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Background: Pancreatic cancer (PC) is a deadly disease. The tumor
microenvironment (TME) participates in PC oncogenesis. This study focuses on
the assessment of the prognostic and treatment utility of TME-associated genes
in PC.

Methods: After obtaining the differentially expressed TME-related genes,
univariate and multivariate Cox analyses and least absolute shrinkage and
selection operator (LASSO) were performed to identify genes related to
prognosis, and a risk model was established to evaluate risk scores, based on
The Cancer Genome Atlas (TCGA) data set, and it was validated by external data
sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor
Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the
potential mechanisms, discover novel treatment targets, and assess the
sensitivities of immunotherapy and chemotherapy.

Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and
MMP3, were identified and a risk score formula constructed. Next, their mRNA
expressions were verified in cancer and normal pancreatic cells. Multiple
algorithms confirmed that the risk model displayed a reliable ability of
prognosis prediction and was an independent prognostic factor, indicating that
high-risk patients had poor outcomes. Immunocyte infiltration, gene set
enrichment analysis (GSEA), and single-cell analysis all showed a strong
relationship between immune mechanism and low-risk samples. The risk score
could predict the sensitivity of immunotherapy and some chemotherapy
regimens, which included oxaliplatin and irinotecan. Various latent treatment
targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape
based on the risk model.

Conclusion: The riskmodel based on TME-related genes can reflect the prognosis
of PC patients and functions as a novel set of biomarkers for PC therapy.
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Introduction

Pancreatic cancer (PC) is one of the most common and lethal
cancers worldwide (Kaźmierczak-Siedlecka et al., 2020). In developed
countries, PC is the fourth leading cause of cancer-related deaths, and it
is ranked the seventh around the world (Ducreux et al., 2015). Sadly, the
incidence rate of PC is gradually accelerating, and it will rank as the
second leading cause of cancer-related mortalities in 2030 (Hasan et al.,
2019). The treatments for early stage PC are surgery and chemotherapy.
The treatments for advanced PC are chemotherapy and radiotherapy
(Ducreux et al., 2015). Themost used and acknowledged chemotherapy
regimens for all stages of PC constitute cytotoxic drugs, such as,
FOLFIRINOX and gemcitabine plus nab-paclitaxel (Conroy et al.,
2011; Von Hoff et al., 2013). Disappointedly, patients are often
resistant to these treatments and tend to have a poor prognosis
(Jiang et al., 2023). For the minority of early stage patients with
local disease, the 5-year survival rate can reach 36%, and the rate
decreases to 12% in patients with lymph-nodemetastasis. Most patients
who suffer from distant spread have the lowest 5-year survival, with 3%
(Poruk et al., 2013; Bray et al., 2018). Therefore, it is necessary to find a
novel and potent method to perform risk assessment to recognize high-
risk patients in the early stage and provide them with proper treatment
to avoid cancer progression.

The tumor microenvironment (TME) is an immunosuppressive
niche that is formed in the process of tumor cells hijacking the
transcriptional mechanisms of the stroma cells (Kleeff et al., 2016).
The main components of the TME are cancer-associated fibroblasts
(CAFs), extracellular matrix (ECM), endothelial cells, stroma-
associated pancreatic stellate cells (PSCs), adipose cells, neural
cells, and some immune cells, such as myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs), and
regulatory T cells (Tregs) (Feig et al., 2012; Wolfgang et al., 2013).
PC is notorious for its dense TME, which is enriched with the stroma,
MDSCs, TAMs, CAFs, and many other cells (Farrow et al., 2008). As
immunosuppressive TME characteristics, MDSCs block immune
responses and release interleukin-10 (IL-10) and transforming
growth factor-β (TGF-β) to induce an anti-inflammatory
environment in PC (Huang et al., 2006; Sinha et al., 2007;
Ostrand-Rosenberg et al., 2012; Pinton et al., 2016). CAFs fulfill
the bi-function in PC, which is mostly anti-immune and partial
immunosuppression (Belle and DeNardo, 2019; Elyada et al., 2019;
Das et al., 2020). By promoting the epithelial–mesenchymal
transformation (EMT), interacting with cancer stem cells (CSCs),
inducing the apoptosis of T cells, and breaking local immune
surveillance, the TAMs boost PC, lead to resistance of treatment,
and result in poor prognosis (Zhang et al., 2022). Treg cells eliminate
effector T cells or acquire antigen-presenting cells which compete
with effector T cells against immunology (Jang et al., 2017). However,
there are still some immune cells that play anti-tumor roles and offer
promising prospects for survival in PC. Tertiary lymphoid structures,
organized by tumor-infiltrating lymphocytes (TILs), which are often
observed in cancer tissue, are considered to participate in the
immune response to suppress cancer and positively impact
prognosis (Balch et al., 1990; Zhang et al., 2003; Hiraoka et al.,
2015). Infiltration of CD8+ lymphocytes was an independent factor
for longer disease-free survival (DFS) and overall survival (OS) in PC
(Lohneis et al., 2017). The roles of the TME are complex: some can be
used to foresee the prognosis, while some are indexes for the

sensitivity of immunotherapy of PC (Nomi et al., 2007; Samstein
et al., 2019). However, there are no immune markers that can solve
well all the problems at one times. Therefore, we established a TME-
related risk model to predict survival and to test drug sensitivity
in PC.

In this study, the expression patterns of TME-related genes in
PC were comprehensively revealed, and we established a new but
robust risk model to predict the prognosis, identify therapy targets,
and foresee the treatment sensitivity of PC patients.

Materials and methods

Gene expression and clinical data resources
and processing

The workflow of our research is presented in Figure 1. To build
and evaluate the risk model, PC data sets containing complete
information of genome, prognosis, and clinical characteristics
were included in this study. The FPKM-processed RNA
sequencing data and clinical information of pancreatic
adenocarcinoma (PAAD) patients were downloaded from The
Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/).
The RMA-normalized data and clinical data of the PC cohort
GSE57495 were obtained from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). The RSEM-
standardized data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) were retrieved from the cBioPortal
database (https://www.cbioportal.org/). After converting ensemble
IDs, deleting the data that lacked survival features, and
log2 transforming RNA sequencing, the data were corrected
using the combat method (Johnson et al., 2007). The clinical
information of TCGA-PAAD, GEO57495, and CPTAC is
provided in Supplementary Table S1. The data of single-cell RNA
sequencing were retrieved from the cohort GSE141017 via the GEO
database. The TCGA-PAAD, GSE57495, CPTAC, and
GSE141017 cohorts contained 181 (177 tumor and 4 normal)
samples, 63 tumor samples, 135 tumor samples, and 1 tumor
sample, respectively.

To evaluate the mRNA expression of five genes in PC and
normal pancreatic tissues, data sets containing the mRNA
expression of the required genes in normal and cancer tissues
were included. We downloaded the RMA-normalized gene
expression data of cohorts GSE15471, GSE28735, and
GSE62452 from the GEO database. GSE15471, GSE28735, and
GSE62452 cohorts contain 78 (39 tumor and 39 normal)
samples, 90 (45 tumor and 45 normal) samples, and 130
(65 tumor and 65 normal) samples, respectively. The landscape
of data sets which were used in this study is summarized in
Supplementary Table S1.

Identification of differential genes

In total, we collected 4,709 TME-related genes from the
ImmPort Portal (https://www.immport.org/) and Molecular
Signatures Database (MsigDB, http://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) (Supplementary Table S2). The criteria were
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set as |logFC| >1 and p < 0.05 for the expression of the differential
genes which were selected by the R package “limma” in normal and
cancer samples in TCGA-PAAD.

Establishment and validation of prognostic
risk model

First, the TCGA-PAAD cohort was randomly assigned to train
and test the data sets. A prognostic risk model was established based

on the training set of the TCGA-PAAD cohort. Then, the univariate
Cox regression analysis was used to identify the candidate TME-
related genes that were closely correlated with the OS of PC patients,
and 86 genes were selected for the next step (p < 0.05). To remove
the overfit genes, the least absolute shrinkage and selection operator
(LASSO) was fulfilled by the R package “glmnet” with a 20-fold
cross-validation (Friedman et al., 2010). After LASSO, nine genes
turned out to be more reliable nominees for building a prognostic
risk model. Next, the Akaike information criterion (AIC) was
calculated to assess potential genes. At last, the multivariate Cox

FIGURE 1
Workflow of this research.
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regression with a bi-directional method was applied for choosing the
best candidates for model construction which presents the
minimum AIC. A prognostic risk score model based on the
TME-related genes for PC patients was constructed, and the risk
score was the sum of the mRNA expression of the gene multiplied by
its multivariate Cox regression coefficient (Friedman et al., 2010;
Wang et al., 2019). The risk score (RS) of each sample was calculated
according to this formula. All samples from the TCGA-PAAD
cohort were divided into high- and low-risk groups in
accordance with the median value of RS of the TCGA-PAAD
training set. Every external cohort was also split into two groups
in terms of their median RS.

To evaluate the performance of the model, we used TCGA-
PAAD as the internal validation and GSE57495 and CPTAC as the
external validations by calculating the area under the curves (AUC)
of the receiver operating characteristic (ROC) curve, analyzing the
Kaplan–Meier curves (K-M curves), and assessing the Harrell’s
concordance index (C-index). By analyzing the K-M curves in
different clinical characteristics, TCGA-PAAD was employed in
testing the adaptability of the model.

Establishment and evaluation of nomograms

In TCGA-PAAD, univariate andmultivariate Cox regressions were
used to select the independent prognostic factors. In light of these
factors, we built the nomograms, which included age, sex, grade, distant
metastasis, lymph node metastasis, and risk score. The ROC and
decision curve analysis (DCA)were applied to estimate the nomograms.

Protein–protein interaction and gene set
enrichment analysis

The interaction network of the protein encoded by the genes that
constituted the formula of the risk score was analyzed by the
STRING database (https://string-db.org/), with an interaction
score >0.7. The interaction map was drawn by the Cytoscape
package (version 3.9.1).

The Gene set enrichment analysis (GSEA) was performed to
discover the latent enriched pathways in the low- and high-risk
groups in TCGA-PAAD based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG), Gene Ontology (GO), and HALLMARK, in
accordance with the methods by the R packages “GSEA” and
“FGSEA” (Subramanian et al., 2005; Korotkevich et al., 2021).

The criteria were set as |NES| > 1, false discovery rate (FDR, p
adjusted) < 0.25, and p < 0.05.

Immune cell and immune-related signature

To evaluate the infiltration of immune cells in clusters, we
utilized the multiple R package algorithms, which included
“CIBERSORT,” “quanTIseq,” “TIMER,” “MCPcounter,” “EPIC,”
and “ssGSEA,” and the immune cells included T cells, CD8+

T cells, B cells, cytotoxic lymphocytes (CTLs), endothelial cells,
fibroblasts, monocytic lineage, myeloid dendritic cells (mDCs),
neutrophils, natural killer (NK) cells, and other immune cells.

To excavate the potential novel immunotherapy target, the
Wilcoxon signed-rank test was introduced to explore the well-
known immune-related genes differently expressed between high-
and low-risk groups, and the STRING database was used to find the
relevant pathways about these genes (Thorsson et al., 2019).

Genomic profile

The mutation data were downloaded from the TCGA database. The
“maftools” package was used to visualize themutation data of the variant
type, significantly mutated genes, substitution mutation, Catalogue of
Somatic Mutations in Cancer (COSMIC) signature, and interaction of
mutations in the high- and low-risk groups (TCGA-PAAD)
(Mayakonda et al., 2018). The oncogenic pathways and alteration of
copy number variations (CNVs) were also analyzed by R “maftools”.

Single-cell RNA sequencing characteristics

Cell clustering was achieved by the principal component analysis
(PCA) and R “Seurat.” “TSNE” was used to visualize the clustering
state, and the clusters were marked based on ductal cells (KRT19,
KRT7, TSPAN8, and SLPI), stellate cells (RGS5, ACTA2, PDGFRB,
and ADIRF), fibroblasts (LUM, DCN, COL1A1, and C1R), T cells
(CD3D, CD3E, CD4, CD8A, CD8B, CD2, and CXCR4), and myeloid
cells (AIF1, CD14, CD68, LILRA4, and CXCR3) (Peng et al., 2019).
The differentially expressed genes between the high- and low-risk
groups were identified by “Seurat” with the “FindMarkers” function.
The enriched pathways in the two RS groups were determined by
GSEA and GSVA. The setting for GSEA was both FDR and p
values <0.05, while for GSVA, it was the correlation coefficient >1.

TABLE 1 Primer sequences of genes.

Forward primer (5′-3′) Reverse primer (5′-3′)

CARD9 ATGTCGGACTACGAGAACGAT TGATGCGTGAGGGGTCGAT

IL20RB AGGCCCAGACATTCGTGAAG CGACCACAAGGATCAGCATGA

MMP3 AGTCTTCCAATCCTACTGTTGCT TCCCCGTCACCTCCAATCC

MET CTAGACACATTTCAATTGGT TGTTGCAGGGAAGGAGTGGT

FERMT1 GCGTTGACCATCCCAATGAAG ACCAAAGAGCAAAGTCTGACC

GAPDH GAAATCCCATCACCATCTTCCAGG GAGCCCCAGCCTTCTCCATG
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Chemotherapy and immunotherapy
response

On the basis of clinical recommendations, the regimens, which
included gemcitabine plus paclitaxel and FOLFIRINOX (5-
fluorouracil, oxaliplatin, irinotecan, and leucovorin), were selected
as the standard chemotherapy for PC patients. KRAS G12C inhibitor
is a new drug targeted at KRAS mutation, which is one of the most
common alterations in PC patients. To predict the sensitivity of
these drugs, the Genomics of Drug Sensibility in Cancer Database
(GDSC, https://www.cancerrxgene.org/) was applied to estimate the
half-maximal inhibitory concentration (IC50) of the samples in the
low- and high-risk groups (TCGA-PAAD).

To clarify the potential value of our model with respect to
immunotherapy, we analyzed T-cell inflamed gene expression profile
(GEP), cytotoxic activity (CYT), and the Tumor Immune Dysfunction
and Exclusion (TIDE) and obtained relevant information from the
immunotherapeutic cohort (IMvigor210) treated with the anti-PD-
L1 agent atezolizumab and calculated the K-M curves of TCGA-PAAD
(Cristescu et al., 2018; Jiang et al., 2018; Mariathasan et al., 2018). Based
on the response evaluation criteria in solid tumors (RECIST),
immunotherapy treatment in patients was identified as complete or
partial response (CR/PR) and stable disease (SD) or progressive disease
(PD). The relationship of the risk groups with the efficacy of treatment
was analyzed by using the Fisher’s test.

Protein and mRNA expression

The immunohistochemical data of normal pancreatic and
cancer tissues were acquired from the Human Protein Atlas
(HPA, https://www.proteinatlas.org/) to evaluate the protein
expressions of MET, FERMT1, MMP3, and CARD9. Based on
the mRNA expression from the TCGA database, HPA analyzed
the survival rate of approximately five genes in PC patients.

Cell lines and culture

Human PC cell lines, MIA PaCa-2, and the normal pancreatic
cell line, hTRET-HPNE, were cultured in Dulbecco’s modified Eagle
medium (DMEM) (VivaCell, Germany), with 10% FBS (Evergreen,
China) and 1% penicillin G (100 U/mL) (Beyotime Biotechnology,
China). In addition, other PC cell lines, CAPAN-1 and CFPAC-1,
were incubated in Iscove’s modified Dulbecco’s medium (IMDM)
(VivaCell, Germany), supplied with 20% FEB, and 10% FBS
(Evergreen, China) and 1% penicillin G (100 U/mL) (Beyotime
Biotechnology, China). The cells were cultivated at 37°C with 5%
CO2 and were collected at 80% confluence.

Quantitative reverse transcription PCR

The cells were harvested, and RNA was extracted by RNAiso
Plus (Takara, Kusatsu, Japan). Following the instructions, RNA was
reversely transcript into cDNA, using a PrimeScript™ RT reagent
Kit with gDNA Eraser (Takara, Kusatsu, Japan). PCRwas performed
on Bio-Rad CFX (Bio-Rad, United States) with TB Green® Premix

EX Taq™ II (Tli RNase H Plus) (Takara, Kusatsu, Japan). GAPDH
was considered a housekeeping gene. The expression of five genes
was analyzed using the 2−ΔΔCT [ΔCT = CT (target gene), CT
(housekeeping gene), ΔΔCT = ΔCT (cancer cell line), and ΔCT
(normal cell line)]. The primer sequences are listed in Table 1. We
compared every gene expression between each PC cell line and
normal pancreatic cell line. All experiments were repeated thrice.

Statistical analysis

The statistical analysis and relevant figure drawings were
performed by R (version 4.1.2). The comparison of continuous
variables in the two groups wasmade by theWilcoxon test and t-test.
The significance of survival was calculated by K-M curves and Cox
regression. The correlation analysis between groups was analyzed by
the Fisher’s test, and the tables were drawn by using EXCEL. LASSO
and univariate and multivariate Cox regressions were used for the
analysis of prognosis-related genes. The univariate and multivariate
Cox regressions were applied to assess the relationship between
prognosis and clinical features and the risk score. p < 0.05 was
considered statistically significant.

Results

Risk model

Identification of differentially expressed genes and
building a prognostic risk model

The TME participates in the process of PC. To study the
molecular signature of the TME in PC, we retrieved 4,709 TME-
related genes from the ImmPort Portal and MsigDB in total and
finally identified 385 genes which were differentially expressed
between normal and cancer tissues (Figures 2A, B).

To predict the outcomes of PC patients, we built a prognostic
risk model. After univariate and multivariate Cox and LASSO
analyses, five genes, namely, FERMT1, CARD9, IL20RB, MET,
and MMP3, met the criteria and constituted the formula of the
risk model (Figures 2C, D). The formula was formed by the sum of
the products of the expression of the gene and its coefficient RS �
0.35 × FERMT1 − 0.57 × CARD9 + 0.24 × IL20RB + 0.39 × MET+
0.23 × MMP3.

Internal and external validation of risk model
In accordance with the RS, 86 samples were assigned to the high-

risk group, with 91 samples being assigned to the low-risk group in
TCGA-PAAD. In GSE57495, 31 patients were assigned to the high-
risk group and 32 patients to the low-risk group. In CPTAC,
67 patients were assigned to the low-risk group and the rest were
labeled as high risk. The K-M curves confirmed that patients with
high-risk scores were prone to having a poor prognosis in TCGA-
PAAD (p < 0.001) (Figure 3A), GSE57495 (p < 0.05) (Figure 3B),
and CPTAC (p < 0.01) (Figure 3C). Additionally, the ROC curve
indicated that our prognostic risk model was widely flexible, with
AUCs at 1 year, 3 years, and 5 years of 0.737, 0.736, and 0.813,
respectively, in the TCGA-PAAD cohort (Figure 3D). The AUCs at
1 year, 3 years, and 5 years were 0.683, 0.655, and 0.542 in cohort
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GSE57495, respectively (Figure 3E). The AUCs at 1 year, 2 years,
and 3 years were 0.644, 0.662, and 0.643 in cohort CPTAC,
respectively (Figure 3F).

Evaluation of risk model
The clinical features were used to test the applicability of the

model. Based on the different clinical indices, such as age, sex,
grade, and stage, the patients were separated into different
subgroups. The K-M curves demonstrated that there were

notable prognostic differences between the low- and high-risk
groups in ages ≤65 years (p < 0.001) (Figure 4A); ages >65 years
(p < 0.001) (Figure 4B); male sex (p < 0.001) (Figure 4C); female
sex (p < 0.01) (Figure 4D); grades 1–2 (p < 0.001) (Figure 4E);
grades 3–4 (p < 0.05) (Figure 4F); stages 1–2 (p < 0.001)
(Figure 4G); and stages 3–4 (p < 0.05) (Figure 4H). The
univariate Cox regression indicated that the prognosis was
related to age (p < 0.05), grade (p < 0.05), and RS (p < 0.001),
while the multivariate Cox regression showed that only age

TABLE 2 Relationship between clinical characteristics and prognosis via univariate and multivariate Cox regressiona.

Univariate Cox analysis Multivariate Cox analysis

HR 95% CI p HR 95% CI p

Age 1.03 (1.01–1.05) 0.01 1.03 (1.00–1.05) 0.03

Gender 0.90 (0.59–1.37) 0.61

Grade 1.38 (1.02–1.86) 0.04 1.28 (0.93–1.75) 0.13

Stage 1.42 (0.98–2.07) 0.06

Risk score 1.16 (1.09–1.23) 5.75e-07 1.16 (1.09–1.22) 1.04e-06

aOne cancer sample was retrieved after chemotherapy, but the information of clinical characteristics of all patients was collected before treatments.

FIGURE 2
Summary of the differentially expressed genes (DEGs) and model building. (A) Heatmap of the expression of the DEGs between the normal and
cancer tissues of PC. (B) Volcano plot of the expression of the DEGs between the normal and cancer tissues of PC. (C) Based on DEGs, univariate Cox
analysis selected 86 candidate genes for risk model building. (D) Cross validation indicated minimum criteria for tuning parameter selection (λ) in the
LASSO is nine. (E) LASSO coefficient profiles of the TME-related genes. (F) Multivariate Cox analysis of selected genes.
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(p < 0.05) and RS (p < 0.001) were independent prognostic factors
(Table 2). In general, RS is a reliable independent index for
prognosis.

Next, considering the lack of data on long survival in PC, we
compared our risk model with published models on ROC at 1 year,
and our model achieved the largest AUC in the data set TCGA-
PAAD (Figure 4I), achieved the fourth largest AUC in CPTAC
(Supplementary Figure S1A), and the second in GEO57495
(Supplementary Figure S1B). The c-index of our model is 0.70,
which is higher than the c-index values of Lin et al. (2021) (0.66); Ma
et al. (2021) (0.63); Zhu et al. (2021) (0.66); Xie et al. 2022 (0.68); and
Deng et al. (2022) (0.64) models (Figure 4J). The c-index values of
our model based on CPTAC and GEO57495 were 0.595
(Supplementary Figure S1C) and 0.596 (Supplementary Figure
S1D), respectively. The evidence verified that our risk model was
superior to those of the other methods in terms of prognosis
prediction.

Establishment of nomogram and DCA
Considering the prognostic value of the risk score and clinical

characteristics, a nomogram was established to comprehensively
predict the outcome. The 1-, 3-, and 5-year survival rates could be
calculated by adding the points obtained using age, sex, distant
metastasis, lymph node metastasis, grade, and risk score.
Moreover, the model could help decision-makers manage
patients reasonably and foresee the prognosis of patients
(Figure 5A). The DCA and ROC curve showed that the
prediction of prognosis benefited more from the nomogram
than it did from the assessment with a single clinical index
(Figures 5B, C).

Molecule and immune features

Molecular characteristics of high- and low-risk
groups

Based on protein–protein interaction (PPI) in the STRING
database, 35 molecular targets were labeled to be associated with
the four genes (FREMT1 being the exception) that were included in
the risk model (Figure 6A).

We identified a few critical KEGG (Figure 6B), GO
(Supplementary Figure S2), and HALLMARK (Figure 6C)
pathways in each subgroup. In the high-risk group, multiple
cancer-related and ECM relative pathways were upregulated,
which included pathways in cancer (p < 0.05), the cell cycle (p <
0.05), KRAS signaling up (p < 0.05), adherens junction (p < 0.05),
ECM receptor interaction (p < 0.05), and notch signaling (p < 0.05).
Nevertheless, the immune pathways, which included primary
immunodeficiency (p < 0.05) and adaptive immune response
(p < 0.05), and the endocrine and metabolic related pathways,
such as type I diabetes mellitus (p < 0.05) and type II diabetes
mellitus groups (p < 0.05), were mainly enriched in the low-risk
group. The pathway related to cancer and the lack of involvement of
immunity may explain the poor outcomes of patients in the high-
risk group.

Immune cell infiltration and immune signature in
high- and low-risk groups

To comprehensively investigate the distribution of
immunocytes, we applied the multiple algorithms in every
cohort. Generally, immune cells differently infiltrated in the three
cohorts.We noticed that T cells, CD8+ T cells, B cells, and CTLs were

FIGURE 3
Internal and external validation of the risk model. (A) K-M curves of the overall survival in TCGA-PAAD (p < 0.001). (B) K-M curves of the overall
survival in GSE57495 (p < 0.05). (C) K-M curves of the overall survival in CPTAC (p < 0.05). (D) 1-year, 3-year, and 5-year ROC curves of the risk score in the
TCGA-PAAD cohort; (E) 1-year, 3-year, and 5-year ROC curves of the risk score in the GSE57495 cohort; and (F) 1-year, 2-year, and 3-year ROC curves of
the risk score in the CPTAC cohort.

Frontiers in Genetics frontiersin.org07

Nie et al. 10.3389/fgene.2023.1218774

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1218774


inclined to cluster in the low-risk group in the three cohorts based on
different algorithms (Figure 7A) (p < 0.05). In contrast to the low-
risk group, the patients in the high-risk group exhibited lower
infiltration of immune cells.

To spot the latent immune therapy target, we analyzed the
expression of immune genes in different groups in TCGA-PAAD.
The results showed that LAG3 (Figure 7B), TIGIT (Figure 7C), and
CTLA-4 (Figure 7D) were expressed more in the low-risk group than
in the high-risk group (p < 0.01). Preclinical and clinical studies have
shown that these genes are prospective immunotherapy targets
(Chen et al., 2022).

Genomic patterns

Key mutation signatures
We analyzed the mutational spectrum of TCGA-PAAD

patients in the high- and low-risk groups. SNP was the most
common variant type (Figure 8A). In total, 23,333 substitutions
occurred in 149 samples, with the range from 0 to 2,371. In
addition, the C>T substitution was the most distinct one between
the high- and low-risk groups (p < 0.05) (Figure 8B). In light of
the COSMIC signatures that were generated by decomposing the

mutation profile, the contribution of signatures 1, 14, and
28 exhibited significant differences in the two subgroups (p <
0.05) (Figure 8D). C>T mutations most likely arise from the T:G
mismatches generated from the deamination of 5′-
methylcytosine because of non–prior repair during DNA
replication. In addition, this is the characteristic of signature
1 which works as a cell division/mitotic clock in most cancers
(Alexandrov et al., 2015).

Understanding the mechanisms of somatically altered signaling
pathways in cancer is critical to develop new therapeutic approaches
(Sanchez-Vega et al., 2018). By “maftools,” we found that the RTK-
RAS and TP53 pathways were the top two signaling pathways with
the frequency of alterations, representing 60.13% and 57.59%,
respectively (Figure 8C).

Significantly mutated genes
To explore the genomic alterations between the high- and low-

risk groups, we identified mutated genes and investigated the CNVs.
As previously reported, the top mutated genes, that is, TP53, KRAS,
and CDKN2A, showed the most single-nucleotide variations (SNVs)
in the high-risk group in PC (Figure 9A) (p < 0.05). The pattern that
mutation appeared in the high-risk group with none of it appearing
in the low-risk group only showed for ARID1A (p < 0.05). To gain

FIGURE 4
Evaluation of the risk model. (A) K-M curves of the survival probability in patients under 65 years old (p < 0.001). (B) K-M curves of the survival
probability in patients over 65 years old (p < 0.001). (C) K-M curves of the survival probability in male patients (p < 0.001). (D) K-M curves of the survival
probability in female patients (p < 0.01). (E) K-M curves of the survival probability in patients with grades 1–2 disease (p < 0.001). (F) K-M curves of the
survival probability in patients with grades 3–4 disease (p < 0.05). (G) K-M curves of the survival probability in patients with stage 1–2 disease (p <
0.001). (H) K-M curves of the survival probability in patients with stages 3–4 disease (p < 0.05). (I) 1-year ROC curves of the risk score in Lin et al. (2021), Ma
et al. (2021), Zhu et al. (2021), Xie et al. 2022, Deng et al. (2022), and our models. (J) C-index of different models.
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more mutational perspectives, we analyzed the CNVs of the
mentioned top 20 genes and obtained similar results with the
frequency of mutation of TP53, CDKN2A, and ARID1A (p <
0.05), while the CNVs of KRAS showed no significant difference
in the high- and low-risk groups (p > 0.05) (Figure 9B). Next, the
striking alterations of CNVs were investigated. In addition, the
mutations of CNVs were mainly snoRNAs, the job of which was
uncertain in PC (p < 0.05) (Figure 9C) (Williams and Farzaneh,
2012). These results indicate the candidates of CNVs for intimate
relationships with PC. Using the maftools, the interaction of SMGs
was described. In the high-risk group, it is notable that TP53 chiefly
co-mutated with KRAS (p < 0.05) (Figure 9D), whereas in the low-
risk group, it mostly co-mutated with CDKN2A (p < 0.05)
(Figure 9E).

Single-cell RNA sequencing characteristics
After clustering and annotation of clusters, we noticed the

distributions of cancer cells, and fibroblasts in the high-risk
groups were apparently higher than those in the low-risk group
(p < 0.0001), while myeloid cells were slightly highly clustered in the
high-risk group than they were in the low-risk group (p < 0.01).
However, T cells were merely expressed in the high-risk group, while
they mostly clustered in the low-risk group (p < 0.0001) (Figures
10A–C). These evidence revealed that immune microenvironments
in the two RS groups were diverse. Based on the differentially
expressed genes (p < 0.05) (Figure 10D), enriched pathways from
GO, KEGG, and HALLMARK were analyzed (Figures 10E–H).
Similar to the results of the enriched pathways in the analysis of
transcriptome, the immune-related pathways were chiefly enriched

FIGURE 5
Establishment and evaluation of the nomogram. (A) Nomogram of clinical characteristics and risk score. (B) DCA of clinical characteristics and the
nomogram. (C) ROC of clinical characteristics and the nomogram.
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in the low-risk group, as cancer- and adhesion-related pathways
were largely boosted in the high-risk group (p < 0.05).

Chemotherapy and immunotherapy response
In validating chemotherapy sensitivity of different groups, based

on the drug response data, using a panel of 29 PC cells, the high-risk
cell lines were more resistant to oxaliplatin and irinotecan (the
typical chemotherapy drug for PC) than the low-risk cell lines (p <
0.01) (Figures 11A, B). The IC50 of KRAS (G12C) inhibitor was
higher in the low-risk group than it was in the high-risk group;
however, the difference was not significant (Figure 10C). In addition,
other drugs, such as 5-fluorouracil, gemcitabine, and paclitaxel,
showed little distinction between the low- and high-risk groups
(p > 0.05) (Figures 11D–F).

Immunotherapy is widely and successfully used in the treatment
of many cancers. To determine the potential response to
immunotherapy in PC, an anti-PD-1 cohort IMvigor210 was
used in our analysis. Patients labeled for high risk benefitted little
from the treatment with atezolizumab, while low-risk patients

obtained better outcomes (p < 0.01) (Figure 11G). After
immunotherapy, patients with lower risk scores were more likely
to have a complete response or partial response (CR/PR) (p < 0.05)
(Figure 11H). As reported, GEP and CYT are promising therapeutic
indexes for PD-1 blockade. Our results confirmed that the low-risk
group was prone to higher GEP (Figure 11I) and CYT (Figure 11J)
scores (p < 0.01). The low-risk group was more likely to achieve a
response after immune treatment, although the difference was not
significant (Figure 11K). Generally, the risk score could provide
clinicians with a method for identifying beneficial treatment for PC
patients.

Protein expression of genes in pancreatic tissues
FERMT1 (Figure 12A), MET (Figure 12B), and MMP3

(Figure 12C) overexpressed in PC tissues, while the
expressions of CARD9 (Figure 12D) were not outstanding in
both normal and cancer tissues in PC. According to the K-M
analyses from HPA, all five genes were prognosis indexes for PC
patients. Overexpression of FERMT1 (Figure 12E), MET

FIGURE 6
PPI of five genes andGSEA of high- and low-risk groups. (A) The interaction of proteins focused on the five genes. (B) Enriched KEGGpathways in the
TCGA-PAAD (p < 0.05). (C) Enriched HALLMARK pathways in the TCGA-PAAD (p < 0.05). Key pathways marked in red aremainly enriched in the high-risk
group and those in green are in the low-risk group.
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(Figure 12F), MMP3 (Figure 12G), and IL20RB (Figure 12I)
showed worse survival for PC. However, better prognostic
tendencies showed up in PC patients who exhibited high
expressions of CARD9 (Figure 12H). These results reconfirmed
our model.

MRNA expression in PC samples and cells
The expressions of FERMT1, IL20RB, MET, and MMP3 were

over expressed in PC samples when compared with those in normal

pancreatic tissues in the cohorts GSE15471, GSE28735, and
GSE62452 (p < 0.05) (Figures 13A–D). The expression of CARD9
was lower in tumor tissues than it was in the normal groups for
GSE28735 and GSE62452 (p < 0.05) cohorts. In the
GSE15471 cohort, the expression of CARD9 was higher in tumor
tissues but with no statistical significance (Figure 13E).

The expression of FERMT1, IL20RB, and MET increased in
most PC cell lines (CFPAC-1 and CAPAN-1) (p < 0.05) (Figures
13F–H). Chiefly, the expression levels of MMP3 and CARD9 were

FIGURE 7
Immune cell infiltration and gene expression. (A) Comparison of immune cell infiltration between the low- and high-risk groups in TCGA-PAAD,
GSE57495, and CPTAC analyzed by CIBERSORT, quanTIseq, TIMER, MCPcounter, EPIC, and ssGSEA (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
“ns” no significance, yellow* immune cell mainly infiltrated in the high-risk group, and blue* immune cell mainly infiltrated in the low-risk group). (B)
LAG3 differently expressed in high- and low-risk groups in TCGA-PAAD (p < 0.001). (C) TIGIT differently expressed in high- and low-risk groups in
TCGA-PAAD (p < 0.01). (D) CTLA4 differently expressed in high- and low-risk groups in TCGA-PAAD (p < 0.01).
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decreased in PC cell lines (MIA-PaCa-2 and CAPAN-1) (p < 0.05)
(Figures 13I, J).

Discussion

Recently, increasing evidence has shown a close relationship
between PC and TME. The stroma and PC cells dynamically
cooperate and promote all aspects of aggressiveness. From a
genetic perspective, growth, metabolism, homeostasis and
proliferation of cancer cells and the synthesis of cancer-related
proteins are influenced by tumorigenesis, which is promoted by
the mutation of genes in PC cells, such as KRAS, TP53, CDKN2A,
and SMAD4 (Saiki et al., 2021). At the same time, PC is very
heterogeneous because it contains abundant ECM and various
stromal cells, such as TAMs, MDSCs, CAFs, immunocytes, and
PSCs (Reyes-Castellanos et al., 2022). Interestingly, cancer cells can
work together with the TME by rewiring metabolism, autophagy,
and other mechanisms to serve as vital mediators of PC progression
(Perera and Bardeesy, 2015; Qin et al., 2020; Reyes-Castellanos et al.,
2020; Reyes-Castellanos et al., 2022). Generally, cancer cells and the
TME can promote the development, invasion, metastasis, drug
resistance, and evasion of immune surveillance in PC. Previous
studies have developed histological or molecular classifications to
predict the prognosis of PC, but their predictive ability for
therapeutic management is poor (Reid et al., 2013; Bailey et al.,
2016; Gutiérrez et al., 2021). Consequently, we analyzed the genetic

characteristics involved in the TME and developed a new method to
predict the prognosis and sensitivity of patients to treatments in PC.

By univariate and multivariate Cox and LASSO analyses, we
established a robust risk model to predict the survival of PC patients
and verified it in three cohorts. Cohorts TCGA-PAAD, GSE57495, and
CPTAC were used to check the practicality and reliability. Overall, the
survival analysis showed that ourmodel is helpful in identifying patients
who might suffer from poor prognosis. In cohort TCGA-PAAD, the
best effect of the model was exhibited at prediction for 5-year survival
rate, while in cohort GSE57495, it was at 1-year. This difference may be
caused by the distinction of the constitution of each cohort of patients’
clinical features. For instance, cohort GSE57495 completely focused on
the early stage of PC patients. In addition, in cohort CPTAC, no patient
lived more than 5 years, which resulted in the absence of AUC at
5 years. Furthermore, along with the construction of the risk model, we
spotted five genes that showed an intimate relationship with the
prognosis of PC patients. MET is a well-known gene that acts as a
growth factor under physiological conditions and can promote
oncogenesis via the active mode (Comoglio et al., 2008; Nakamura
et al., 2011). In head and neck squamous cell carcinoma, over half of the
patients overexpress HGF which stimulates MET to induce the
proliferation of cell cycle genes by activating STAT3 in the TME
(Igelmann et al., 2019; Boschert et al., 2020; Raj et al., 2022). Our
study found MET overexpressed in PC cells and tissues and high-
expressions of MET was correlated with worse prognosis. A previous
study has confirmed that MET facilitates stromal rewiring by
upregulating tenascin-C (TNC) expression, which interacts with

FIGURE 8
Key mutation signatures. (A) Summary of the variant type in the TCGA-PAAD cohort. (B) Possible substitution types in TCGA-PAAD. (C) Mutation
condition about oncogenic pathways in TCGA-PAAD. (D) Different expressions of the COSMIC mutational signatures in TCGA-PAAD (p < 0.05).

Frontiers in Genetics frontiersin.org12

Nie et al. 10.3389/fgene.2023.1218774

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1218774


FIGURE 9
Significant mutated genes. (A) Top 20mutated genes in high- and low-risk groups of the TCGA-PAAD cohort. (B) CNV condition of top 20mutated
genes. (C) Top 20 mutated genes by CNV. (D) Interaction of gene mutations in the high-risk group. (E) Interaction of gene mutations in the low-risk
group. (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

FIGURE 10
Single-cell RNA sequencing analysis. (A) Cell clustering in the high-risk group. (B) Cell clustering in the low-risk group. (C) Different analysis of cell
clustering in high- and low-risk groups by Fisher’s test. (D)Differentially expressed genes in high- and low-risk groups. (E) Enriched pathways from GO in
the high-risk group. (F) Enriched pathways fromGO in the low-risk group. (G) Enriched pathways from KEGG in two RS groups. (H) Enriched pathways by
GSVA in two RS groups. (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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ECM components and is deeply involved in the metastasis of cancer,
stimulating the proliferation and restraining the differentiation of CSCs
in PC (Jones and Jones, 2000; Orend, 2005; Orend and Chiquet-
Ehrismann, 2006; Modica et al., 2021). By proteolysis, MMP3,
another high-expression gene in PC samples, destroyed various
molecules, such as ECM and adhesion molecules, and enabled the
tumor to bemore aggressive (Sternlicht et al., 1999;Munhoz et al., 2010;
Niland et al., 2021). UpregulatedMMP3 participates in the progression
of genomic instability in tumors (Sun et al., 2014). By manipulating the
ECM, MMP3 is involved in oncogenesis, cancer cell proliferation, and
invasion, and this explains the factor of poor survival in PC (Hadler-
Olsen et al., 2013). Studies have also confirmed that the expression of
MMPs is regulated by the ECM and immune system which are absent
in cells in vitro (Conlon and Murray, 2019). This may explain the
different expressions of MMP3 in PC cells and samples. Due to TGFβ
signaling, the expression level of FERMT1 mRNA increases in several
PC cell lines and promotes migration and invasion (Sin et al., 2011).
CARD9 is critically involved in various inflammatory responses. By
manipulating inflammatory cytokines, CARD9 is involved in adaptive
immunity (Liu et al., 2022). In cancer, the cellular location of CARD9 is
in tumor-infiltrating macrophages rather than in cancer cells (Zhong

et al., 2018; Zhong et al., 2019), which explains the lower expression of
CARD9 in PC cells and samples than in normal pancreatic ones.
Furthermore, as determined by the biological state, macrophages, as a
constituent of the TME, can boost or suppress the proliferation and
metastasis of cancer (Pan et al., 2020; Xu et al., 2020; Zhou et al., 2020).
This may account for the dual functions of CARD9 that is a tumor
promoter and/or tumor inhibitor (Yang et al., 2007; Yang et al., 2008;
Bergmann et al., 2017; Haas et al., 2017). By working with cytokines and
ECM, five genes participate in the progress of PC. In addition, this close
relationship of genes and the TME in cancer makes a promising
prospective prediction of survival in PC patients, and a comparison
with other models certified the efficiency of our model. Next, to predict
survival in a more functional and simpler way, the nomogram was
established. The result of the nomogram showed that although other
clinical factors were taken into account, the risk score still played the
leading role.

GSEA, immune cell infiltration, and single-cell analysis confirmed
that low-risk patients have a strong relationship with the immune
system. The pathway enrichment analysis showed that cancer-related
pathways, such as pathways in cancer and the cell cycle, were
significantly enriched in the high-risk group, illustrating poor

FIGURE 11
Sensitivity of patients to treatments. (A) Oxaliplatin sensitivity in the high- and low-risk groups (p < 0.01). (B) Irinotecan sensitivity in the high- and
low-risk groups (p < 0.01). (C) KRAS (G12C) sensitivity in the high- and low-risk groups (p > 0.05). (D) 5-fluorouracil sensitivity in the high- and low-risk
groups (p >0.05). (E)Gemcitabine sensitivity in the high- and low-risk groups (p > 0.05). (F) Paclitaxel sensitivity in the high- and low-risk groups (p >0.05).
(G) Assuming K-M curves of the survival probability in patients in different groups after immunotherapy (p < 0.01). (H) Assuming response to
immunotherapy in different groups (p < 0.05). (I)GEP score in the high- and low-risk groups (p < 0.05). (J)CYT score in the high- and low-risk groups (p <
0.001). (K) TIDE count in the high- and low-risk groups (p > 0.05).
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survival. However, in the low-risk group, we noticed the enrichment of
immune-related pathways and this was in accordance with the result
that the anti-cancer immune cells, such as T cells, CD8+ T cells, CTL,
and B cells, were mostly infiltrated in the low-risk group. A previous
study has demonstrated that better DFS and OS were guaranteed in
patients by a higher expression of T cells (Muller et al., 2022). CD8+

T cells attack tumor cells by recognizing the antigen peptides on their
surface (Fukunaga et al., 2004; van der Leun et al., 2020). The role of
B cells in PC is still ambiguous. Preclinical evidence have verified that
immuno-suppressive B cells could promote cancer by suppressing the
activity of CD8+ T cells and secreting cytokines (Gunderson et al., 2016;
Pylayeva-Gupta et al., 2016). However, this kind of B cells only account
for 10% in B cells in PDAC in humans (Delvecchio et al., 2022). Most

B cells form TLS generate an inflammatory phenotype that facilitates
the activation and recruitment of antigen-presenting cells and dendritic
cells (DCs) (Ene-Obong et al., 2013; Watt and Kocher, 2013; Affara
et al., 2014). Therefore, the pro-tumoral role of B cells may be
overwhelmed by the anti-tumorigenic role. An intimate relationship
with the immune mechanism may explain better outcomes in patients
with low risk. In addition, drug sensitivity analysis manifested patients
gotten low risk score might benefit from the immune treatment, while
the counterpart might not.

Derived from the model, we identified several potential immune
targets, such as LAG3, TIGIT, andCTLA-4 (Chihara et al., 2018; DeLong
et al., 2019) that are highly expressed in the low-risk group. In PDAC, the
CD155/TIGIT axis maintains immune evasion. Combining regimens,

FIGURE 12
(A) Immunohistochemical data of FERMT1 in normal and tumor tissues in PC. (B) Immunohistochemical data of MET in normal and tumor tissues in
PC. (C) Immunohistochemical data of MMP3 in normal and tumor tissues in PC. (D) Immunohistochemical data of CARD9 in normal and tumor tissues in
PC. (E) K-M curves of survival probability in patients whose expressions of FERMT1 were different. (F) K-M curves of survival probability in patients whose
expressions of MET were different. (G) K-M curves of survival probability in patients whose expressions of MMP3 were different. (H) K-M curves of
survival probability in patients whose expressions of CARD9 were different. (I) K-M curves of survival probability in patients whose expressions of IL20RB
were different.
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with inhibitors of TIGIT and PD-1 plus CD40 agonism, in preclinical
models exhibited encouraging tumor suppression (Freed-Pastor et al.,
2021). In the TME, T-cell exhaustion is caused by LAG-3 that cooperates
with a pile of blockade receptors (Chihara et al., 2018; Edwards et al.,
2018; Karlsson et al., 2020). Inmice, treatmentwith anti-LAG-3 and anti-
PD-1 antibodies also showed a strong anti-tumor effect (Woo et al.,
2012). Although the mentioned targets are still stuck with preclinical
trials, our model suggests that immune therapy could be a promising
treatment for PC patients.

Mutation of KRAS is one of the most common alterations in both
high- and low-risk groups, being present in approximately 90% of PC
patients, and is regarded as the major genetic initiating event in
oncogenesis by influencing the TME and cell proliferation, apoptosis,
autophagy, and metabolism (Bailey et al., 2016; Chan-Seng-Yue et al.,
2020; Pereira et al., 2022). Though there was no significant difference in
sensitivity of anti-KRAS-G12C in the two groups, we noticed patients
marked with high risk are more sensitive to this drug than those at low
risk. In addition, the result of GSEA in hallmark data sets showed

pathway “KRAS signaling up” was mostly enriched in the high-risk
groups. Meanwhile, considering that the mutation of KRASG12C is less
frequent than the mutation of G12D in PC, KRAS G12D inhibitor may
be a better choice for high-risk patients.

Another gene, ARID1A, was only mutated in the high-risk
group. The function of ARID1A is complicated. In colorectal cancer
(CRC), the proliferation of KRAS-mutated cancer cell rely on ARID1A
(Sen et al., 2019). In gynecologic cancers,ARID1A suppresses cancer via
co-operating with p53 (Guan et al., 2011). In PC, we found that high-
risk patients exhibited more ARID1A mutation, but the reason for this
phenomenon was not clear. Anti-ARID1A might give us a new
therapeutic target for PC. Our study identified that co-mutations of
TP53 and KRAS might cause worse survival. This is consistent with a
former study (Shoucair et al., 2022). A preclinical study confirmed that
mutated KRAS and TP53 could upregulate FOXA1 by stimulating
CREB1 and finally exert an oncogenic effect (Kim et al., 2022).

Gemcitabine plus paclitaxel and FOLFIRINOX are the first
recommended chemotherapy agents for PC chemotherapy, and using

FIGURE 13
(A)Difference inmRNA expression of FERMT1 between normal and cancer tissues in data sets GSE15471, GSE28735, andGSE62452. (B)Difference in
mRNA expression of IL20RB between normal and cancer tissues in data sets GSE15471, GSE28735, and GSE62452. (C) Difference in mRNA expression of
MET between normal and cancer tissues in data sets GSE15471, GSE28735, and GSE62452. (D)Difference in mRNA expression ofMMP3 between normal
and cancer tissues in data sets GSE15471, GSE28735, and GSE62452. (E) Difference in mRNA expression of CARD9 between normal and cancer
tissues in data sets GSE15471, GSE28735, and GSE62452. (F)Difference in mRNA expression of FERMT1 between the cancer cell line and normal cell line.
(G) Difference in mRNA expression of IL20RB between cancer cell lines and normal cell line. (H) Difference in mRNA expression of MET between the
cancer cell line and normal cell line. (I) Difference in mRNA expression of MMP3 between cancer cell lines and normal cell line. (J) Difference in mRNA
expression of CARD9 between cancer cell lines and normal cell line (*p < 0.05, **p < 0.01, ***p < 0.001).
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our model, doctors can choose sensitive chemotherapy for PC patients
(Jameson et al., 2019; Robatel and Schenk, 2022). The compound
regimen of other treatments and immunotherapies, which remodels
the TME by adjusting the quantities and type of T cells, exhibits
promising effectiveness (Kole et al., 2022). The results verified that
low-risk patientswould exhibit a better response to immunotherapy. The
predictive value of drug responses was weakened by the rough risk
characteristics classification. As the only distinctive standard, the
assessment of the quantified risk scores for evaluating drug responses
cannot conclude with a precise regime. Finally, we identified several new
treatment targets, but these require further substantiation in future.

To a certain extent, the use of only online databases for data
verification and histological validations at a single level caused
validation limitation of our model. In future, local normal and
cancer pancreatic tissues and clinical data are called for to verify the
robustness of our model. Meanwhile, further experiments that include
genomic or proteomic analysis are demanded to investigate the
mechanism of FERMT1, IL20RB, MET, MMP3, and CARD9 in the
progress of PC and verify potential treatment targets.

Conclusion

In this study, we comprehensively analyzed the expression and
prognostic value of TME-related genes in PC. We established a risk
model showing high-risk patients with worse prognostic tendencies.
In addition, based on this model, multiomics methods were used to
explore the immune and genetic conditions to define the traits of the
TME, to identify novel treatment targets (LAG3, TIGIT, and
ARID1A) and predict diverse treatment sensitivities (high-risk
patients were more resistant to oxaliplatin, irinotecan, and
immunotherapy).
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Glossary

PC Pancreatic cancer

TME Tumor microenvironment

CAFs Cancer-associated fibroblasts

PSCs Pancreatic stellate cells

ECM Extracellular matrix

TAMs Tumor-associated macrophages

MDSCs Myeloid-derived suppressor cells

Tregs Regulatory T cells

EMT Epithelial–mesenchymal transformation

CSCs Cancer stem cells

TILs Tumor-infiltrating lymphocytes

DFS Disease-free survival

OS Overall survival

MSI-H High microsatellite instability

dMMR Mismatch repair deficiency

TMB Tumor mutational burden

PAAD Pancreatic adenocarcinoma

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

FPKM Fragments per kilobase of exon model per million mapped
fragments

CPTAC Clinical Proteomic Tumor Analysis Consortium

RSEM RNA sequencing by expectation-maximization

RMA Robust multichip average

MSigDB Molecular Signatures Database

NMF Non-negative matrix factorization

LASSO Least absolute shrinkage and selection operator

RS Risk score

AUC Area under the curve

ROC Receiver operating characteristic

K-M curves Kaplan–Meier curves

C-index Harrell’s concordance index

DCA Decision curve analysis

PPI Protein–protein interaction

GSEA Gene set enrichment analysis

COSMIC Catalogue of Somatic Mutations in Cancer

CNVs Copy number variations

FOLFIRINOX 5-Fluorouracil, oxaliplatin, irinotecan, and leucovorin)

IC50 Half-maximal inhibitory concentration

GEP T-cell inflamed gene expression profile

CYT Cytotoxic activity

TIDE Tumor Immune Dysfunction and Exclusion

IMvigor210 Immunotherapeutic cohort

RECIST Response evaluation criteria in solid tumors

CR Complete response

PR Partial response

SD Stable disease

PD Progressive disease

C1/2 Cluster 1/2

CTLs Cytotoxic lymphocytes

NK Natural killer cells

mDCs Myeloid dendritic cells

SMGs Significantly mutated genes

SNVs Single-nucleotide variations

SNP Single-nucleotide polymorphism

KEGG Kyoto Encyclopedia of Genes and Genomes

TNC Tenascin-C

NES Normalized enrichment score
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