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To locate disease-causing DNA variants on the human gene map, the customary
approach has been to carry out a genome-wide association study for one variant
after another by testing for genotype frequency differences between individuals
affected and unaffected with disease. So-called digenic traits are due to the
combined effects of two variants, often on different chromosomes, while
individual variants may have little or no effect on disease. Machine learning
approaches have been developed to find variant pairs underlying digenic traits.
However, many of these methods have large memory requirements so that only
small datasets can be analyzed. The increasing availability of desktop computers
with large numbers of processors and suitable programming to distribute the
workload evenly over all processors in a machine make a new and relatively
straightforward approach possible, that is, to evaluate all existing variant and
genotype pairs for disease association. We present a prototype of such a method
with two components, Vpairs and Gpairs, and demonstrate its advantages over
existing implementations of such well-known algorithms as Apriori and FP-
growth. We apply these methods to published case-control datasets on age-
related macular degeneration and Parkinson disease and construct an ROC curve
for a large set of genotype patterns.
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1 Introduction

Many heritable traits are governed by a single DNA variant (single-nucleotide
polymorphism, SNP) or a single gene, for example, cystic fibrosis (Tsui et al., 1985).
Such disease variants can generally be detected in the course of a genome-wide association
study (GWAS), where for one variant after another, genotype frequencies are compared
between cases (affected by disease) and control individuals. Various statistical significance
tests are in common use and have been implemented, for example, in plink (Chang et al.,
2015), which also serves as a standard for representing and storing genetic data. While
genetic origins of many single-gene (mendelian) disorders have been elucidated, there are
genetic traits that are under the control of the action and interaction of large numbers of
genes, which evidently are difficult to pinpoint individually. A prime example of such
polygenic traits is schizophrenia (Purcell et al., 2009; Trifu et al., 2020). In between these
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extremes are so-called digenic traits, which are influenced by two
mutant variants, often on different chromosomes, while one such
variant alone does not cause disease (Schaffer, 2013).

Various statistical and machine learning approaches have been
applied to find pairs of genes or of DNA variants underlying digenic
traits (Papadimitriou et al., 2019; Okazaki and Ott, 2022; Ott and
Park, 2022). Methods based on market-basket analysis (frequent
pattern mining, FPM) apply some form of the Apriori principle
(Agrawal and Srikant, 1994), which focuses on common patterns
and allows skipping large numbers of infrequent patterns.

As demonstrated in the Results section, many FPM approaches
require large amounts of computer memory (RAM). An exception is
our own method, AprioriGWAS (Zhang et al., 2014), which applies
the HDF5 file format to avoid excessive RAM consumption, but this
program is difficult to use generally although its executable code is
available online, https://github.com/Qingrun/AprioriGWAS. The
restriction to frequent patterns in cases has clear practical and
computational advantages, but patterns that are rare in cases yet
frequent in controls may be equally valuable. Most of the methods
for genotype pattern mining mentioned in our previous overview
(Okazaki et al., 2021) can only be applied to small datasets as they
require too many computer resources for larger datasets. Other
methods (Lee et al., 2014; Shang et al., 2016) have been described as
being powerful and capable of handling large numbers of variants,
but no software is available for them.

Here, we are proposing to evaluate all possible pairs (patterns) of
variants and genotypes and test each pattern for frequency
differences in cases and controls. Such an approach has until
recently been considered impractical and searches have been
restricted, for example, to biologically plausible patterns (Lee
et al., 2018). However, current workstations contain relatively
large numbers of CPUs (threads), and suitable programming
allows for the processing of all variant and genotype patterns in
medium-sized datasets by distributing the workload over CPUs. We
present a prototype of such an approach and make software freely
available that can run on general-purpose workstations. It is written
in Pascal (https://www.freepascal.org/) and the executable code runs
in Windows or Linux.

2 Methods

In our new approach to mining variant and genotype pairs
(patterns), rather than relying on the Apriori property to eliminate
infrequent patterns, we aim to evaluate all suitable patterns and do
this by harnessing the availability of multiple CPUs in a workstation.
The principle adopted is quite simple. For N variants, we assign a
sequential number to each variant pair: 1, 2, . . . , M, with M =
N(N–1)/2. Numbering variant pairs is conveniently carried out
numerically in two nested loops, with one loop ranging from i =
1 through (N–1) and the other ranging from i + 1 through N. With t
available CPUs, each CPU is assigned to work on M/t variant
patterns. Thus, all but possibly the last CPU will work on the
same number of variant patterns. This numbering scheme can
also allow to exclude variant pairs when both participating
variants reside on the same chromosome if so desired. Some
approaches working with pairs of variants (Chang et al., 2015)
restrict the two variants in a pair from being too close to each other

in order to avoid any disturbing effects of linkage disequilibrium.
Here we address this potential concern by letting users decide
whether to exclude variants in a pair when they reside on the
same chromosome.

Now we embark on two different avenues, one to work on
variant pairs and the other to consider all possible genotype pairs.

2.1 Variant pairs

As shown in Table 1, each variant considered has two alleles, A
and B, and corresponding three genotypes numbered 1 = A/A, 2 =
A/B, and 3 = B/B, so a given pair of variants comprises nine genotype
pairs, corresponding to eight degrees of freedom (df), of which two
represent main effects for each of the two variants, with four df
representing interaction effects between the two variants. Single-
variant analysis may reveal whether a given variant by itself (its main
effect) leads to a difference in genotype frequencies between cases
and controls. Thus, for a pair of variants, what remains to be tested is
whether the interaction between the two variants in a pair is different
between cases and controls. Various approaches have been proposed
to address this question, two of which have been implemented in
plink (Wan et al., 2010; Ueki and Cordell, 2012). Here, we propose a
likelihood ratio test of the null hypothesis, H0, that there is no
difference in interaction between cases and controls. Considering
the alternative hypothesis, we compute a standard interaction chi-
square for cases and controls each [note that these statistics need to
be computed as likelihood ratio chi-squares, G2 (Agresti, 2013)], that
is, G2

case and G
2
ctrl with 4 df each, where G

2 = 2 Σ nj log(nj/ej), and nj
and ej are respective observed and expected numbers of observations
in the j-th cell of the table Given H0, we combine cases and controls
and compute a chi-square for the combined data as G2

case+ctrl. Then,
the appropriate test statistic is given by C = G2

case + G2
ctrl–G

2
case+ctrl,

which under H0 follows a chi-square distribution with 4 df. This
interaction test has been implemented in a Pascal program, Vpairs,
with executable code available online (https://www.jurgott.org/
linkage/GPM.html) for Windows and Linux.

Large values of C represent evidence for an interaction difference
between cases and controls, and we carry out this test for allM variant
pairs. Because of the computational burden, we do not consider
permutation testing at this point, but instead rely on Bonferroni-
corrected p-values, pB = min(1, p × Mt), where p is the empirical
significance level associated with C, and the number of tests, Mt, is
given byMminus the number of variant pairs in which any expected
number in the chi-square calculations falls below a critical limit such
as 1 (user-defined); if desired, a variant pair may also be disregarded

TABLE 1 Layout of case-control genotypes for a given pair of variants. Labels 1,
2, and 3 refer to genotypes with 1 = AA, 2 = AB, and 3 = BB. The numbers in the
body of the table represent individuals with given genotype pairs at the most
significant variant pair for the AMD dataset (Section 3.1.1).

Cases rs9298846 Controls rs9298846

rs994542 1 2 3 rs994542 1 2 3

1 1 0 10 1 2 11 0

2 5 26 28 2 4 10 4

3 5 16 5 3 0 4 15
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when its two variants are on the same chromosome. For the best
results, a researcher may then want to compute odds ratios for each of
the nine genotype pairs to see which one(s) drive the largeC value. For
a given genotype pair, X, as shown in Table 2, we compute an odds
ratio as OR = (a + ½)(d + ½)/[(b + ½)(c + ½)] (Agresti, 2007). As we
are interested in genotype pairs that are more common or less
common in cases than controls, we will work with OR’ =
max(OR, 1/OR).

2.2 Genotype pairs

In analogy to many FPM approaches, we also implemented a
search of all suitable genotype pairs. This procedure starts at a given
pair of variants. For each of its nine genotype pairs, we only consider
pairs with known genotypes and compute a 2 × 2 table of known
genotypes as shown in Table 2. Values of a, b, c, and d represent
numbers of individuals (cases or controls, carrying or not carrying a
given genotype pattern, X). As is customary in FPMmethods, we call
(a + c) the support for pattern X, while a/(a + c) is referred to as
confidence (Agrawal and Srikant, 1994), usually expressed as a
percentage, which in statistics is known as the predictive value. A
given variant pair furnishes up to nine genotype pairs, and all
suitable genotype pairs are found by evaluating all variant pairs
and the genotype pairs contained in each.

Users generally are only interested in patterns (genotype pairs)
with some minimum support, that is, patterns occurring with
frequencies smaller than a minimum specified by the user will
not be tested (Borgelt, 2012). The number of tested patterns will
form the basis for Bonferroni-corrected p-values. A minimum
confidence may also be specified to restrict patterns to a set with
high predictive values.

Each genotype pair furnishes a 2 × 2 table like the one shown in
Table 2, and the number of tests is determined in analogy to Mt in
section 2.1. Thus, the number of genotype pairs is roughly nine times
larger than the number of variant pairs. For each of the 2 × 2 tables of
phenotype versus presence of a given genotype pattern, we consider
two test statistics, Pearson chi-square and Fisher’s exact test.

There are two main advantages to our complete enumeration
of all suitable genotype patterns. First, in the course of finding
genotype patterns, we don’t need to keep track of previously found
patterns as is the case with Apriori-type approaches. Consequently,
memory requirements for our methods are rather small and, as
demonstrated below, we can easily handle datasets for which
Apriori-type approaches run out of memory. Secondly, our
technique allows for the proper handling of missing data. To
appreciate this, assume that a machine learning approach has

identified a given pattern, X, in a number of cases and controls, so
the “X present” column in Table 2 has been filled. To also populate
the “X absent” column, the approach generally taken must be
subtraction from the totals. For example, to find the number of
cases without X, b is obtained as the total number of cases minus a.
However, this value b also contains unknown genotypes unless a
dataset is completely free of missing genotypes, which is rare. In
our approach, for a given pairs of variants, we initially work with a
4 × 4 table of genotypes, where “missing” is treated as a fourth
“genotype.” Then we focus on the 3 × 3 subtable of known
genotypes and, in Table 2, find the Totals as the total number
of cases or controls with known genotypes. Our complete
enumeration of genotype patterns furnishes an exact count of
all patterns with non-missing genotypes, which will serve as the
basis for Bonferroni-corrected p-values.

3 Results

We applied our implementations of Vpairs and Gpairs to several
published datasets. Generally, it is advisable to run Vpairs first and
then follow up with Gpairs or a utility program, pairSNPs, to
investigate whether any of the nine genotype pairs in a given
variant pair show an unusually large odds ratio (OR’), which is a
common measure of effect size. As the number of variant pairs is
much smaller than the number of genotype pairs, Bonferroni
correction may be more efficient for variant pairs than genotype
pairs.

All analyses below were run on Linux (Kubuntu) machines. In
our experience, some jobs were able to run in Linux with 32 GB yet
ran out of memory in Windows with 64 GB, which may be due to
differences in efficiencies of memory managers in Windows and
Linux.

3.1 AMD dataset

Our previously published dataset on age-related macular
degeneration is available in plink format in the program package,
https://www.jurgott.org/linkage/GPM.html. The dataset comprises
96 cases and 50 controls, each genotyped for 103,611 autosomal
variants. Single-variant analysis in plink by the trend test furnished
two significant variants, rs380390 and rs1329428 (Klein et al., 2005),
both on chromosome 1, with respective significance levels of pB = 0.
0322 and 0.0900 (100,000 permutation replicates furnished
respective significance levels of 0.0117 and 0.0361). To avoid
finding many variant and genotype pairs involving the two
significant variants, they were omitted from subsequent pattern
analysis. This slightly reduced dataset was run on a Linux machine
with 512 GB of RAM and 8 CPUs, of which 5 were dedicated to the
pattern analyses.

Genotype patterns involve main and interaction effects (Okazaki
et al., 2021) so that variants with strong main effects tend to show up
in large numbers of significant genotype patterns (Gpairs
algorithm), but this phenomenon is not expected when we apply
Vpairs as this algorithm is designed to specifically test for interaction
differences between cases and controls, irrespective of main effects
of variants.

TABLE 2 Numbers a, b, c, and d of individuals by phenotype and presence/
absence of a genotype pattern, X. The actual numbers refer to pattern, X = (1, 2)
for variant pair (rs994542, rs9298846) in the AMD dataset. There is a complete
lack of X in cases while eleven control individuals carry this genotype pattern.

Phenotype X present X absent Total

Cases a = 0 b = 96 96

Controls c = 11 d = 39 50

sum 11 135 146
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3.1.1 AMD variant pairs
We ran the AMD dataset with our Vpairs program, requiring

that the two variants in a pair reside on different chromosomes. This
resulted in a total of 5,050,626,692 variant pairs. Due to the
requirement of expected numbers of observations of at least 1 in
each cell of the 3 × 3 table of genotypes of a given variant pair, only
294,643,816 variant pairs were analyzed, which is also the number
Mt of tests used for calculating Bonferroni-corrected p-values. As
shown below, we compared our results with the joint-effectsmethod
(Ueki and Cordell, 2012) implemented in plink.

Vpairs ran in 25 min and furnished a significant variant pair,
rs994542 on chromosome 6 and rs9298846 on chromosome 9, pB =
0.0380. This variant pair was also reported by previous authors
(Shang et al., 2016) as the most prominent result in their application
of two search strategies for interacting variants in the AMD data.

For the most significant variant pair, Table 1 shows numbers of
individuals by phenotype and genotype at each of the two implicated
variants. The most prominent result in terms of odds ratios is the
complete lack of (1, 2) genotypes in cases while eleven control
individuals carry this genotype pattern (OR for cases = 0.0178, 1/
OR = 56.19). For this genotype pattern, X = (1, 2), Table 2 shows
numbers of individuals by phenotype and presence/absence of X.
Further discussion of such genotype pattern tables will be provided
in the next section.

The plink program ran the joint-effects method in 9 min but did
not result in a variant pair with pB < 1, perhaps partially because the
number of tests, Mt = 5,367,360,636, greatly exceeded that in the
analysis by Vpairs (the joint-effects analysis considers all variant
pairs, also pairs consisting of two variants on the same
chromosome). The best variant pair reported by the joint-effects
analysis was rs4128236 on chromosome 3 and rs10508482 on
chromosome 10. The latter variant is a genic upstream transcript
variant in the FAM107B gene and has been reported to be involved
in gastric cancer (Guo et al., 2017). This variant pair was not found
among the best 35,000 variant pairs reported by Vpairs. Conversely,
the best variant pair in Vpairs was not found among the best
100,000 variant pairs identified by the joint-effects method even
though that variant pair had been confirmed by several analysis
methods (Shang et al., 2016). Thus, applying multiple analysis
methods and interpreting different results seems to be a good
strategy.

In the trend test of the AMD dataset missing the two variants
with strongest single-variant main effects, the best single variant,
rs10272438 on chromosome 7, showed pB = 1 (100,000 permutation
datasets furnished an empirical significance level of 0.6034), yet, as
shown above, the same dataset provided very significant results for
pairs of variants. This phenomenon may well be a rather common
occurrence once we analyze many datasets for pairs of variants and
genotypes.

3.1.2 AMD genotype patterns
To test whether genotype pattern frequencies are different in

cases than controls, we consider an exhaustive list of variant pairs as
described in the previous section and, for a given variant pair, test
each of the 3 × 3 = 9 genotype pairs. Each genotype pair will furnish a
2 × 2 table (Table 2), for which we carry out one of two tests, either 1)
a chi-square test or 2) Fisher’s exact test, where the latter may be
applied in one of three ways, as a one-sided test for patterns being

more frequent in cases than controls (F2 test), a one-sided test for
patterns in controls being more frequent than in cases (F1 test), and
as a two-sided (F3) test (Irwin, 1935; Agresti, 2013). Ranking
genotype pairs resulting from these tests will somewhat depend
on the test statistic applied. We may also rank genotype pairs by the
OR’metric, which is independent of test statistics as it only depends
on the four numbers of observations shown in Table 2. In contrast to
the chi-square test, there is no need for the Fisher test to impose a
minimum number of expected observations in 2 × 2 tables as the
resulting p-values are always accurate.

As mentioned above, the Vpairs analysis for the AMD data has
identified a significant variant pair (pB = 0.0380). For this variant
pair, the genotype pair with largest OR’ value of 56.2 was (1, 2), with
genotype 1 being at variant rs994542 and genotype 2 at variant
rs9298846. On the other hand, analyzing all pairs of genotypes by
theGpairs program (with minimum support of 10 and no restriction
on confidence) took 88.3 min for the chi-square test and 125.1 min
for the two-sided Fisher test (F3). None of the two tests furnished pB
values less than 1, possibly because of the large increase in numbers
of tests done as compared with the variant pair analysis. Somewhat
surprisingly, the genotype pair (1, 2) identified above was not among
the top few genotype pairs furnished by theGpairs algorithm. In fact,
that “favorite” genotype pair had rank 19,148 in the chi-square test,
23,820 in the Fisher test, and 2,004 on the OR’ scale. That is, the
Gpairs analysis identified at least 2,004 stronger genotype pairs than
those extracted from the variant pair analysis, and each of these
2,004 genotype pairs refers to variants on different chromosomes.
Thus, while the Vpairs algorithm furnishes one test statistic
reflecting the average effect over nine genotype pairs, which may
mask strong effects of single genotype pairs, the Gpairs algorithm is
capable of much finer detection of genotype pairs underlying digenic
traits. Whereas various genes underlying AMD have been reported
in the literature, this trait has not previously been considered to be
digenic, but evidently there exist many correlations among
genotypes, even in variants on different chromosomes, that are
related to disease.

To compare our exhaustive search of genotype pairs with
conventional FPM algorithms, we ran the AMD dataset also with
an implementation of an algorithm, Mining the Top-K Class
Association Rules (Top-K), which is more efficient than Apriori
but still uses much memory (RAM) (https://www.philippe-fournier-
viger.com/spmf/). Gpairs was run in 5 CPUs while Top-K as a java
program used one CPU but occasionally up to 8 CPUs. Gpairs and
the Top-K algorithms furnished the following respective runtime
characteristics: 2.2 and 403.8 GB of RAM used, and execution times
of 32 and 197 min. We also tested an implementation of the FP-
growth pattern mining algorithm (Borgelt, 2005) but it ran out of
memory before completion (details not shown). Clearly, Gpairs is
capable of analyzing small datasets efficiently and quickly and is
suitable for larger datasets although at the expense of longer
runtimes. An example is provided in Section 3.2 on Parkinson
Disease.

As mentioned above, Gpairs equally distributes the number of
genotype pairs to be processed over all CPUs invoked. The more
CPUs are used the fewer genotype pairs each CPU has to process,
but management overhead of the CPUs will increase somewhat. To
see the net effect of these two opposing forces, we ran the AMD data
withGpairsmultiple times for different numbers of CPUs in a Linux
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machine with 36 CPUs. Execution times for 5, 10, 20, and 30 CPUs
were 29.5, 13.6, 9.6, and 8.3 min, respectively. Expressed in terms of
speed, 100/minutes, Figure 1 shows resulting increases in speed.
Clearly, the increase in efficiency is greatest at small numbers of
CPUs. Doubling the number of CPUs from 5 to 10 more than
doubles the speed, but a further doubling from 10 to 20 CPUs only
increases speed by 42%.

3.2 PD dataset

A case-control dataset on Parkinson Disease (PD) (Fung et al.,
2006) was used to demonstrate application of our methods to a mid-
sized dataset. After standard data cleaning, it contained 270 cases
and 271 controls, each genotyped for 379,502 variants. Using
30 CPUs in a desktop Linux machine, the Vpairs program

evaluated 68 × 109 pairs of variants in 16.1 h (each of the two
variants in a pair was on different chromosomes). The best pair,
rs1323114 on chromosome 13 and rs7188399 on chromosome 16,
showed pB = 0.2701, but none of these two variants are in a gene
region or showed up in literature searches. One genotype pair, (1, 1),
stood out with an odds ratio of OR’ = 51.4: That genotype pair
occurred in 23 controls and was completely absent in cases.

The Gpairs program ran for 14.5 h and applied Fisher’s two-sided
test to each of 583 × 109 genotype pairs, selecting pairs with minimum
support of 20 and no restriction on confidence. None of the resulting
genotype pairs showed pB < 1. On the Fisher test p-value scale, the
genotype pair (1, 1) extracted from the Vpairs analysis had rank 960,
that is, 960 genotype pairs had a Fisher test p-value equal to or smaller
than the genotype pair (1, 1) in the best variant pair obtained by Vpairs.
The genotype pair with overall smallest Fisher test significance level
occurred in variant pair rs13179395 on chromosome 5 (genic
downstream transcript variant in the LINC00461 gene, which
produces non-coding RNAs that may predominantly be expressed
in the brain) and rs4356177 on chromosome 10 (not in a gene).
The relevant genotype pair, a double heterozygote (2, 2), occurred in
33 controls but not in any of the cases.

4 Sensitivity and specificity

Our approach implements a pattern search algorithm to find
genotype pairs (patterns) capable of discriminating between cases
and controls. For each of a potentially very large number of patterns,
we generate a 2 × 2 table as shown in Table 2 and apply Fisher’s exact
test. A single pattern may occur only in a few cases or controls so
that only a few cells of Table 2 will be sparsely populated, and no
meaningful result is obtained. To evaluate large numbers of patterns
and their associated 2 × 2 tables, we view occurrence of a pattern in
an individual as an indicator of that individual’s phenotype (case or
control for test type F2 or F1, respectively) so that the two columns
in Table 2 may be seen as “predicting presence of phenotype” and

FIGURE 1
Execution speed analysis of the AMD dataset depending on the
number of CPUs invoked. Doubling the number of CPUs from 5 to
10 more than doubles the speed, but a further doubling from 10 to
20 CPUs only increases speed by 42%.

FIGURE 2
Empirical ROC curve resulting from the Gpairs analysis of the AMD dataset, based on the Fisher F1 test, the 100 best patterns, and 20 classes of FPR
values. FPR = false positive rate, TPR = true positive rate, AUD = area under the curve.
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“predicting absence of phenotype.” In other words, we turn Table 2
into a decision matrix (Nahm, 2022), in which the number a of
individuals represent true positives (TP) as the predicted phenotype
agrees with the known phenotype. On the other hand, d individuals
are true negatives (TN), c individuals are false positives (FP; they are
predicted to be cases while they are known to be controls), and b
individuals are false negatives (FN). The rate of true positives, TPR =
a/(a + b), is known as sensitivity or power, and the true negative rate,
TNR = d/(c + d), is called specificity. The relationship between these
quantities is generally expressed as a graph called an ROC curve, in
which the TPR forms the ordinate and FPR = 1–specificity is shown
on the abscissa. The total area under this curve (AUC) is often taken
as a measure of discriminating power of a procedure. Each pattern
then forms a pair of values (FPR, TPR), with thousands of patterns
furnishing a nonparametric or empirical ROC curve (Nahm, 2022).
We generally build classes of FPR values and compute the average
TPR in each class. This was implemented in a Pascal script.

We constructed ROC curves for the AMD data applying Fisher
tests F1 and F2, using 20 classes of FPR values and 100 of the best
patterns. The F1 and F2 tests furnished respective AUC values of
0.833 and 0.817. Figure 2 shows the ROC curve based on the F1 test,
in which presence of a pattern predicts “control.” Values of TPR ≥
0.945 were linearly interpolated as no corresponding FPR values
occurred. Results with AUC ≥ 0.8 are generally considered good
(Nahm, 2022). These results support our comment in Section 3.1.2
that AMD shows aspects of a digenic trait.

5 Discussion

For larger datasets involving, for example, 1 million variants, the
total number of genotype pairs to be tested is on the order of 1012.
Depending on the number of individuals, such calculations can take
considerable time. As a remedy, we propose that the variants be
pruned to a much smaller set of independent variants. This may be
achieved, for example, with the plink option, --indep 50 5 2, where
the parameters are as given in the plink manual (https://zzz.bwh.
harvard.edu/plink/dist/plink-doc-1.07.pdf). Applied to the PD
dataset, the original number of 379,485 variants was whittled
down to 106,056 (28% of 379,485) independent variants.
Another, larger dataset (not discussed here) of 891,689 variants
furnished 26% independent variants. Thus, only 0.262 = 6.8% of the
original number of variant pairs need to be evaluated. Nonetheless, it
will be time-consuming to apply our approach to very large datasets,
although progress in computer technology tends to be fast.

Our prototype of two algorithms for exploring all pairs of variants
and genotypes is already rather efficient on desktop computers with
multiple CPUs. Refinements of the Pascal code may increase efficiency
further. Two aspects of this project will be addressed in the near future,
statistical significance and different phenotypes. Permutation analysis
would be helpful for estimating p-values properly corrected for multiple
testing, but n permutations will essentially require an n-fold increase in
execution times. Also, we plan to expand case-control phenotypes to
quantitative observations including covariates. One possibility to
consider will be a logistic regression model that includes presence
and absence of patterns as covariates.

An important aspect of our methods is that missing genotypes are
handled correctly, which is an issue rarely discussed in pattern analysis.

Also, it is noteworthy that in each dataset tested, we found many
genotype pairs more significant (on the scale of Fisher p-values) than
the best genotype pair extracted from analyzing variant pairs.

Our use of empirical ROC curves represents a simple introduction
into this decision aspect of genotype patterns. Various extensions are
conceivable and will be pursued at a later date.
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