.adj). We also
depicted the results of GO functional enrichment analysis in a network
diagram (Figures 4D–F).

A pathway enrichment analysis by KEGG database was
performed on the 10 LMDEGs identified in the previous section
(Table 4), and found that these genes were significantly enriched in
7 KEGG pathways, including the hypoxia-inducible factor-1 (HIF-1)
signaling pathway, propanoate metabolism, pyruvate metabolism,
and cysteine and methionine metabolism (Figure 4G). To better
visualize the results, a circular network diagram was generated
(Figure 4H).

FIGURE 3
Identification of LMDEGs from septic-shock datasets. (A) Volcano plot for DEGs in GSE26440. (B) Volcano plot for DEGs in GSE131761. (C) Venn
diagram of DEGs from GSE26440 and GSE131761. (D) Venn diagram of common DEGs and LMGs in the datasets. (E,F) Heatmap of LMDEGs in
GSE26440 (E) andGSE131761 (F) LMDEGs: lactatemetabolism-related differentially expressed genes; DEGs: differentially expressed genes; LMGs: lactate
metabolism-related genes.
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3.3 GSEA

To assess the role of DEGs in the pathogenesis of septic shock,
we conducted GSEA on two datasets, GSE26440 and
GSE131761 and found that the DEGs in GSE26440 were
significantly enriched in multiple pathways, including WP
GLYCOLYSIS AND GLUCONEOGENESIS, WP MIRNAS
INVOLVEMENT IN THE IMMUNE RESPONSE IN SEPSIS, WP
GLYCOGEN SYNTHESIS AND DEGRADATION, and REACTOME
INTERLEUKIN 1 FAMILY SIGNALING. The results were presented
in Figures 5A–E and Table 5. Likewise, the DEGs in
GSE131761 were significantly enriched in various pathways,
i.e., REACTOME INTERLEUKIN 1 FAMILY SIGNALING, WP
GLYCOGEN SYNTHESIS AND DEGRADATION, WP MIRNAS
INVOLVEMENT IN THE IMMUNE RESPONSE IN SEPSIS, and
KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND
NEOLACTO SERIES, as depicted in Figures 5F–J and Table 6.

3.4 Protein-protein, mRNA-miRNA, mRNA-
RBP, and mRNA-TF interaction networks of
LMDEGs

PPI analysis was conducted on 10 LMDEGs obtained from the
GSE26440 and GSE131761 datasets via the STRING database.

Cytoscape was used to construct PPI networks for these genes,
providing a visual representation of their interaction relationships
(Figure 6A). Additionally, To determine the semantic similarity of
GO terms, sets of GO terms, gene products, and gene clusters among
the LMDEGs, we used the R package GOSemSim, and a boxplot was
then used to show the commonalities that resulted from this
(Figure 6B).

In order to investigate the regulatory mechanisms of LMDEGs, we
utilized various bioinformatic tools and databases. Firstly, we employed
the miRDB database to predict potential miRNAs that could interact
with the LMDEGs. Subsequently, we visualized the mRNA-miRNA
interaction network using Cytoscape software, which consisted of
10 LMDEGs and 144 miRNA molecules, resulting in 148 pairs of
mRNA-miRNA interaction relationships (Figure 6C). The specific
details of these interactions are provided in Table 7.

Next, we utilized the ENCORI database to predict RBPs that
may interact with the LMDEGs, and we constructed the mRNA-
RBP interaction network by Cytoscape software. This network
was comprised of 10 LMDEGs and 43 RBP molecules, which
formed a total of 243 pairs of mRNA-RBP interaction
relationships (Figure 6D). The detailed information regarding
these interactions is listed in Table 8.

Additionally, we searched the CHIPBase and hTFtarget databases
to identify TFs that could potentially interact with the LMDEGs. A total
of 67 TFs were identified to have interaction relationships with the

TABLE 3 GO enrichment analysis results.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:
0006090

pyruvate metabolic process 3/10 106/18800 2.0314E-05 0.005798302 0.003059748

BP GO:
0006089

lactate metabolic process 2/10 16/18800 3.04373E-05 0.005798302 0.003059748

BP GO:
0006096

glycolytic process 2/10 81/18800 0.00080678 0.03095373 0.0163342

BP GO:
0009117

nucleotide metabolic process 3/10 487/18800 0.0018098 0.03612573 0.01906345

BP GO:
0006606

protein import into nucleus 2/10 159/18800 0.003059286 0.04856616 0.025628227

CC GO:
0005759

mitochondrial matrix 3/10 473/19594 0.001478099 0.011346427 0.009384263

CC GO:
1990204

oxidoreductase complex 2/10 120/19594 0.001620918 0.011346427 0.009384263

MF GO:
0016616

oxidoreductase activity, acting on the CH-OH group of
donors, NAD or NADP as acceptor

2/10 128/18410 0.002081045 0.037238383 0.016332624

MF GO:
0050660

flavin adenine dinucleotide binding 2/10 85/18410 0.000925507 0.037238383 0.016332624

MF GO:
0003995

acyl-CoA dehydrogenase activity 1/10 12/18410 0.006500695 0.037476529 0.016437074

MF GO:
0016668

oxidoreductase activity, acting on a sulfur group of
donors, NAD(P) as acceptor

1/10 13/18410 0.007040699 0.037476529 0.016437074

MF GO:
1901567

fatty acid derivative binding 1/10 23/18410 0.012426228 0.043857276 0.019235647
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LMDEGs, and the mRNA-TF interaction network was constructed by
Cytoscape software, consisting of 10 LMDEGs and 67 TFs. In total,
441 pairs of mRNA-TF interaction relationships were observed, with
STAT3 showing the most interactions with TFs, comprising 54 pairs of
mRNA-TF interaction relationships, since STAT3 was both a gene and
a TF (Figure 6E). The detailed mRNA-TF interaction relationships are
presented in Table 9.

3.5 Expression differences and diagnostic
performance of LMDEGs

In this study, we conducted differential expression analysis on
10 LMDEGs in two datasets (GSE26440 and GSE131761) to identify
significant expression differences between septic shock patients and
normal controls or non-septic shock patients. Specifically, we

FIGURE 4
Enrichment analysis was performed on LMDEGs using GO and KEGG. (A–C)Column chart showing the results of GO functional enrichment analysis
of LMDEGs, including BP (A), CC (B), and MF (C). (D–F)Network diagrams displaying the results of GO functional enrichment analysis of LMDEGs in terms
of BP (D), CC (E), and MF (F). G-H. Bubble chart (G) and circular network diagram (H) showing the results of KEGG pathway enrichment analysis of
LMDEGs. In the bubble chart (G), the y-axis represents GO terms, bubble color represents adjusted p-values, and bubble size represents the number
ofmolecules included in theGO terms. In the network diagrams (D–F,H) red dots represent specific genes, and blue squares represent specific pathways.
The filtering criteria for GO/KEGG enrichment items were P.adj < 0.05 and FDR value (q-value) < 0.05. GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; LMDEGs, lactate metabolism-related differentially
expressed genes.
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performed the Wilcoxon signed rank test to evaluate the expression
levels of the 10 LMDEGs in septic shock group and control group in
the GSE26440 dataset. Our analysis found significant expression
differences (p < 0.001 for LDHB, STAT3, LDHA, GSR, FOXM1, and
CDKN3; p < 0.01 for GCKR; Figure 7A) among all 10 LMDEGs
between the two groups. We also examined the expression levels of
the 10 LMDEGs in the GSE131761 dataset, comparing septic shock
group and non-septic shock patients group, and identified
significant expression differences (p < 0.001 for LDHB, STAT3,
LDHA, GSR, FOXM1, and CDKN3; p < 0.01 for PDP1, GCDH,
GCKR, and ABCC1) between the two groups for all 10 LMDEGs
(Figure 7B).

Based on the comparison of group distributions, we generated
ROC curves for eight DEGs associated with lactate metabolism
exhibiting similar expression trends in both the GSE26440 and
GSE131761 datasets. The ROC curves were presented in Figures
7C–F. Notably, the following genes were observed to show a certain
correlation with the occurrence of septic shock in the
GSE26440 dataset: LDHB (AUC = 0.873, red line in Figure 7C),
STAT3 (AUC = 0.889, blue line in Figure 7C), LDHA (AUC = 0.883,
red line in Figure 7D), GSR (AUC = 0.870, blue line in Figure 7D),
FOXM1 (AUC = 0.743, red line in Figure 7E), and CDKN3 (AUC =
0.703, blue line in Figure 7F). Conversely, the expression of PDP1
(AUC = 0.695, blue line in Figure 7E) and GCKR (AUC = 0.655, red
line in Figure 7F) genes in the GSE26440 dataset exhibited a low
correlation with septic shock occurrence. ROC curve analysis in the
GSE131761 dataset revealed a similar correlation pattern.
Specifically, the following genes exhibited a certain correlation
with septic shock occurrence: LDHB (AUC = 0.701, red line in
Figure 7G), STAT3 (AUC = 0.713, blue line in Figure 7G), LDHA
(AUC = 0.704, red line in Figure 7H),GSR (AUC = 0.780, blue line in
Figure 7H), FOXM1 (AUC = 0.846, red line in Figure 7I), and
CDKN3 (AUC = 0.761, blue line in Figure 7J). Meanwhile, PDP1
(AUC = 0.697, blue line in Figure 7I) and GCKR (AUC = 0.662, red
line in Figure 7J) genes in the GSE131761 dataset exhibited a low
correlation with septic shock occurrence.

3.6 Immune characteristic analysis by
ssGSEA

In order to explore the immunological characteristics of
LMDEGs in septic shock, we employed ssGSEA to estimate the

infiltration abundance of 28 distinct immune cells in septic shock
and control groups. The differential gene expression analysis in the
GSE26440 dataset was used for this purpose. We compared the
infiltration differences of the 28 immune cells between septic shock
and control groups using the Mann-Whitney U test and illustrated
the results in a grouping comparison chart (Figure 8A). Our findings
indicated that 21 immune cell types demonstrated statistically
significant differences in infiltration abundance between septic
shock and control groups (p < 0.05). Additionally, we analyzed
the correlations between the infiltration abundance of these
21 immune cells and presented the results in Figure 8B, which
showed generally positive correlations between the infiltration
abundance of these immune cells.

Furthermore, we examined the relationship between the
infiltration abundance of the previously mentioned 21 immune
cells and the expression of 10 LMDEGs in GSE26440 dataset. We
applied a significance threshold of p < 0.05 for the correlation
analysis results (Figure 8C). Our findings indicated noteworthy
associations between the infiltration abundance of 20 immune
cells and the 10 LMDEGs (p < 0.05), with most of these
associations being positively correlated. Importantly, we observed
that STAT3, LDHB, LDHA and GSR displayed the most substantial
correlations with the infiltration abundance of the 20 immune cells.

Similarly, we employed the ssGSEA algorithm to determine the
infiltration abundance of 28 immune cells in septic shock and non-
septic shock group samples obtained from the GSE131761 dataset.
We performed a Mann-Whitney U test to analyze the infiltration
differences of the 28 immune cells between the two groups and
presented the results through a grouping comparison chart
(Figure 8D). Our analysis revealed statistically significant
differences in the infiltration abundance of 15 immune cell types
(p < 0.05) between the septic shock group and non-septic shock
patients group.

We subsequently conducted correlation analyses to investigate
the relationship between the infiltration abundance of 15 immune
cells in the GSE131761 dataset, and the results are presented in
Figure 8E. Our findings indicated a positive correlation between the
infiltration abundance of these 15 immune cells and that of other
immune cells in the dataset.

Correlation analyses were conducted to investigate the
associations between the infiltration abundance of 15 immune
cells and the expression levels of 10 LMDEGs in the
GSE131761 dataset. The results were presented in Figure 8F, with

TABLE 4 KEGG enrichment analysis results.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

KEGG hsa04066 HIF-1 signaling pathway 3/7 109/8164 7.79402E-05 0.003741129 0.002789438

KEGG hsa00640 Propanoate metabolism 2/7 32/8164 0.000308783 0.007410786 0.005525586

KEGG hsa00620 Pyruvate metabolism 2/7 47/8164 0.000668855 0.009451197 0.007046945

KEGG hsa00270 Cysteine and methionine metabolism 2/7 51/8164 0.0007876 0.009451197 0.007046945

KEGG hsa00010 Glycolysis/Gluconeogenesis 2/7 67/8164 0.001356873 0.01184197 0.008829539

KEGG hsa05230 Central carbon metabolism in cancer 2/7 70/8164 0.001480246 0.01184197 0.008829539

KEGG hsa04922 Glucagon signaling pathway 2/7 107/8164 0.003423654 0.023476483 0.017504395

Frontiers in Genetics frontiersin.org10

Jiang et al. 10.3389/fgene.2023.1223243

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1223243


a cutoff of p < 0.05. Our findings demonstrated significant negative
correlations (p < 0.05) between the infiltration abundance of the
15 immune cells and the expression of the 10 LMDEGs in the
GSE131761 dataset, with LDHA, FOXM1, and CDKN3 exhibiting
particularly strong correlations with the infiltration abundance of
the 15 immune cells.

3.7 Immune characteristic analysis by
CIBERSORT

To investigate the differences in immune cell infiltration in the
GSE26440 dataset, we utilized the CIBERSORT algorithm to
calculate the correlations between the expression profiles of

FIGURE 5
Results of gene set enrichment analysis (GSEA) on the septic shock datasets. (A) Four main biological features of GSEA in GSE26440. (B–E)
Significant enrichment of DEGs in pathways such as glycolysis and gluconeogenesis (B), miRNAs involvement in the immune response in sepsis (C),
glycogen synthesis and degradation (D), reactome interleukin 1 family signaling (E) in the GSE26440 dataset. (F) Four main biological features of GSEA in
GSE131761. (G–J) Significant enrichment of DEGs in pathways such as reactome interleukin 1 family signaling (G), glycogen synthesis and
degradation (H), mirnas involvement in the immune response in sepsis (I), glycosphingolipid biosynthesis lacto and neolacto series (J) in the
GSE131761 dataset. The significant enrichment selection criterion for GSEA is P.adj < 0.05 and FDR value (q-value) < 0.05. GSEA, Gene Set Enrichment
Analysis.
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22 immune cells and different groups. Using the immune infiltration
analysis results, we generated a stacked bar chart to display the
immune cell infiltration levels of each sample in the
GSE26440 dataset for the 22 immune cell types (Figure 9A). The
findings revealed that 14 immune cell types exhibited statistically
significant differences (p < 0.05) in infiltration levels between the
septic shock and control groups in GSE26440.

Next, we computed the correlation between the infiltration levels
of the 14 immune cell types identified in the GSE26440 dataset, and
the outcomes were illustrated in Figure 9B. Our findings revealed a
negative correlation between the infiltration abundance of most of
the 14 immune cell types in the GSE26440 dataset.

Furthermore, we conducted a correlation analysis to
investigate the association between the infiltration abundance
of the 14 immune cell types in the GSE26440 dataset and the
expression levels of 10 LMDEGs. The results were presented in
Figure 9C, where a p-value threshold of less than 0.05 was used to
screen for significant correlations. Our findings revealed
significant correlations between the infiltration abundance of
the 14 immune cell types and the expression of the
10 LMDEGs in the GSE26440 dataset. As demonstrated,
LMDEGs (including STAT3, LDHA, and GSR) showed a
negative correlation with NK activated cells.

Using the CIBERSORT algorithm, we conducted an immune
infiltration analysis on the GSE131761 dataset. A stacked bar

chart displaying the immune cell infiltration levels of
22 immune cells in each sample of the GSE131761 dataset
was generated based on the results (Figure 9D). The analysis
revealed significant differences in the infiltration levels of
18 immune cells between the septic shock and control groups
in the GSE131761 dataset.

Subsequently, the correlations between the infiltration
abundance of the 18 immune cells that exhibited infiltration
levels greater than zero in the GSE131761 dataset were
computed. These results were presented in Figure 9E, indicating
that most of the 18 immune cells in the GSE131761 dataset had a
negative correlation with immune cell infiltration.

In addition, we assessed the relationship between the infiltration
abundance of 18 immune cell types, whose abundance was greater than
zero, and the expression levels of 10 LMDEGs in the GSE131761 dataset
(Figure 9F). Our analysis revealed significant associations (p < 0.05)
between the infiltration abundance of 16 immune cell types and the
expression levels of the 10 LMDEGs. Notably, T cells CD8 exhibited a
noteworthy positive correlation with 6 LMDEGs associated with lactate
metabolism. Furthermore, NK resting cells exhibit a positive correlation
with several LMDEGs, including STAT3, LDHA, FOXXM1, and
CDKN3. Conversely, NK activated cells demonstrate a negative
correlation specifically with STAT3. Additionally, LDHB displays a
negative correlation with Treg cells in both datasets when analyzed
using the CIBERSORT algorithm.

TABLE 5 GSEA enrichment analysis results of GEO- GSE26440 dataset.

Description setSize NES p.adjust qvalues

REACTOME_INTERLEUKIN_1_FAMILY_SIGNALING 145 2.003516698 0.000115393 9.17738E-05

WP_GLYCOGEN_SYNTHESIS_AND_DEGRADATION 36 1.85401466 0.022659842 0.018021649

WP_NOTCH1_REGULATION_OF_ENDOTHELIAL_CELL_CALCIFICATION 17 1.814939099 0.029007368 0.023069914

WP_MIRNAS_INVOLVEMENT_IN_THE_IMMUNE_RESPONSE_IN_SEPSIS 36 1.811206797 0.034604798 0.027521618

WP_GLYCOLYSIS_AND_GLUCONEOGENESIS 44 1.783691927 0.027508443 0.021877801

REACTOME_NEUTROPHIL_DEGRANULATION 448 3.064982663 1.77071E-08 1.40827E-08

REACTOME_ACTIVATION_OF_MATRIX_METALLOPROTEINASES 31 2.370902154 2.86425E-08 2.27797E-08

REACTOME_COLLAGEN_DEGRADATION 64 2.257436488 2.17214E-05 1.72753E-05

WP_COMPLEMENT_SYSTEM 91 2.244919652 1.27922E-05 1.01738E-05

REACTOME_ANTIMICROBIAL_PEPTIDES 65 2.24184692 9.18658E-06 7.3062E-06

WP_MATRIX_METALLOPROTEINASES 29 2.229396828 5.14861E-05 4.09475E-05

WP_BURN_WOUND_HEALING 103 2.21615658 5.58363E-06 4.44073E-06

REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 138 2.189833983 1.57087E-06 1.24933E-06

REACTOME_INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 106 2.171320372 3.27691E-05 2.60616E-05

REACTOME_RHO_GTPASES_ACTIVATE_NADPH_OXIDASES 24 2.153439893 0.000443012 0.000352333

NABA_ECM_REGULATORS 226 2.11968437 2.3532E-07 1.87153E-07

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 290 2.112971131 1.77071E-08 1.40827E-08

WP_MICROGLIA_PATHOGEN_PHAGOCYTOSIS_PATHWAY 40 2.111001717 0.000317917 0.000252843

WP_LTF_DANGER_SIGNAL_RESPONSE_PATHWAY 19 2.107592082 0.000228875 0.000182027

REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2 124 2.10371762 1.44602E-05 1.15004E-05
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4 Discussion

Septic shock has attracted extensive attention and research due
to its high mortality rate, and effective therapeutic targets focusing
on the inflammatory pathway have yet to be found (van der Poll
et al., 2017). Lactate, as a product of glycolysis, not only causes
vasodilation and increased permeability, exacerbating
microcirculatory ischemia in septic shock, but also affects
immune-inflammatory responses, leading to dysregulation. To
our knowledge, no bioinformatics studies exploring the
relationship between LMDEGs and septic shock can be retrieved.
Therefore, to understand the role of lactate in septic shock, this study
identified 10 LMDEGs in septic shock patients through two datasets,
and performed enrichment analyses of LMDEGs through KEGG
and GO. Meanwhile, we also performed GSEA on the two datasets.
Next, we constructed PPI, mRNA-miRNA, mRNA-RBP, and
mRNA-TF interaction networks of LMDEGs. In addition, we
conducted a comparative analysis of the LMDEGs between the
septic shock group and the control group, and predicted the
diagnostic efficacy of LMDEGs for septic shock. Finally, we
analyzed the characteristics of immune infiltration in septic
shock and its correlation with LMDEGs using ssGSEA and
CIBERSORT algorithms.

The LMDEGs identified in this study, which are related to septic
shock, are not only involved in regulating lactate metabolism, but

also multiple studies have shown that they are involved in regulating
inflammatory immune responses. LDHA and LDHB are classic
genes involved in lactate metabolism, where LDHA primarily
catalyzes the conversion of pyruvate and NADH into lactate and
NAD to enhance ATP supply, while LDHB prevents lactate
accumulation by catalyzing the reverse reaction (Certo et al.,
2021). In terms of immune regulation, LDH can play a
modifying role in gene expression in the nucleus of cells, such as
by binding to AU-rich elements in RNA encoding GM-CSF to
regulate its expression (Chang et al., 2013). LDHA can regulate pro-
inflammatory cytokines in macrophages (Song et al., 2019), as well
as prevent the upregulation of activated T cell nuclear factor in
T cells and NK cells, leading to a decrease in IFN-γ production
(Brand et al., 2016). Upregulation of LDHB expression can partially
reverse the inhibitory state of T cells (Decking et al., 2022). Similarly,
STAT3 is also involved in regulating many immune and
inflammatory responses, such as promoting the conversion of
pro-inflammatory signals to anti-inflammatory signals (Hillmer
et al., 2016), regulating the development and function of effector
CD8+ T cells during acute infection (Sun et al., 2023), regulating the
function of ILC2 effectors (Fu et al., 2022), and participating in
regulating dendritic cell maturation to modulate self-immunity
(Wang et al., 2021). In addition, GSR can reduce lung epithelial
cell damage (Hong et al., 2022); FoxM1 can regulate the
development and migration of immune cells (Zheng et al., 2023);

TABLE 6 GSEA enrichment analysis results of GEO- GSE131761 dataset.

Description setSize NES p.adjust qvalues

WP_ATM_SIGNALING_PATHWAY 37 1.910403 0.003677 0.003202

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 25 1.868707 0.018703 0.016285

WP_MIRNAS_INVOLVEMENT_IN_THE_IMMUNE_RESPONSE_IN_SEPSIS 37 1.827298 0.014556 0.012674

WP_GLYCOGEN_SYNTHESIS_AND_DEGRADATION 39 1.737055 0.040929 0.035638

REACTOME_INTERLEUKIN_1_FAMILY_SIGNALING 150 1.66698 0.00363 0.00316

REACTOME_NEUTROPHIL_DEGRANULATION 459 2.373541 1.47E-08 1.28E-08

REACTOME_CELL_CYCLE_CHECKPOINTS 242 1.93119 2.66E-07 2.32E-07

REACTOME_ANTIMICROBIAL_PEPTIDES 84 1.926725 0.000322 0.00028

REACTOME_RHO_GTPASE_EFFECTORS 253 1.906874 6.94E-07 6.04E-07

REACTOME_G1_S_SPECIFIC_TRANSCRIPTION 29 1.903141 0.003677 0.003202

REACTOME_CELL_CYCLE_MITOTIC 479 1.887184 1.47E-08 1.28E-08

KEGG_P53_SIGNALING_PATHWAY 65 1.862469 0.003433 0.002989

REACTOME_UNWINDING_OF_DNA 12 1.844032 0.011889 0.010352

PID_RHOA_PATHWAY 43 1.832345 0.008903 0.007752

REACTOME_G2_M_CHECKPOINTS 127 1.830426 0.000329 0.000287

REACTOME_RESOLUTION_OF_SISTER_CHROMATID_COHESION 115 1.823666 0.000435 0.000379

REACTOME_MITOTIC_PROMETAPHASE 190 1.823268 4.08E-05 3.55E-05

REACTOME_ER_TO_GOLGI_ANTEROGRADE_TRANSPORT 149 1.819755 0.00023 0.000201

BIOCARTA_MPR_PATHWAY 21 1.819122 0.015684 0.013656

BIOCARTA_UCALPAIN_PATHWAY 14 1.817549 0.014556 0.012674
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and PDP1 can regulate the activity of the hypoxia-inducible factor 1
(HIF-1) pathway (Karagiota et al., 2023).

According to the KEGG analysis, HIF-1 was found to be the
most significantly enriched pathway in LMDEGs. As an important
metabolic sensor, HIF-1 participates in the regulation of numerous
immune signaling pathways, such as coordinating differentiation
between Treg and TH17 cells (Dang et al., 2011), driving

transcriptional changes in immune cells in bone marrow and
other lymphoid organs (Taylor and Colgan, 2017), and
promoting the activation of macrophages and dendritic cells
during inflammation (Ivashkiv, 2020). Cytokines are an essential
component of the cytokine storm that occurs in septic shock. We
performed GSEA analysis on the DEGs of two datasets and found
that DEGs were significantly enriched in the REACTOME

FIGURE 6
Construction of protein-protein, mRNA-miRNA, mRNA-RBP, and mRNA-TF interaction networks for the LMDEGs, as well as their correlation
analysis. (A) PPI network of LMDEGs. (B) Friends analysis results of LMDEGs. C-E. mRNA-miRNA (C), mRNA-RBP (D), and mRNA-TF (E) interaction
networks of LMDEGs. In the mRNA-miRNA interaction network (C), mRNA is represented by light blue ellipse and miRNA by light green diamond. In the
mRNA-RBP interaction network (D), mRNA is represented by light blue circle and RBP by light green diamond. In the mRNA-TF interaction network
(E), mRNA is represented by light blue circle, transcription factors (TFs) by light green diamond, and yellow diamond representsmRNA that is also a TF. PPI,
Protein-protein interaction; RBP, RNA binding protein; TF, Transcription factors.
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TABLE 7 mRNA-miRNA interaction network nodes.

mRNA miRNA mRNA miRNA

LDHB - hsa-miR-590-3p FOXM1 - hsa-miR-1323

LDHB - hsa-miR-4775 FOXM1 - hsa-miR-4255

LDHB - hsa-miR-375-3p FOXM1 - hsa-miR-6810-5p

LDHB - hsa-miR-6739-3p FOXM1 - hsa-miR-3919

LDHB - hsa-miR-4509 FOXM1 - hsa-miR-518c-5p

LDHB - hsa-miR-4677-3p FOXM1 - hsa-miR-548o-3p

LDHB - hsa-miR-3185 FOXM1 - hsa-miR-651-3p

STAT3 - hsa-miR-1299 FOXM1 - hsa-miR-6869-5p

STAT3 - hsa-miR-374a-3p FOXM1 - hsa-miR-374a-5p

STAT3 - hsa-miR-7160-5p FOXM1 - hsa-miR-6857-5p

STAT3 - hsa-miR-21-5p FOXM1 - hsa-miR-4441

STAT3 - hsa-miR-590-5p FOXM1 - hsa-miR-374b-5p

STAT3 - hsa-miR-6825-5p FOXM1 - hsa-miR-2110

STAT3 - hsa-miR-4268 PDP1 - hsa-miR-18a-3p

STAT3 - hsa-miR-196a-1-3p PDP1 - hsa-miR-938

STAT3 - hsa-miR-32-3p PDP1 - hsa-miR-6886-3p

STAT3 - hsa-miR-6736-3p PDP1 - hsa-miR-5696

STAT3 - hsa-miR-6128 PDP1 - hsa-miR-4275

STAT3 - hsa-miR-337-3p PDP1 - hsa-miR-1913

STAT3 - hsa-miR-875-3p PDP1 - hsa-miR-579-3p

STAT3 - hsa-miR-6835-3p PDP1 - hsa-miR-664b-3p

STAT3 - hsa-miR-371b-3p PDP1 - hsa-miR-520e-5p

STAT3 - hsa-miR-106b-5p PDP1 - hsa-miR-644a

STAT3 - hsa-miR-526b-3p PDP1 - hsa-miR-95-5p

STAT3 - hsa-miR-20b-5p PDP1 - hsa-miR-5700

STAT3 - hsa-miR-106a-5p PDP1 - hsa-miR-625-3p

STAT3 - hsa-miR-93-5p PDP1 - hsa-miR-4422

STAT3 - hsa-miR-17-5p PDP1 - hsa-miR-630

STAT3 - hsa-miR-20a-5p PDP1 - hsa-miR-302b-5p

STAT3 - hsa-miR-519d-3p PDP1 - hsa-miR-302d-5p

STAT3 - hsa-miR-3120-3p PDP1 - hsa-miR-6074

STAT3 - hsa-miR-1184 PDP1 - hsa-miR-581

STAT3 - hsa-miR-3612 PDP1 - hsa-miR-3688-5p

STAT3 - hsa-miR-650 PDP1 - hsa-miR-192-5p

STAT3 - hsa-miR-4662a-3p PDP1 - hsa-miR-215-5p

STAT3 - hsa-miR-138-2-3p PDP1 - hsa-miR-8485

STAT3 - hsa-miR-4290 GCDH - hsa-miR-6870-3p

(Continued in next column)

TABLE 7 (Continued) mRNA-miRNA interaction network nodes.

mRNA miRNA mRNA miRNA

STAT3 - hsa-miR-4731-5p GCDH - hsa-miR-124-3p

STAT3 - hsa-miR-5688 GCDH - hsa-miR-506-3p

STAT3 - hsa-miR-6776-3p GCDH - hsa-miR-3145-3p

STAT3 - hsa-miR-3158-3p GCDH - hsa-miR-6785-5p

STAT3 - hsa-miR-298 GCDH - hsa-miR-7515

STAT3 - hsa-miR-12136 GCDH - hsa-miR-4728-5p

LDHA - hsa-miR-1208 GCDH - hsa-miR-6733-3p

LDHA - hsa-miR-4801 GCKR - hsa-miR-4306

LDHA - hsa-miR-6751-5p ABCC1 - hsa-miR-5011-5p

LDHA - hsa-miR-4731-3p ABCC1 - hsa-miR-6783-3p

LDHA - hsa-miR-4778-3p ABCC1 - hsa-miR-1343-3p

LDHA - hsa-miR-642b-5p ABCC1 - hsa-miR-659-3p

LDHA - hsa-miR-449a ABCC1 - hsa-miR-29b-2-5p

LDHA - hsa-miR-34a-5p ABCC1 - hsa-miR-3133

LDHA - hsa-miR-33b-5p ABCC1 - hsa-miR-5587-5p

LDHA - hsa-miR-6760-3p ABCC1 - hsa-miR-6762-3p

LDHA - hsa-miR-33a-5p ABCC1 - hsa-miR-330-5p

LDHA - hsa-miR-6803-5p ABCC1 - hsa-miR-6799-5p

LDHA - hsa-miR-6083 ABCC1 - hsa-miR-326

LDHA - hsa-miR-34c-5p ABCC1 - hsa-miR-4478

LDHA - hsa-miR-449b-5p ABCC1 - hsa-miR-6733-5p

LDHA - hsa-miR-6736-3p ABCC1 - hsa-miR-3153

LDHA - hsa-miR-4317 ABCC1 - hsa-miR-6739-5p

GSR - hsa-miR-5011-5p ABCC1 - hsa-miR-8066

GSR - hsa-miR-190a-3p ABCC1 - hsa-miR-190a-3p

GSR - hsa-miR-148a-5p ABCC1 - hsa-miR-3116

GSR - hsa-miR-1277-5p ABCC1 - hsa-miR-4256

GSR - hsa-miR-3613-3p ABCC1 - hsa-miR-1277-5p

GSR - hsa-miR-934 ABCC1 - hsa-miR-11181-5p

GSR - hsa-miR-4693-5p CDKN3 - hsa-miR-181c-5p

GSR - hsa-miR-371b-5p CDKN3 - hsa-miR-181d-5p

GSR - hsa-miR-616-5p CDKN3 - hsa-miR-4262

GSR - hsa-miR-373-5p CDKN3 - hsa-miR-181a-5p

GSR - hsa-miR-3975 CDKN3 - hsa-miR-181b-5p

GSR - hsa-miR-12129 CDKN3 - hsa-miR-5582-3p

FOXM1 - hsa-miR-4521 CDKN3 - hsa-miR-141-3p

FOXM1 - hsa-miR-12131 CDKN3 - hsa-miR-200a-3p
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TABLE 8 mRNA-RBP interaction network nodes.

mRNA RBP mRNA RBP mRNA RBP

ABCC1 - ACIN1 GCDH - HNRNPK LDHA - TARDBP

ABCC1 - ALYREF GCDH - HNRNPM LDHA - TRA2A

ABCC1 - CSTF2T GCDH - HNRNPU LDHA - TROVE2

ABCC1 - DDX54 GCDH - IGF2BP2 LDHA - U2AF1

ABCC1 - DGCR8 GCDH - LIN28B LDHA - U2AF2

ABCC1 - DHX9 GCDH - MOV10 LDHA - YTHDC1

ABCC1 - ELAVL1 GCDH - PRPF8 LDHB - ACIN1

ABCC1 - FAM120A GCDH - RBFOX2 LDHB - CSTF2T

ABCC1 - FMR1 GCDH - SMNDC1 LDHB - DGCR8

ABCC1 - FUS GCDH - SND1 LDHB - ELAVL1

ABCC1 - HNRNPA2B1 GCDH - SRSF1 LDHB - FMR1

ABCC1 - HNRNPC GCDH - TAF15 LDHB - FUS

ABCC1 - HNRNPL GCDH - TARDBP LDHB - HNRNPA1

ABCC1 - HNRNPM GCDH - U2AF1 LDHB - HNRNPA2B1

ABCC1 - IGF2BP1 GCDH - U2AF2 LDHB - HNRNPC

ABCC1 - IGF2BP2 GCDH - UPF1 LDHB - HNRNPL

ABCC1 - IGF2BP3 GCKR - PRPF8 LDHB - IGF2BP1

ABCC1 - LIN28B GCKR - TAF15 LDHB - IGF2BP2

ABCC1 - MOV10 GCKR - U2AF2 LDHB - IGF2BP3

ABCC1 - PRPF8 GSR - CSTF2T LDHB - LIN28B

ABCC1 - PTBP1 GSR - DDX54 LDHB - MOV10

ABCC1 - RBFOX2 GSR - DGCR8 LDHB - PTBP1

ABCC1 - SND1 GSR - DHX9 LDHB - RBFOX2

ABCC1 - SRSF1 GSR - DICER1 LDHB - SRSF1

ABCC1 - TAF15 GSR - ELAVL1 LDHB - TAF15

ABCC1 - TARDBP GSR - FAM120A LDHB - TARDBP

ABCC1 - U2AF1 GSR - FMR1 LDHB - U2AF2

ABCC1 - U2AF2 GSR - FUS LDHB - UPF1

ABCC1 - UPF1 GSR - HNRNPA1 LDHB - YTHDC1

ABCC1 - YTHDC1 GSR - HNRNPC PDP1 - CSTF2T

CDKN3 - DDX54 GSR - HNRNPK PDP1 - DDX54

CDKN3 - HNRNPA1 GSR - HNRNPM PDP1 - ELAVL1

CDKN3 - HNRNPC GSR - IGF2BP1 PDP1 - FMR1

CDKN3 - HNRNPM GSR - IGF2BP2 PDP1 - HNRNPA2B1

CDKN3 - IGF2BP1 GSR - IGF2BP3 PDP1 - HNRNPC

CDKN3 - IGF2BP2 GSR - LARP7 PDP1 - HNRNPM

CDKN3 - PRPF8 GSR - LIN28B PDP1 - IGF2BP2

CDKN3 - RBFOX2 GSR - MOV10 PDP1 - IGF2BP3

(Continued on following page)
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TABLE 8 (Continued) mRNA-RBP interaction network nodes.

mRNA RBP mRNA RBP mRNA RBP

CDKN3 - SRSF1 GSR - PRPF8 PDP1 - MOV10

CDKN3 - TARDBP GSR - PTBP1 PDP1 - RBFOX2

CDKN3 - U2AF2 GSR - RBFOX2 PDP1 - TAF15

CDKN3 - UPF1 GSR - SMNDC1 PDP1 - TARDBP

FOXM1 - ALYREF GSR - SND1 PDP1 - U2AF2

FOXM1 - CSTF2T GSR - SRSF1 PDP1 - UPF1

FOXM1 - DDX54 GSR - TAF15 STAT3 - AUH

FOXM1 - DGCR8 GSR - TARDBP STAT3 - CSTF2T

FOXM1 - DHX9 GSR - TRA2A STAT3 - DDX54

FOXM1 - ELAVL1 GSR - U2AF1 STAT3 - DGCR8

FOXM1 - FAM120A GSR - U2AF2 STAT3 - DHX9

FOXM1 - FMR1 GSR - UPF1 STAT3 - ELAVL1

FOXM1 - FUS LDHA - ACIN1 STAT3 - FAM120A

FOXM1 - GTF2F1 LDHA - AUH STAT3 - FMR1

FOXM1 - HNRNPA1 LDHA - CSTF2T STAT3 - FUS

FOXM1 - HNRNPC LDHA - DDX54 STAT3 - GTF2F1

FOXM1 - HNRNPK LDHA - DGCR8 STAT3 - HNRNPA1

FOXM1 - IGF2BP1 LDHA - DHX9 STAT3 - HNRNPA2B1

FOXM1 - IGF2BP2 LDHA - ELAVL1 STAT3 - HNRNPC

FOXM1 - IGF2BP3 LDHA - FAM120A STAT3 - HNRNPK

FOXM1 - LIN28B LDHA - FMR1 STAT3 - HNRNPL

FOXM1 - MOV10 LDHA - FUS STAT3 - HNRNPM

FOXM1 - PRPF8 LDHA - GTF2F1 STAT3 - HNRNPU

FOXM1 - RBFOX2 LDHA - HNRNPA1 STAT3 - HNRNPUL1

FOXM1 - SMNDC1 LDHA - HNRNPA2B1 STAT3 - IGF2BP1

FOXM1 - SRSF1 LDHA - HNRNPC STAT3 - IGF2BP2

FOXM1 - TAF15 LDHA - HNRNPK STAT3 - IGF2BP3

FOXM1 - TARDBP LDHA - HNRNPM STAT3 - LIN28B

FOXM1 - U2AF1 LDHA - HNRNPU STAT3 - MOV10

FOXM1 - U2AF2 LDHA - HNRNPUL1 STAT3 - PRPF8

FOXM1 - UPF1 LDHA - IGF2BP1 STAT3 - PTBP1

FOXM1 - YTHDC1 LDHA - IGF2BP2 STAT3 - RBFOX2

GCDH - CSTF2T LDHA - IGF2BP3 STAT3 - SLTM

GCDH - DDX3X LDHA - LIN28B STAT3 - SMNDC1

GCDH - DDX54 LDHA - MOV10 STAT3 - SND1

GCDH - DGCR8 LDHA - PRPF8 STAT3 - SRSF1

GCDH - DHX9 LDHA - PTBP1 STAT3 - TAF15

GCDH - ELAVL1 LDHA - RBFOX2 STAT3 - TARDBP

(Continued on following page)
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INTERLEUKIN 1 FAMILY SIGNALING/IL-1 pathway in both
datasets. In septic patients, extensive vasodilation and glycocalyx
degradation often occur as a consequence of inflammatory
responses involving vascular endothelial cells (Joffre et al., 2020).
NF-kB, as a widely expressed transcription factor, plays a crucial role
in the inflammatory response of sepsis, with its activity in
endothelial cells being mediated by IL-1 (Ye et al., 2008; Raia
and Zafrani, 2022). Vascular relaxation primarily relies on three
vasodilatory factors produced by endothelial cells: nitric oxide,
prostacyclin, and endothelium-derived hyperpolarizing factors
(Zhang et al., 2023). However, the regulatory effects of LMDEGs
on these vasodilatory factors await further experimental exploration.
The extensive family of interleukins is involved in various immune
and acute and chronic inflammatory responses. For example, IL-1α
and IL-1β can promote inflammatory responses, while IL-37, IL-38,
and IL-1Ra have inhibitory effects on inflammatory responses. IL-18
can have both effects depending on the context (Chan and Schroder,
2020). MiRNAs also have a crucial regulatory role in the immune
response during the progression of sepsis and the related pathway
WP MIRNAS INVOLVEMENT IN THE IMMUNE RESPONSE IN
SEPSIS was also significantly enriched in the DEGs of both datasets
according to GSEA result. In septic patients, upregulation of miR-
221 and miR-222 often indicates immune paralysis and worsening
organ damage (Seeley et al., 2018). The elevation ofmiR-210 levels in
monocyte-derived cells is significantly associated with the incidence
and mortality rate of sepsis (Virga et al., 2021). miR-142, as the core
of metabolic reprogramming, directly regulates the glycolysis and
immunogenic response of dendritic cells (Sun et al., 2019).miR-127-
3p and miR-25-3p can regulate macrophage phenotype and
migration and participate in the activation of antioxidant
enzymes (Gusar et al., 2022). MiR-21 expression in bone marrow
cells can efficiently balance the metabolic reprogramming that causes
the cytokine storm in sepsis with the anti-inflammatory mediators that
are responsible for inflammation. MiR-21 in bone marrow cells can
effectively balance the anti-inflammatory mediators and metabolic
reprogramming to drive the cytokine storm (De Melo et al., 2021).
In this study, we used the miRDB database to predict and construct
148 pairs of mRNA-miRNA interaction relationships for LMDEGs and
searched for TFs that bind to LMDEGs through the CHIPBase and
hTFtarget databases. Among them, STAT3 is both an LMDEG and a
transcription factor, and has the most interaction relationships with
transcription factors. STAT3 is involved in immune regulation, and its
mutation is the basis for the development of hyper-IgE syndrome, an
immunodeficiency syndrome (Holland et al., 2007). In addition, STAT3
is crucial for controlling the expression of autophagy molecules,
regulating immune factors, and recruiting immune cells (Zhang et al.,
2022).

Sepsis and septic shock, due to their high mortality rates, have
received widespread attention regarding their diagnostic and
prognostic markers. In this study, ROC curves were plotted for
8 LMDEGs with identical change trends in two datasets, where the
AUC of 6 LMDEGs, including CDKN3, GSR, FOXM1, STAT3,
LDHA and LDHB, were greater than 0.7, indicating that
LMDEGs have a certain degree of accuracy in predicting the
occurrence of septic shock. Previous studies have demonstrated
the diagnostic value of STAT3 in sepsis-induced myocardial disease
and sepsis-related respiratory distress syndrome (Zhang et al., 2019;
Song et al., 2023). Metabolism-related genes (She et al., 2022),
necrosis-related genes (She et al., 2023), immune-related genes
(Zheng et al., 2022) common DEGs related to sepsis and
metabolic syndrome (Tao et al., 2023), apoptosis-related genes
(Wang et al., 2022), inflammation response signature genes
(Jiang et al., 2022), and signature genes for septic shock in
children (Fan et al., 2022) have all shown some efficacy in the
diagnosis and prognostic assessment of sepsis. In addition,
metabolites based on metabolomics analysis (Li Y. et al., 2023),
m6A regulatory factors (Li F. et al., 2023), and non-coding RNAs
such as miR-147b (Trung et al., 2021), lncRNA THAP9-AS1, and
TSPOAP1-AS1 (Wu et al., 2020) have all been reported as potential
diagnostic or prognostic indicators for sepsis or septic shock.

Immune cells play a central role in the dysregulated response of
sepsis. Studies have shown that immune cells in the early stages of
sepsis often exhibit an overreactive state, which gradually develops
into immune tolerance or immune suppression as the disease
progresses (Hotchkiss and Karl, 2003; Arts et al., 2017). The
overactive immune response in the beginning of sepsis can
activate multiple immune cells to produce large amounts of
proinflammatory cytokines and chemokine (Galli, 1993).
However, as sepsis progresses to the immune suppression
phase, various lymphocyte dysfunctions and increased apoptosis
can occur (Le Tulzo et al., 2002; Gustave et al., 2018). Previous
research has indicated that increased apoptosis of CD4+, CD8+,
and Th17 lymphocytes (Wu et al., 2013), decreased NK cells
(Jensen et al., 2018), and decreased B cells (Gustave et al., 2018)
are associated with poor prognosis of sepsis, including shock and
death. Tregs have been reported to increase in the circulating blood
of septic shock patients (Monneret et al., 2003; Gaborit et al.,
2021), which is consistent with our findings (Figure 8A). Another
study has verified that Tregs can induce immune suppression in
septic shock patients (Liu et al., 2022). Immune suppression is an
important factor in the progression of sepsis to shock or death, and
lactate is further known to regulate the occurrence of immune
suppression and inflammatory response in its local environment
(Nolt et al., 2018; Luo et al., 2022). Cheng et al. found that blocking

TABLE 8 (Continued) mRNA-RBP interaction network nodes.

mRNA RBP mRNA RBP mRNA RBP

GCDH - FMR1 LDHA - SLTM STAT3 - TRA2A

GCDH - GTF2F1 LDHA - SMNDC1 STAT3 - U2AF1

GCDH - HNRNPA1 LDHA - SND1 STAT3 - U2AF2

GCDH - HNRNPA2B1 LDHA - SRSF1 STAT3 - UPF1

GCDH - HNRNPC LDHA - TAF15 STAT3 - YTHDC1
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metabolic pathways with metformin reduced cytokine production
and increased mortality in a mouse model, and their
transcriptomic and metabolic profiling analysis of sepsis
patients found that the body actively shifts from oxidative
phosphorylation to aerobic glycolysis in the immune defense
response (Cheng et al., 2016). As mentioned earlier, genes
regulating lactate metabolism affect the immune inflammatory
response in septic shock through multiple signaling pathways. In
this study, the ssGSEA and CIBERSORT algorithm were used to
analyze and compare the immune cell infiltration abundance in
septic shock and control groups. Significant differences were found
in the immune cell infiltration of various immune cells, including
CD8 T cells, Tregs, and natural killer cells, in datasets
GSE26440 and GSE131761. Moreover, several LMDEGs, such as
STAT3, LDHB, LDHA, PDP1, GSR, FOXM1 and CDKN3, were
significantly correlated with various immune cells. Therefore, by
analyzing the correlation between LMDEGs and immune
infiltration in patients with septic shock, it may be possible to
provide new targets and directions to block the dysregulated
response of sepsis, thereby effectively reducing the incidence
and mortality of septic shock.

TABLE 9 mRNA-TF interaction network nodes.

mRNA TF mRNA TF

ABCC1 - JUN LDHB - FOXA2

ABCC1 - MAX LDHB - GATA1

ABCC1 - MXI1 LDHB - GRHL2

ABCC1 - SMARCB1 LDHB - MAX

ABCC1 - SPI1 PDP1 - TFAP2A

CDKN3 - TFAP2C STAT3 - CREB1

FOXM1 - ATF3 STAT3 - CTCF

FOXM1 - BRD4 STAT3 - CTCFL

FOXM1 - CEBPA STAT3 - E2F1

FOXM1 - CEBPB STAT3 - E2F6

FOXM1 - CREBBP STAT3 - EBF1

FOXM1 - CTCF STAT3 - EGR1

FOXM1 - E2F1 STAT3 - EP300

FOXM1 - EGR1 STAT3 - ERG

FOXM1 - ERG STAT3 - ESR1

FOXM1 - ETS1 STAT3 - ETS1

FOXM1 - FLI1 STAT3 - FLI1

FOXM1 - FOS STAT3 - FOS

FOXM1 - FOXA1 STAT3 - FOSL1

FOXM1 - FOXA2 STAT3 - FOSL2

FOXM1 - MAX STAT3 - FOXA1

FOXM1 - MAZ STAT3 - FOXA2

FOXM1 - MED12 STAT3 - GABPA

FOXM1 - NFYA STAT3 - GATA1

FOXM1 - POLR2A STAT3 - GATA4

FOXM1 - SPI1 STAT3 - ATF1

FOXM1 - YY1 STAT3 - ATF2

GCDH - MAX STAT3 - JUN

GCKR - FOXA1 STAT3 - JUND

GSR - CTCF STAT3 - KLF4

GSR - E2F1 STAT3 - MAX

GSR - EP300 STAT3 - MAZ

GSR - ERG STAT3 - BCL6

GSR - ETS1 STAT3 - MNT

GSR - FLI1 STAT3 - MXI1

GSR - FOXA1 STAT3 - MYB

GSR - FOXA2 STAT3 - MYC

GSR - GABPA STAT3 - BHLHE40

(Continued in next column)

TABLE 9 (Continued) mRNA-TF interaction network nodes.

mRNA TF mRNA TF

GSR - GATA1 STAT3 - NFYA

GSR - GATA2 STAT3 - NFYB

GSR - HDAC1 STAT3 - NOTCH1

GSR - MAX STAT3 - POLR2A

GSR - MAZ STAT3 - RAD21

GSR - MITF STAT3 - SMC3

GSR - NR2F2 STAT3 - SP1

GSR - BRD2 STAT3 - SPI1

GSR - BRD4 STAT3 - STAT3

GSR - TCF12 STAT3 - TBP

GSR - TFAP2A STAT3 - TCF12

GSR - TFAP4 STAT3 - TEAD4

GSR - CDK9 STAT3 - TFAP2A

GSR - USF1 STAT3 - TFAP2C

GSR - USF2 STAT3 - TFAP4

GSR - CEBPB STAT3 - TP63

GSR - ZNF384 STAT3 - USF1

GSR - CREBBP STAT3 - USF2

LDHA - MYC STAT3 - CEBPA

LDHA - TBP STAT3 - CEBPB

LDHB - CEBPB STAT3 - ZNF384

LDHB - EP300
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This study has several limitations that should be acknowledged.
Firstly, the lack of animal models and clinical samples hinders the
validation of the identified LMDEGs and their correlation with immune
infiltration. To address this limitation and enhance the robustness of
our findings, future research will focus on incorporating animal models
and collecting clinical samples for validation purposes. Additionally, the

rapid progression of septic shock and the heterogeneity introduced by
differences in specimen collection times may introduce biases in the
screening of differentially expressed genes. It is important to consider
these factors when interpreting the results and their implications.
Moreover, patient metadata, including demographics, genetic
background, comorbidities (CCI score), infection type (bacterial,

FIGURE 7
Expression differences and diagnostic performance of LMDEGs in the GSE26440 and GSE131761 datasets. (A) Differential expression analysis of
LMDEGs in the GSE26440 dataset. (B) Differential expression analysis of LMDEGs in the GSE131761 dataset. C-F. ROC curve results for LMDEGs: LDHB,
STAT3 (C), LDHA,GSR (D), FOXM1, PDP1 (E), andGCKR,CDKN3 (F) in the GSE26440 dataset. G-J. ROC curve results for LMDEGs: LDHB, STAT3 (G), LDHA,
GSR (H), FOXM1, PDP1 (I), andGCKR,CDKN3 (J) in the GSE131761 dataset. ns indicates no statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001.
An AUC (range from 0.5 to 1) closer to 1 in the ROC curve indicates better diagnostic performance. ROC, receiver operating characteristic curve; AUC,
Area Under Curve.
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FIGURE 8
Immune infiltration analysis of the GSE26440 and GSE131761 datasets by ssGSEA. (A) ssGSEA immune infiltration analysis results in GSE26440. (B)
Correlation analysis results of immune cell infiltration abundance in GSE26440. (C) Correlation heatmap of immune cells and LMDEGs in
GSE26440 dataset. (D) ssGSEA immune infiltration analysis results for DEGs in GSE131761. (E) Correlation analysis results of immune cell infiltration
abundance in GSE131761. (F) Correlation heatmap of immune cells and LMDEGs in GSE131761 dataset. ns indicates no statistical significance. *p <
0.05; **p < 0.01; ***p < 0.001. ssGSEA: single-sample gene-set enrichment analysis.
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FIGURE 9
Immune infiltration analysis of the GSE26440 and GSE131761 datasets by CIBERSORT. (A) The comparative results of CIBERSORT immune
infiltration analysis in GSE26440. (B) The correlation analysis results of immune cell infiltration abundance in GSE26440. (C) The correlation heat map of
immune cells and LMDEGs in GSE26440 dataset. (D) The comparative results of CIBERSORT immune infiltration analysis in GSE131761. (E) The correlation
analysis results of immune cell infiltration abundance in GSE131761. (F) The correlation heat map of immune cells and LMDEGs in GSE131761.
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viral, or fungal), and other measures of patient severity (e.g., APACHE
II, SOFA scores), hold valuable information. Differential gene analysis
based on these diverse metadata can provide a more comprehensive
understanding of the mechanisms underlying the occurrence and
progression of septic shock. However, due to the study’s design and
limitations in the available dataset, it is not possible to conduct analyses
incorporating these metadata at the present stage. Future research
endeavors should aim to incorporate and analyze these additional
patient metadata to gain deeper insights into septic shock.

5 Conclusion

Using bioinformatics methods to analyze two datasets of septic
shock, we identified 10 lactate metabolism-related genes (LDHB,
STAT3, LDHA, GSR, FOXM1, PDP1, GCDH, GCKR, ABCC1,
CDKN3), and clarified their associated cellular signaling pathways
and their relationship with immune cell infiltration, laying the
foundation for diagnosis and treatment of septic shock from the
perspective of lactate metabolism.
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