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Genotype-by-environment interaction (GEI) is among the greatest challenges for
maize breeding programs. Strong GEI limits both the prediction of genotype
performance across variable environmental conditions and the identification of
genomic regions associated with grain yield. Incorporating GEI into yield prediction
models has been shown to improve prediction accuracy of yield; nevertheless, more
work is needed to further understand this complex interaction across populations and
environments. The main objectives of this study were to: 1) assess GEI in maize grain
yieldbasedon reactionnormmodels andpredict hybrid performanceacross a gradient
of environmental (EG) conditions and 2) perform a genome-wide association study
(GWAS) and post-GWAS analyses formaize grain yield using data from 2014 to 2017 of
the Genomes to Fields initiative hybrid trial. After quality control, 2,126 hybrids with
genotypic and phenotypic data were assessed across 86 environments representing
combinations of locations and years, although not all hybrids were evaluated in all
environments. Heritability was greater in higher-yielding environments due to an
increase in genetic variability in these environments in comparison to the low-
yielding environments. GWAS was carried out for yield and five single nucleotide
polymorphisms (SNPs) with the highest magnitude of effect were selected in each
environment for follow-up analyses. Many candidate genes in proximity of selected
SNPs have been previously reported with roles in stress response. Genomic prediction
was performed to assess prediction accuracy of previously tested or untested hybrids
in environments from a new growing season. Prediction accuracy was 0.34 for cross
validation across years (CV0-Predicted EG) and 0.21 for cross validation across years
with only untested hybrids (CV00-Predicted EG) when compared to Best Linear
Unbiased Prediction (BLUPs) that did not utilize genotypic or environmental
relationships. Prediction accuracy improved to 0.80 (CV0-Predicted EG) and 0.60
(CV00-Predicted EG) when compared to the whole-dataset model that used the
genomic relationships and the environmental gradient of all environments in the study.
These results identify regions of the genome for future selection to improve yield and a
methodology to increase the number of hybrids evaluated across locations of amulti-
environment trial through genomic prediction.
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1 Introduction

Maize is among the most important crops globally and is the
most economically important crop in the United States where the
average yield was 10.8 Mg ha−1 and total production of 360 million
tonnes valued at $59.6 billion dollars in 2020 (USDA NASS).
Extensive private sector hybrid development and testing along
with improved agronomic and management practices have
contributed to sustained yield improvement in the United States
(Duvick et al., 2004). Nevertheless, yield performance is largely
environment-dependent where change in ranks or magnitude
among hybrids is common across environments. This genotype-
by-environment interaction (GEI) necessitates breeding programs
carry out costly multi-environment trials (MET) to optimize hybrid
development and placement (Cooper et al., 2016). Understanding
the mechanisms that give rise to GEI and predicting yield
performance across environments is a major goal of maize
breeding programs.

Genome-wide association studies (GWAS) are an important
tool to uncover the complex genetic structure of quantitative
traits, such as grain yield, which have many small-effect
quantitative trait loci (QTL) involved. GWAS utilizes dense
genomic data to identify associations between genomic
markers and phenotypic traits. Causal markers or markers in
linkage disequilibrium (LD) with QTL are detected as being
associated with the phenotypes they control (Yu and Buckler,
2006). GWAS have previously been used in maize to detect
associations with yield and yield components (Millet et al.,
2016; Ma & Cao et al., 2021), drought and heat stress
tolerance (Xue et al., 2013; Yuan et al., 2019), nutrient stress
tolerance (Ndlovu et al., 2022), and many other traits. These
marker-trait associations are dependent on the environment
where a given QTL could be important in one environment
and not in another environment (Millet et al., 2016; Yuan
et al., 2019). Nevertheless, these studies are often performed in
few environments, which limits the inference to a given region or
type of environment. Assessing single nucleotide polymorphisms
(SNPs) with widespread utility compared to those that are
environment dependent could be beneficial to better
understand the QTL-by-environment relationships.

Marker-assisted selection (MAS) where hybrids are selected
based on major QTL has been an important breeding technique
for traits controlled by few, major effect QTL. Genomic prediction
(GP) that uses high-density markers to predict hybrid yield
performance has been shown to improve genetic gain
approximately three-fold compared to selection based on single
or few genetic markers (MAS) in quantitative traits (Heffner et al.,
2010). A training dataset of hybrids with phenotypic and genotypic
data is used to model hybrid performance in GP (Meuwissen et al.,
2001). This model built on the training dataset is applied to predict
performance of untested hybrids in the tested environments, tested
hybrids in an untested environment, or untested hybrids in an
untested environment. Accuracy is maximized when the hybrids
and environments in the training dataset resemble those being
predicted in the testing dataset (Sapkota et al., 2020). Various
models have been developed for genomic prediction. The
Genomic Best Linear Unbiased Prediction (GBLUP) model,
which uses a relationship matrix based on pedigree or genomic

data, is widely used due to the computational efficiency and
prediction equivalence when compared to more complicated
models (Heslot et al., 2012; Crossa et al., 2014).

Previous work has demonstrated that genomic prediction
models are improved by incorporating GEI analysis (Burgueño
et al., 2012; Jarquín et al., 2014). One approach has been to treat
grain yield from each environment as independent traits and use a
multi-trait model (Burgueño et al., 2012; Montesinos-López et al.,
2016). More recent studies have modeled grain yield across
environments as a single trait in a reaction norm model (RNM)
where the environments are described based on continuous
environmental gradients such as weather and soil characteristics
(Jarquín et al., 2014; Pérez-Rodríguez et al., 2015; Jarquín et al., 2017;
Pérez-Rodríguez et al., 2017; Sukumaran et al., 2018; Monteverde
et al., 2019; Rincent et al., 2019; De Los Campos et al., 2020;
Westheus et al., 2021). Jarquín et al. (2014) reported a large
increase in GP prediction accuracy where GEI were accounted
for using continuous environmental characteristics. Relatively less
work has been done where environments are described based on
their estimated merit (Finlay and Wilkinson, 1963; Malosetti et al.,
2013; Gage et al., 2017; Chen et al., 2021).

The Genomes to Fields (G2F) initiative (www.genomes2fields.
org) is a large-scale partnership between the public and private
sector to organize a MET where inbred and hybrid maize genotypes
are evaluated across a range of environments across North America.
Phenotypic, genotypic, and environmental data collected in each site
are publicly available (Falcon et al., 2020; McFarland et al., 2020).
The main objectives of this study were to 1) characterize the
heritability and genetic correlation of hybrid maize yield in
86 environments, 2) calculate genomic estimated breeding value
(GEBV) of all hybrids across a gradient of environments, 3) evaluate
which SNPs have the greatest magnitude of effect in each
environment, and 4) assess the accuracy of genomic prediction
for maize grain yield using RNM.

2 Materials and methods

2.1 Phenotypic data

Phenotypic and genotypic data from 2014 to 2017 of the G2F
initiative was obtained from Cyverse (G2F Consortium, 2019).
Phenotypic information was collected in MET across North
America through a collaboration of 67 principal investigators and
sponsors across 18 universities and federal agencies (numbers from
2022) (Supplementary Table S1; Supplementary Figure S1).
Experimental design generally followed two-row plots organized
in a randomized complete block design with two replications. From
2014 to 2017, there were 59,416 plots in 108 environments (unique
locations and/or years) and 2,521 hybrids. Grain yield was evaluated
in 105 of the 108 environments. Plots with a grain yield greater or
less than three standard deviations from the mean of a given
environment were removed. Spatial correction within each
environment where row and range information was available was
performed using the R package “SpATS” (Rodríguez-Álvarez et al.,
2018). Repeatability improved after the spatial correction in 97 of the
105 environments with an average increase in repeatability of 0.18
(Supplementary Figure S2). Five environments had a repeatability
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less than 0.1 and were removed from the analysis. Ten environments
were removed from consideration as latitude and longitude
information was not available. Seven environments were removed
from consideration due to problematic phenotypic data collection
indicated by collaborators in the metadata. Hybrids without
genomic information were removed from analyses leaving
2,126 hybrids from 39,305 plots in 86 environments.

2.2 Genotypic data

Genotyping-by-sequencing (GBS) data for 1,577 inbred lines
with 945,574 SNPs is publicly available at Cyverse (G2F Consortium,
2019). Gage et al. (2017) further described the GBS procedure used
in the G2F initiative. A total of 842 of the 1,577 inbred lines were
used in the G2F hybrid experiment. Quality control on the genotypic
dataset of the inbred lines used in the study was performed with
TASSEL 5 (Bradbury et al., 2007). Heterozygous SNPs were made
unknown as these would be unlikely in inbred lines. Minor SNP
states beyond the most common biallelic pair were removed from
consideration. These were performed to remove SNPs possibly
subject to sequencing error. SNPs with a minor allele frequency
less than 1% were removed from analyses leaving 396,215 SNPs.
SNPs missing in more than 5% of inbred lines were removed leaving
100,878 SNPs. Missing calls at these SNPs were imputed using
Beagle v5.4 (Brown et al., 2021). Beagle has previously been shown to
be an effective strategy for imputing genotype data in maize (de
Oliveira et al., 2020). From this imputed inbred line dataset, hybrid
genotypes were created using TASSEL 5 (Bradbury et al., 2007) and
the SNPs were coded based on the number of major alleles at each
locus (0, 1, or 2). After quality control, there were 2,143 hybrids with
100,878 SNPs. Of the 2,143 hybrids, 2,126 remained after the
phenotypic quality control. For the 100,878 SNPs, the median
distance between adjacent SNPs was 63 base pairs (bp) while the
average distance between adjacent SNPs was 20,844 bp.

Linkage disequilibrium (LD) was calculated using the hybrid
dataset for the 2,126 hybrids with 100,878 SNPs. LD was calculated
using a sliding window of 100 SNPs using PLINK v1.9 (Purcell et al.,
2007) (Supplementary Figure S3).

2.3 Reaction norm models

Reaction norm models were used to model grain yield of the
2,126 hybrids in 86 environments. The merit of an environment was
estimated as the fixed effect of environment in a BLUP model to
mitigate differences in average yield performance due to different
hybrids evaluated in different environments. The environmental
gradient (EG) was estimated as β using the BLUP model
implemented in R package “lme4” (Bates et al., 2015) in Eq. 1.

y � Xβ + Zg + ε (1)
where y is the vector of phenotypic measurements, X is a design
matrix associating the phenotypic measurement to the environment
(combination of location and year), β is the vector of the fixed effect
of the environment, Z is the design matrix associating the
phenotypic data and the hybrid identification, g is the vector of

BLUPs with g ~ N(0, Iσ2g) where σ2g is the genetic variance and I
represents an identity matrix, and ε is the vector of random residuals
with ε ~ N(0, Iσ2ε ) where σ2ε is residual variance and I is an identity
matrix. This model utilized an identity rather than genomic
relationship matrix as the goal was to estimate β. The EG was
scaled to range from −1 to 1 using Eq. 2 (Coelho et al., 2020).

θi � −1 + 2 βi − βmin( )/ βmax − βmin( )[ ] (2)
where θi is the standardized EG for environment i, βi is the
coefficient of environment i, and βmin and βmax are the minimum
and maximum values in the vector of β, respectively.

Genomic analyses were performed through GBLUP based on
RNM. The 2nd order Legendre orthogonal polynomial RNM model
is defined in Eq. 3.

yij � Env + bmθ̂i +∑ n0j + n1jθ̂i + n2jθ̂i
2( ) + εij (3)

where yij is the phenotypic measurement for the jth hybrid in the ith
EG coefficient, Env is the vector of the fixed effect of the location-
year combination, bm is the mth fixed regression coefficient for the
average curve of the population, θ̂i is the standardized EG for
environment i, n0j, n1j, and n2j are the intercept, slope, and
polynomial of the jth hybrid regressed on θ̂i for random effects n
(n  a, be{ }) where a is the additive genetic effect and be is the broad
environment effect, εij is the random residual of the jth hybrid in the
ith EG. The covariance structure for the additive genetic variance of
the intercept, slope, and polynomial were as follows:

a0
a1
a2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ~ N 0,G ⊗
σ2a0 σa0a1 σa0a2
σa0a1 σ2a1 σa1a2
σa0a2 σa1a2 σ2a2

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠
and

be0
be1
be2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ~ N 0, I ⊗
σ2be0 σbe0be1 σbe0be2
σbe0be1 σ2be1 σbe1be2
σbe0be2 σbe1be2 σ2be2

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠
where σ2n0 , σ2n1 , and σ2n2 are the variance of random effects
n0j, n1j, and n2j, respectively. The off-diagonal elements of the
matrices are the covariances of the random effects. G is the
genomic relationship matrix (GRM) using the first method
defined in VanRaden (2008). I is an identity matrix.

The be effect in this context is similar to the permanent effect in
random regression models. Differently from a traditional random
regression model (longitudinal data for the same individual over
time), the repeated records for the same hybrid are spatially-
repeated measurements (i.e., in different environments). Model
performance was compared with and without be using AIC (data
not shown). This effect was found to reduce AIC and was considered
throughout the remainder of the study. The reasoning for this effect
is that be is capturing variation due to environmental effects on the
hybrid’s phenotype caused by the high degree of similarity between
the environments adjacent on the environmental gradient.
Nevertheless, be could be capturing variance caused by non-
additive genetic or systematic effects.

Multiple models were compared for performance using AIC
including a linear and a 2nd order polynomial model with
homogeneous or heterogeneous residual variance. The linear
model was like the previously defined model in Eq. 3, but the

Frontiers in Genetics frontiersin.org03

Tolley et al. 10.3389/fgene.2023.1221751

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1221751


effects related to the 2nd order polynomial coefficient were removed.
Models were evaluated with homogeneous or heterogeneous
variances. For the heterogeneous model, a different residual
variance was used for each environment. The residual variance
for each environment was exponentially regressed against the EG
effect for that environment as in Eq. 4.

σ2
εi
� exp d0 + d1θ̂i( ) (4)

where d0 and d1 are the intercept and slope of the regression for
heterogeneous residual variance (Foulley and Quaas, 1995; Chen
et al., 2021). Models were compared based on AIC values and the
optimal model was used for further analyses. Variance components
were assessed using average-information restricted maximum
likelihood implemented in the BLUPF90+ software (Misztal et
al., 2002; Misztal et al., 2014).

2.4 Estimation of genetic parameters

The genetic covariance matrix (Σ) for all environments is
described in Eq. 5 and previously defined in (Oliveira et al.,
2019; Moreira et al., 2021).

Σ � TCT′ (5)
where T is the matrix of covariates including the intercept, slope,
and polynomial for each environment. C is the genomic covariance
matrix for the coefficients. This covariance matrix was used to define
the narrow-sense heritability (h2) and genetic correlation of the
environments in Eqs 6, 7.

h2i �
σ̂2ai

σ̂2ai + σ̂2εi
(6)

where σ̂2ai is the estimated genetic variance for the ith environment
and σ̂2εi is the estimated residual variance for the ith environment (in
the heterogeneous model). The genetic correlation of yield across
environments is defined in Eq. 7.

ri,i′ �
σ̂ai,i′�������
σ̂2aip σ̂

2
ai′

√ (7)

where σ̂ai,i′ is the genetic covariance between the ith and the i’th
environments, σ̂2ai and σ̂

2
ai′

are the additive variances for the ith and
the i’th environments, respectively. GEBVs are defined in Eq. 8.

ĜEBVj � Tâj (8)
where âj is the vector of predicted values for the intercept, slope, and
polynomial for the jth hybrid. The predicted values, âj, were
estimated using BLUPF90+ (Aguilar et al., 2014).

2.5 Genome-wide association study

Additive SNP effects for GWAS were derived from GEBVs for
the regression coefficients according to Eq. 9 (Wang et al., 2012;
Moreira et al., 2021).

ûj � IZ′ ZIZ( )−1âj (9)

where ûj is the estimate for the SNP effect for the jth RNM
coefficient, Z is the genomic information for all hybrids, I is an
identity matrix, and âj is the estimated GEBV for the jth RNM
coefficient. SNP effects were determined using POSTGSF90 (Misztal
et al., 2014). SNP effects were obtained for each environment
according to Eq. 10.

ŜNPs � Tûs (10)
where ŜNPs is a vector containing the SNP effects for the sth SNP in
each environment, ûs is the vector of SNP effects for each RNM
coefficient for the sth SNP.

Candidate genes were evaluated for the top five SNPs with the
highest magnitude of effect in each environment (Oliveira et al.,
2019; Moreira et al., 2021). Candidate genes were explored that
were ±1 kb from the selected SNPs using the Maize B73 v4 reference
genome in https://www.maizegdb.org. The search window was
defined based on the distance at which average LD decayed to 0.
2, which was around 1 kb (Supplementary Figure S3). Gene function
was predicted for each candidate gene in the UniProt database
(https://www.uniprot.org/).

ANOVA was performed to determine if there were significant
differences between the yield performance of hybrids that were
homozygous for the minor allele, heterozygous, and homozygous for
the major allele for the selected SNPs in each environment which
resulted in 1,806 comparisons (Supplementary Table S2). Where
there were significant differences between the yields of the hybrids in
ANOVA, least significant difference (LSD) test was implemented in
R package “agricolae” (de Mendiburu, 2021) to determine which
hybrids were significantly different at ρ < 0.05. Additional analysis
was performed to identify SNPs with a favorable minor allele
frequency as these have the greatest potential to improve yield
when selected for in the population. To decrease bias in this
analysis, data from an environment was removed where there
were fewer than 10 hybrids homozygous for the minor allele,
homozygous for the major allele, or heterozygous. Additionally,
only environments greater than 0 on the EGwere considered as yield
was more heritable in these environments.

2.6 Genomic prediction of breeding values

Genomic prediction was performed to simulate two breeding
program scenarios: previously tested hybrids from another
environment could be included in the training dataset to predict
performance in an untested environment (CV0) or untested hybrids
evaluated in an untested year (CV00) and were previously described
in Jarquín et al. (2017) and Westhues et al. (2021). In each of these
scenarios, 3 years were used to train a model and a single year was
used in testing. Variance components were estimated using the
training set and used to predict GEBV of the testing set.

The environmental merit, an environments placement along the
environmental gradient, is unknown where yield has not been
evaluated, as in the testing set of genomic prediction. To assess
the environmental merit, environment-specific weather and soil
data from public application programming interfaces (APIs) were
used in a Random Forest model using the R packages “caret” (Kuhn
et al., 2008) and “randomForest” (Liaw and Wiener, 2002). The
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environmental merit of the testing year of GP was predicted using a
model built on the training data (other 3 years of data) where the
weather and soil data was associated to the known environmental
merit. The variables included in the model are described in Table 1.
Weather data was acquired using the R package “nasapower”
(Sparks et al., 2018) and was compiled by month from April to
October (growing season). Various functions were used to
summarize the weather data monthly. Total was used for
precipitation and photosynthetically active radiation. Maximum
temperature per day and wind speed per day were summarized
monthly using the maximum of these values. Minimum daily
temperature and the dew point were summarized using the
minimum of these values. All other weather variables were
summarized as the mean value throughout the month. Soil data
was obtained from the National Resources Conservation Service
(NRCS) using the R package “soilDB” (Beaudette et al., 2022). The
variables used in the model were soil organic carbon and nitrogen
content at depths of 0–5 cm, 5–15 cm, and 15–30 cm. The
hyperparameters mtry and ntree were optimized using 10-fold
cross validation within the training dataset.

Additionally, GP was performed where the known
environmental merit was used in the environmental gradient to
evaluate the impact of the discrepancy between the predicted and
known environmental merits and was labeled CV0-Known EG.

GEBVs from GP were either associated to single-environment
BLUPs or to the GEBV of the whole-dataset model where all data
was used in training. Prediction accuracy was assessed using
Pearson’s correlation of these values in each environment. Bias
(b1) was evaluated for each environment using a linear regression
model (BLUP = b0 + b1*GEBVtesting) or (GEBVwhole = b0 +

b1*GEBVtesting). Bias was centered around 0 by subtracting one
from the regression coefficient.

2.7 Additional information

Data analyses were performed using the R software v4.2 (R Core
Team, 2022). Data visualization was performed using the R package
“ggplot2” (Wickham, 2016). R code used for data preparation and
visualization and BLUPF90 configuration files used in analyses are at
the Purdue University Research Repository (Tuinstra and Tolley,
2023).

3 Results

3.1 Environmental characterization

The average grain yield among environments ranged from 4.2 to
13.5 Mg ha−1 (Figure 1). The lowest average grain yield was
environment Watkinsville, GA in 2016 and the highest grain
yield was Keystone, IA in 2017. The average grain yield was 9.3,
8.4, 8.9, and 10.2 Mg ha−1 in 2014, 2015, 2016, and 2017,
respectively.

A summary of the RNM comparison is included in Table 2. The
models compared included linear and polynomial models with
either homogeneous or heterogeneous residual variance. The
model with the best fit based on AIC was the 2nd order
Legendre orthogonal polynomial with a heterogeneous residual
variance. Variance components were estimated in the polynomial

TABLE 1 Environmental characteristics from r packages “nasapower” (Sparks et al., 2018) and “soilDB” (Beaudette et al., 2022).

Characteristic ID Unit Source Function Description

ALLSKY_SFC_PAR_TOT W/m^2 nasapower Total All Sky Surface PAR Total

T2MWET cg/kg nasapower Mean Wet Bulb Temperature at 2 m

QV2M g/kg nasapower Mean Specific Humidity at 2 m

RH2M % nasapower Mean Relative Humidity at 2 m

T2M_MAX C nasapower Max Temperature at 2 m Maximum

PS kPa nasapower Mean Surface Pressure

T2MDEW C nasapower Minimum Dew/Frost Point at 2 m

WS2M m/s nasapower Max Wind Speed at 2 m

T2M_MIN C nasapower Minimum Temperature at 2 m Minimum

T2M C nasapower Mean Temperature at 2 m

PRECTOTCORR mm/day nasapower Total Precipitation Corrected

Sand g/kg NRCS Mean Proportion of sand particles (>0.05 mm) in the fine earth fraction

Silt g/kg NRCS Mean Proportion of silt particles (= 0.002 mm and = 0.05 mm) in the fine earth fraction

Clay g/kg NRCS Mean Proportion of clay particles (<0.002 mm) in the fine earth fraction

SOC dg/kg NRCS Mean Soil organic carbon content in the fine earth fraction

Nitrogen cg/kg NRCS Mean Total nitrogen (N)

Characteristic ID, unit, and description come directly from the source. Function describes how the characteristic was combined in each month. Soil characteristics were gathered from intervals

of 0–5 cm, 5–15 cm, and 15–30 cm.
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model with a heterogeneous residual variance. Narrow-sense
heritability was inconsistent across the 86 environments with a
range from 0.04 to 0.35 (Figure 2). Heritability was lowest in low-

yielding environments with an increased heritability as the EG
increased but plateaued at a heritability of about 0.3 in most
environments.

The average genetic correlation across the 86 environments was
0.87 (Figure 3). No environment had a negative genetic correlation with
another environment. The environments ONH2_2017, GAH2_2016,
MOH1_2015, and KSH1_2015 were highly correlated with each other,
but had a reduced correlation to all other environments. Generally,
environments adjacent on the EG had a high genetic correlation and it
decreased as the gap between the environments increased.

3.2 Genome-wide association study

The top five SNPs were selected based on the magnitude of effect
on grain yield in each environment and not in LD (r = 0.2) with any
other selected SNP. Twenty-one SNPs were selected, which
indicated that many environments had overlapping highest-effect
SNPs (Figure 4). SNP effect magnitude was often greater in higher-
yielding environments and the SNP effect was often consistent in
environments adjacent on the EG. The favorable alleles of selected
SNPs in environment ONH2_2017 were found to have a negative
impact in many other environments. These results indicated that
both magnitude and sign of SNP effects were dependent on
environment. Candidate genes were explored for these
21 selected SNPs. Seventeen of the 21 SNPs were within ± 1 kb
of annotated gene models (Table 3).

SNPs S2_236187932, S3_215373678, S3_215380499, and S5_
199708288 had favorable minor alleles in the population. Within
each environment, hybrids were grouped by their SNP state to
determine significant differences in the yield of these SNP states.
Hybrids at differing SNP states for S2_236187932 was considered in
37 environments. Significant differences between the three SNP
states were observed in 16 of the 37 environments, though in 13 of

FIGURE 1
Boxplot demonstrating hybrid yield performance in each of the 86 environments. Different colors represent environments grown in different
growing seasons.

TABLE 2 Comparison of the four models tested in this study using AIC. Model
selected based on the lowest AIC value is in bold.

Model Residual AICa

1st Order Legendre Polynomial Homogeneous 136,114.9

1st Order Legendre Polynomial Heterogeneous 136,113.92

2nd Order Legendre Polynomial Homogeneous 135,927.43

2nd Order Legendre Polynomial Heterogeneous 135,922.88

aAkaike Information Criterion.

FIGURE 2
Narrow-sense heritability of yield in each of the 86 environments
represented as a gradient from −1 (lowest-yielding environment) to 1
(highest-yielding environment).
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the 16 environments the hybrids homozygous for the major alleles
were favorable which indicated conflicting results.

Eighteen of the 38 environments for S3_215373678 resulted in a
significant improvement in grain yield in either the homozygous
minor allele or heterozygous hybrids compared with homozygous
major allele hybrids. The greatest difference for S3_215373678 was
in IAH1b_2014 with average yields of 10.78, 10.98 and 9.3 Mg ha−1

for the homozygous minor allele, heterozygous, and homozygous
major allele hybrids.

Twenty-four of the 41 comparisons for S3_215380499 had
hybrids with grain yields that were significantly improved in

either the homozygous minor allele or heterozygous hybrids
compared with homozygous major allele hybrids. Sixteen of these
environments resulted in significant differences between the
homozygous minor and homozygous major allele hybrids where
the minor allele was favorable by more than 0.5 Mg ha−1.

Seventeen of the 45 environments evaluated for S5_
199708288 had a significant decrease in average yield of the
hybrids homozygous for the major allele compared with the other
SNP states. The greatest difference was in environment ONH2_
2014 where grain yields of 9.59, 9.68, and 7.72 Mg ha−1 were
observed for the hybrids homozygous for the minor allele,

FIGURE 3
Estimated genetic correlation of yield across the 86 environments.
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heterozygous, and homozygous for the major allele, respectively.
In this environment, the homozygous major allele hybrids had
significantly lower yield than the hybrids with the other SNPs
states.

3.3 Genomic prediction of breeding values

In CV0-Predicted EG and CV00-Predicted EG, the merit of a
given environment was determined using a machine learning model
that incorporated weather and soil data specific to each environment
(Table 1). Prediction accuracy of this model to predict the estimated
value of the environments was 0.38 (Supplementary Figures S4, S5).
Thus, certain environments were reranked when weather and soil
variables were used to predict merit.

GEBVs were compared to single-environment BLUP that did
not utilize genotype or environment data and the whole-dataset
model where all data was used in training described in Eq. 3. Baseline
GBLUPmodels were compared with those models that incorporated
RNM. The average prediction accuracy of the CV0 models were
0.37, 0.34, and 0.32 for CV0-GBLUP, CV0-Predicted EG, and CV0-
Known EG, respectively. Average Bias of −0.42, −0.34,
and −0.37 was observed for CV0-GBLUP, CV0-Predicted EG,
and CV0-Known EG. The CV00 scheme saw a reduced
prediction accuracy in comparison to all CV0 models. For
CV00 models, average prediction accuracy was 0.20 for CV00-
GBLUP and 0.21 for CV00-Predicted EG. Average bias
was −0.60 in CV00-GBLUP and −0.52 in CV00-Predicted EG.

GEBVs were compared to their counterparts where all hybrids in
all environments were used for model development (Figure 5).
Prediction accuracy of CV0-GBLUP ranged
from −0.13 to −0.95 with an average of 0.72. An increase in
prediction accuracy was observed in using the RNM model with
either a predicted EG or known EG in comparison to the GBLUP

model. Prediction accuracy ranged from −0.14 to 0.99 with an
average of 0.80 in CV0-Predicted EG and 0.08 to 0.98 with an
average of 0.81 in CV0-Known EG. Average bias across the
environments was −0.38, −0.15, and −0.15 in CV0-GBLUP, CV0-
Predicted EG, and CV0-Known EG, respectively. Reduced
prediction accuracy was again observed when comparing
CV00 models to CV0 models when predicting the whole-dataset
GEBV for each environment. CV00-GBLUP had a range in
prediction accuracy from 0.10 to 0.78 with an average of 0.57.
CV00-Predicted EG had a range in prediction accuracy from 0.05 to
0.86 with an average prediction accuracy of 0.60. Average bias
improved in CV00-Predicted EG (−0.21) when compared to
CV00-GBLUP (−0.37).

4 Discussion

Hybrid selection in maize is largely determined based on grain
yield performance. Nevertheless, grain yield is affected by complex
GEI indicating that a single hybrid may not maximize yield in all
environments. Reaction norm models have been used to model GEI
across a continuum of weather and soil variables used to characterize
environments (Jarquín et al., 2014; Westheus et al., 2021). Jarquín
et al. (2014) and Westheus et al. (2021) found models that
incorporated interaction effects between environmental covariates
and genetics were more predictive than models that did not include
GEI effects. Nevertheless, only a limited proportion of across-
environment variation was explained using the environmental
covariates (Jarquín et al., 2014). In this study, environments were
organized based on the estimated merit of the environment with the
assumption that a given hybrid will have similar performance in
environments with similar merit. The RNM was used to evaluate
environment-dependent SNP effects and to estimate the GEBV of all
hybrids along a gradient of environmental merit. Genomic

FIGURE 4
Single nucleotide polymorphism (SNP) effect of the major allele for the 21 selected SNPs. Negative SNP effect indicated that the minor allele had a
positive effect on improving grain yield. Color was used to differentiate each SNP.
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prediction was performed to assess the prediction accuracy of this
model.

4.1 Heritability and genetic correlation of
environments

The heritability estimates were lowest in the low-yielding
environments with a range from 0.04 to 0.35 (Figure 2). The
increased heritability in the higher-yielding environments indicated
that selection in these environments could be more beneficial to
improve genetic gain than selection in lower-yielding environments
with a reduced heritability. One approach to improve heritability of
lower-yielding, stressed environments is to perform managed-stress
trials where trial uniformity and repeatability are generally improved
(Cooper et al., 2014). The average genetic correlation was 0.87 across
the 86 environments in this study. Hybrid performance could be
expected to be more similar in environments with a high genetic
correlation than in less correlated environments. Most of the
environments had a large, positive genetic correlation; however,

four of the environments were unrelated to the other
82 environments but were highly correlated amongst themselves
(Figure 4). Another method to assess the genetic correlation of
yield across environments could be using a factor analytic model.
In this approach, genetic effects are divided between environment-
independent and environment-dependent effects to model GEI.
Rogers et al. (2021) used a factor analytic model and reported high
genetic correlation across many of these same environments from
2014 to 2016. However, their genetic correlation was often reduced
compared to what was observed in this study. While genetic
correlation was high in this study, GEI was observed as both
change in rank and magnitude across environments influencing
hybrid performance (Figure 5).

The lowest-yielding, least-heritable environments with a poor
genetic correlation to other environments were ONH2_2017,
GAH2_2016, MOH1_2015, and KSH1_2015. Environmental
conditions limited the genetic variability of these environments
(Supplementary Figure S6). Average days to anthesis in ONH2_
2017 was 38 days while the average among other environments was
70 days after planting. Thus, it is likely that growing degree days

TABLE 3 Single nucleotide polymorphisms (SNPs) selected from each environment.

SNP_ID Candidate genes Annotation Previous publications

S2_20959401 Zm00001d002774, GRMZM5G859526, AC212835.3_FG004 Uncharacterized protein Robbins (2017)

S2_236187932 Zm00001d007962, GRMZM2G173882 Myb-like DNA-binding domain, SHAQKYF
class family protein

Guo et al., 2022

S3_214902774 Zm00001d044083, GRMZM2G126260 Auxin efflux carrier component Han et al., 2020; Yue et al., 2021

S3_215373678 Zm00001d044093, AC211319.3_FG001, GRMZM2G047961,
AC211319.3_FG002

CASP-like protein 4U1 —

S3_215380499 Zm00001d044094, GRMZM2G048010 Exostosin family protein Tan et al., 2018

S3_216647852 Zm00001d044139, GRMZM2G464976 Uncharacterized protein Monir and Zhu 2018

S3_216794651 Zm00001d044142, GRMZM2G364528 BHLH domain-containing protein Wang et al. (2016)

S3_219184259 Zm00001d044242, GRMZM2G081816 Transcription factor bHLH87 Vendramin et al. (2020); Rodríguez-Gómez
et al. (2022)

S3_222732398 Zm00001d044379, GRMZM2G055578, GRMZM5G837381,
GRMZM2G528502

CASC3/Barentsz eIF4AIII binding —

S4_33885271 — — —

S4_37012538 Zm00001d049648, GRMZM2G302160 Protein STICHEL-like 2 —

S4_156482117 Zm00001eb428040, GRMZM2G149178 Histone H4 Qi et al. (2016)

S4_156994628 Zm00001d051502, GRMZM2G081310 Calcium dependent protein kinase7 Zhang et al. (2022)

S4_231043398 Zm00001d053603, GRMZM2G343139 ABC transporter A family member 7 Cao et al. (2022)

S5_199708288 — — —

S7_133892236 — — —

S9_133935645 Zm00001d047587, GRMZM2G426964, GRMZM2G056099 Glucose-6-phosphate 1-dehydrogenase, 1.1.1.49 —

S9_135864201 — — —

S9_138707938 Zm00001d047764, GRMZM2G011071 Uncharacterized protein —

S9_139706286 Zm00001d047807, GRMZM2G103247 protein-serine/threonine phosphatase, 3.1.3.16 Willcox et al. (2022)

S9_139745486 Zm00001d047808, GRMZM2G063151, GRMZM2G569643 Initiator binding protein1 Xu et al. (2016)

Candidate genes were explored that were ±1 kb from the selected SNPs using the Maize B73 v4 reference genome in https://www.maizegdb.org and the annotations are from UniProt database

(https://www.uniprot.org/). A literature review was performed to find relevant publications that have previously identified these candidate genes.
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limited the yield potential of higher-yielding hybrids in this
environment. Maximum daily temperature in GAH2_
2016 reached between 35°C and 40°C throughout the window
surrounding flowering and was among the hottest environments
throughout the growing season. GAH2_2016 appeared to be a heat-
stress environment where higher-yielding, vulnerable hybrids did
not reach their yield potential due to the stress. Within-field spatial
variability where the environment had a greater impact on yield
performance of a given plot than genetics was a key factor in
MOH1_2015 and KSH1_2015.

4.2 Candidate genes associated with yield
across environments

SNP effects were observed across a gradient of environmental
conditions. Due to GEI, it was expected that SNP effects could be
variable across environments (Millet et al., 2016; Yuan et al., 2019).
In this study, different SNPs were selected based on their magnitude
of effect in high- vs low-yielding environments suggesting that SNP
effects were environment dependent. In total, 21 SNPs were selected
in this study as having a high magnitude of effect in at least one
environment (Figure 4). Sixteen of these SNPs were persistent and
were selected in at least two environments and 11 of the SNPs were
selected in more than 10 environments.

Homozygous minor alleles conferring greater yield performance
were further explored as these represent areas that could be
beneficial for further population improvement. Out of the
21 selected SNPs examined, four SNPs (S2_236187932, S3_
215373678, S3_215380499, and S5_199708288) were shown to
have a positive effect for the minor allele. S5_199708288 was the
only SNP not within 1 kb of an annotated gene models. S2_
236187932 was within 1 kb of candidate gene Zm00001d007962.
Guo et al. (2022) previously identified this candidate gene as a
potential transcription factor involved in regulating nitrogen

metabolism and could be a useful adaptation in low nitrogen
conditions. S3_215373678 was within 1 kb of candidate gene
Zm00001d044093 and had an annotated function of a CASP-like
protein. S3_215380499 was a SNP within 1 kb of Zm00001d044094
which Tan et al. (2018) found to be differentially expressed in tassels
under drought-stressed and normal conditions.

Grain yield of hybrids from varying SNP states were compared
to verify the advantage of the minor allele for these four SNPs. Grain
yield was often improved in the homozygous minor allele or
heterozygous hybrids for S3_215373678, S3_215380499, and S5_
199708288 compared to homozygous major allele hybrids. For
comparison of yield performance differences between hybrids
with the minor allele and the major allele, we selected
environments where there were at least ten hybrids representing
the minor allele and ten hybrids with the major allele. The average
yield increase was 0.21 Mg ha−1 across 57 environments for S3_
215373678, 0.42 Mg ha−1 across 64 environments for S3_215380499,
and 0.21 Mg ha−1 across 68 environments for S5_199708288. Thus,
these SNPs could be important selection targets for population
improvement.

Among the selected SNPs in this study, multiple candidate genes
have previously been identified as having an association to stress-
tolerance related traits. Candidate gene, GRMZM2G126260, was
found by Han et al. (2020) and Yue et al. (2022) to be involved in
deep-sowing tolerance impacting a genotypes ability to respond to
drought stress. The annotated function of candidate gene
Zm00001d051502 was a calcium dependent protein kinase which
contributes to the growth and development, as well as the abiotic
and biotic stress tolerance of a plant (Kong et al., 2013).
Zm00001d044242 was identified as a transcription factor involved
in biotic (Rodríguez-Gómez et al., 2022) and abiotic (Vendramin
et al., 2020) stress tolerance. In summary, many of the candidate
genes found in this study appear to be adaptations related to stress
tolerance.

Since many of the candidate genes are associated with stress
tolerance, it could be expected that hybrids with differing alleles at
these SNPs could have different yields especially in stress-induced,
low-yielding environment. Significant differences between hybrids
with differing alleles were more common in the medium- to higher-
yielding environments than in the low-yielding environments. These
results suggest that alleles conferring greater stress tolerance could
be beneficial across a range of environmental conditions.

4.3 Comparison of genomic prediction
methods

Accurately predicting hybrid performance without growing
field-experiments offers a major opportunity to improve genetic
gain in maize. As prior knowledge and the GWAS analyses indicate
grain yield in these environments is polygenic in nature, genomic
prediction was assessed in this study. A standard GBLUP model was
used for comparison to understand the value of the RNM. The
GBLUP model outperformed the RNM models in prediction
accuracy when GEBV were compared to single-environment
BLUPs. Average prediction accuracy was 0.37, 0.34, and 0.32 in
CV0-GBLUP, CV0-Predicted EG, and CV0-Known EG,
respectively. Similar prediction accuracies were observed from

FIGURE 5
Genomic estimated breeding values for all 2,126 hybrids across
the environmental gradient. Certain hybrids were colored to illustrate
genotype-by-environment interactions with some hybrids value
increased and others decreased in the higher-yielding
environments.
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CV00-GBLUP (r = 0.20) and CV00-Predicted EG (r = 0.21). When
GEBV from GP were compared to whole-dataset GEBV, RNM
models outperformed GBLUP. Average prediction accuracy was
0.72, 0.80, and 0.81 in CV0-GBLUP, CV0-Predicted EG, and CV0-
Known EG. CV00-Predicted EG (r = 0.60) had a higher average
prediction accuracy than CV00-GBLUP (r = 0.57). In all of these
scenarios, the GBLUP models consistently had a bias further from
0 than the RNM models. This could be due to the lack of GEI
captured in the GBLUP model.

Prediction accuracy was greater where tested hybrids were
grown in an untested year (CV0-Predicted EG; r = 0.34)
compared to untested hybrids in an untested year (CV00-
Predicted EG; r = 0.21) (Table 4). A benefit of the publicly
available Genomes to Fields initiative dataset is that results from
different studies that have used this dataset can be easily compared.
Rogers and Holland (2022) performed across-year prediction, like
CV0-Predicted EG, where GEI was described using marker-by-
environment descriptors. A principal component analysis was
used on either the marker or environmental data for dimension
reduction. Models with just the main effects of markers and
environmental covariates outperformed these GEI models with
an average prediction accuracy of 0.29. Westhues et al. (2021)
performed genomic prediction using various linear random effect
models and machine learning based methods. Their prediction
accuracy ranged from 0.31 to 0.42 depending on the model with
xgboost performing better than the other model types.

In this study, the within-environment BLUP prediction accuracy
varied substantially across environments with ranges from −0.40 to
0.70 in CV0-Predicted EG and from −0.24 to 0.54 in CV00-
Predicted EG. As such, a few environments were negatively
impacting the average prediction accuracy. Prediction accuracy in
MNH1_2014 was −0.40 in CV0-Predicted EG and was far worse
than the next worse prediction accuracy of −0.02 in KSH1_2015.
Westhues et al. (2021) previously found performance in this
environment to be difficult to predict (r = −0.14); however,
including environment data in the model in their study improved
the prediction accuracy of this environment (r = 0.42). Other
environments in their study performed worse when

environmental data was included which indicated there was no
ideal model for prediction in all environments.

The merit of an environment in this study was estimated as
the fixed effect of environment in a BLUP model to mitigate
differences in average yield performance due to different hybrids
evaluated in different environments. Where yield is unknown in
an environment, such as in the testing set of genomic prediction,
it is possible to use environmental characteristics (latitude,
longitude, weather, soil, etc.) to estimate the merit of a given
environment. In this study, a Random Forest model was trained
to associate the environmental data from 3 years of data to their
known environmental merits and was used to predict
environmental merit of the other year (that corresponded to
the testing dataset of genomic prediction). The correlation
between known and predicted environmental merit was r =
0.38. This model has since been applied in the 2022 G2F yield
prediction contest using data from 2014 to 2021, and an increased
environmental merit prediction accuracy was observed due to the
increase in the number of environments observed.

Since there was a discrepancy between known and predicted
environmental merit in this study, there was reranking between
environments on the environmental gradient that could have
impacted prediction accuracy. Genomic prediction was assessed
with the known environmental merit to see if this would
improve prediction accuracy. Average GP accuracy with the
known environmental merit (CV0-Known EG) was 0.32 with a
range from −0.21 to 0.68 and did not improve prediction accuracy
over the GP model with predicted environmental merit (CV0-
Predicted EG). This lack of change is likely due to the high
genetic correlation across environments in this study. As such
prediction accuracy was less impacted by placement on the EG.

Often GP accuracy is compared to observed yield of hybrids in a
given environment from a BLUP model. As within-environment
BLUP models do not account for the relationship between
environments and occasionally use an identity matrix to describe
the relationship between hybrids, it is likely that these are not the
most accurate representation of a hybrids true value. In this study,
GEBVs from GP were compared to a whole-dataset model where

TABLE 4 Genomic prediction (GP) accuracy and bias across 86 environments.

BLUP Whole-dataset

Cross
validation

CV0 CV00 CV0 CV00

Model GBLUP Predicted
EG

Known
EG

GBLUP Predicted
EG

GBLUP Predicted
EG

Known
EG

GBLUP Predicted
EG

Mean 0.37 0.34 0.32 0.20 0.21 0.72 0.80 0.81 0.57 0.60

Minimum −0.36 −0.40 −0.21 −0.16 −0.24 −0.13 −0.14 0.08 0.10 0.05

Maximum 0.77 0.70 0.68 0.52 0.54 0.95 0.99 0.98 0.78 0.86

Standard
Deviation

0.20 0.18 0.18 0.14 0.15 0.20 0.20 0.17 0.16 0.16

Bias −0.42 −0.34 −0.37 −0.60 −0.52 −0.38 −0.15 −0.15 −0.37 −0.21

Genomic estimated breeding values from GP were either associated to single-environment BLUPs or to the estimated GEBV of the whole-dataset model where all data was used in training.

CV0 allowed for hybrids evaluated in the training set in another environment to be in the testing set, while CV00 only considered unobserved hybrids in the testing set. Prediction accuracy was

assessed using Pearson’s correlation for each environment and summary statistics of mean, minimum, maximum, and standard deviation are provided. Bias (b1) was evaluated for each

environment using a linear regression model (BLUP = b0 + b1*GEBVtesting) or (GEBVwhole = b0 + b1*GEBVtesting). Bias was centered around 0 by subtracting one from the regression coefficient.

Frontiers in Genetics frontiersin.org11

Tolley et al. 10.3389/fgene.2023.1221751

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1221751


phenotypic and genotypic data of all hybrids in all environments was
modeled. Prediction accuracy of CV0-Predicted EG and CV00-
Predicted EG were 0.80 (range: −0.14–0.99) and 0.60 (range:
0.05–0.86) and was greatly improved in comparison to the
prediction accuracy of the BLUP model.

4.4 Implications, limitations, and future work

The results of this study indicate the value of RNM to better
understand GEI and predict hybrid yield performance. Twenty-
one SNPs with associated candidate genes were found to be
associated to yield in environments across the EG, and many of
the candidate genes were previously reported as stress
adaptations. Genomic prediction was performed with an
increased correlation to models that incorporated genomic
and environmental relationships than within-environment
BLUP models. While yield was used to describe
environmental performance in this study, this strategy is
potentially limited in breeding for stress adaptation. Cairns
et al. (2013) found hybrid performance in one type of stress
is not indicative to performance in another type of stress. As
such, in another trial where the genetic correlation of yield
across environments is lower, the methodology presented in this
paper might have a decrease in performance. Genomic
prediction was only performed in this study for hybrids with
phenotypic data. Nevertheless, this dataset, and more recent
years of the G2F initiative, could be used as a training dataset to
evaluate all possible hybrid combinations with genomic
information to greatly expand the number of hybrids evaluated.

5 Conclusion

Large-scale genomic sequencing capabilities enables genome-
wide association studies and genomic prediction with the benefits of
assessing hybrid merit and minimizing the phenotyping cost of
multi-environment trials. A reaction norm model was applied to
model hybrid yield across a range of environmental conditions.
Heritability was improved in the higher-yielding environments
which indicated that hybrid performance in the low-yielding
environments was relatively more dependent on the
environment. Genome-wide association study was used to
estimate SNP effect, and many candidate genes were found to be
associated with stress tolerance in previous studies. Multiple
genomic prediction scenarios were performed where prediction
accuracy was greater when hybrids had previously been tested
than when untested hybrids were evaluated in an untested
environment. Reaction norm models outperformed GBLUP when
compared to GEBV derived models that utilized the whole-dataset.
This approach could be useful for improving genetic gain in maize
by increasing the number of hybrids and environments evaluated
while limiting cost associated with phenotypic evaluation in multi-
environment trials.
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