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Owing to their functional diversity in many cancers, long noncoding RNAs
(lncRNAs) are receiving special attention. LncRNAs not only function as
oncogenes or tumor suppressors by participating in various signaling pathways
but also serve as predictive markers for various types of cancer, including acute
myeloid leukemia (AML). Considering this, we investigated lncRNAs thatmay act as
amediator between two processes, i.e., heat shock proteins and ferroptosis, which
appear to be closely related in tumorigenesis. Using a comprehensive
bioinformatics approach, we identified four lncRNAs (AL138716.1, AC000120.1,
AC004947.1, and LINC01547) with prognostic value in AML patients. Of interest,
two of them (AC000120.1 and LINC01547) have already been reported to be AML-
related, and AC004947.1 is considered to have oncogenic potential. In particular,
the signature obtained showed a lower survival probability with high-risk patients,
and vice versa. To our knowledge, this is the first predictive model of lncRNA that
may correlate with the processes of heat shock proteins and ferroptosis in AML.
Nevertheless, validation using patient samples is warranted.
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Introduction

It has been almost two decades since gene expression-based prognostic classification has
been introduced in acute myeloid leukemia (AML). Undeniably, several approved
approaches ranging from coding (Li et al., 2020a; Li et al., 2020b) to noncoding,
including micro-RNA and long noncoding RNA (lncRNA) expression, have been
successfully used to model patients’ stratifications in AML (Wallace and O’Connell,
2017; Gourvest et al., 2019; Singh et al., 2021). This, in turn, also raises the possibility of
further integrating and understanding the unrelated molecular processes involved in
different types of cancer, including AML.

In particular, lncRNAs have received considerable attention in recent years due to their
involvement in developmental processes and various diseases, including AML. For
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instance, one study investigated the differential expression profiles
of lncRNAs in AML patients by microarray and found that
SNHG5 significantly regulates chemotherapy resistance in AML
through the miR-32/DNAJB9 axis (Wang et al., 2020).
Underexpression of LINC00649 has been reported to be an
unfavorable prognostic marker in acute myeloid leukemia (Guo
et al., 2020). Garzon et al. revealed that some deregulated lncRNAs
were associated with recurrent mutations and clinical outcome in
AML patients (Garzon et al., 2014). Serum LINC00899 was
predicted to be a potential and useful noninvasive biomarker
for the early clinical detection and prognosis of AML (Wang
et al., 2018). Interestingly, several lncRNA-based integrated
models have been developed for the stratification of AML
patients (Liu et al., 2021; Zhu et al., 2023). Recently, an
integrated prognostic signature encompassing five immune-
related protein-coding genes and an immune-related lncRNA
has been successfully constructed to predict the survival and
stratification of AML patients (Zhao et al., 2022). Notably, the
expression of heat shock proteins (HSPs) is associated with major
adverse prognostic factors in AML (Thomas et al., 2005), and some
HSP90 inhibitors have been confirmed to be effective agents
against primary AML (Flandrin et al., 2008; Lazenby et al.,
2015). Likewise, research on ferroptosis-related processes and
clinical outcomes in AML is gaining momentum (Zheng et al.,
2021; Cui et al., 2022). In addition, some pieces of evidence suggest
a link among oncogenes, HSPs, and ferroptosis. For instance,
members of the HSP family, such as HSP72/73, HSP70, and
HSP90, have been linked to TP53 mutations in numerous
cancers (Lane et al., 1993; Sun et al., 1997; Calderwood et al.,
2006). Similarly, mutations in RAS and TP53 have been
demonstrated as being associated with both HSPs and
ferroptosis (Ye et al., 2020; Chen et al., 2021).

Considering that a link between HSPs and ferroptosis in AML
has been recently suspected (Dai and Hu, 2022; Liu et al., 2022;
Aolymat et al., 2023), herein, we investigated lncRNAs that may act
as mediators between two processes like HSPs and ferroptosis in
AML. To our knowledge, this is the first computational study
integrating these two processes, i.e., HSP and ferroptosis.

Materials and methods

Data generation for AML patients from The
Cancer Genome Atlas database

Transcriptomic profiling data for AML patients were obtained
from The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/repository, TCGA-LAML), while clinical data
(cytogenetic risk, age, blast cells, bone marrow blast cells,
hemoglobin, leucocytes, FAB classification, and gender) and
survival data for AML patients were downloaded from UCSC
Xena (https://xena.ucsc.edu/). From the TCGA-LAML dataset, we
extracted the gene expression of 97 HSP genes (Supplementary
Table S1), 268 ferroptosis genes (Supplementary Table S1), and
lncRNAs. Overall, 150 patients were included in our study. By
overlapping gene expression data with survival data, 131 patients
were included for further analysis. Of these, 84 patients had
mutation data and 127 patients had clinical data.

Identification of HSP and ferroptosis-
associated lncRNAs (HSP/ferroptosis-
lncRNAs) and construction of a novel
prognostic signature

According to Pearson’s correlation analysis, lncRNAs related to
HSP genes (HSP-associated lncRNAs) and ferroptosis genes
(ferroptosis-associated lncRNAs) were considered on the basis of
the following standard: Pearson’s analysis: |R|>0.6 and p < 0.001.
LncRNAs overlapping between HSPs and ferroptosis-related
lncRNAs were designated as HSP-dependent and ferroptosis-
related lncRNAs (HSP/ferroptosis-lncRNAs). A total of
131 patients (gene expression and survival data were included)
were randomly assigned to a training cohort (n = 66) and a
validation cohort (n = 65). A new signature was then determined
in the training cohort using the aforementioned HSP/ferroptosis-
lncRNAs. In brief, 64 survival-related HSP/ferroptosis-lncRNAs
were determined by univariable Cox regression analysis in the
training cohort. Cox regression analysis with least absolute
shrinkage and selection operator (LASSO) was then used to
further test the survival-associated lncRNAs. Based on 10-fold
cross-validation and lambda.min values, five lncRNAs were
obtained. Multivariate Cox regression analysis based on the
minimum value of the Akaike information criterion (AIC) was
used to generate a prognostic signature of HSP/ferroptosis-
lncRNAs. The signature risk score of each patient was calculated
via the following formula: risk score = ∑n

1Coe f i × Exp ri (Coe f i �
coef f icient, Exp ri � expression value of HSP dependent ferroptosis
related lncRNA). After summarizing the risk scores for the
66 patients, the median risk score was used as a cutoff point to
classify them into high- and low-risk groups. It is worth noting that
the same cutoff value was also used in the test and overall groups. In
addition, a chi-squared test was used to confirm the unbiasedness of
the clinical baseline data between the validation (test and overall
cohorts) and training cohorts.

Evaluation of the prognostic signature of the
four lncRNAs

The training, test, and overall cohorts were assessed for
predictive ability between the high- and low-risk groups using
Kaplan–Meier (KM) curves. Receiver operating characteristic
(ROC) curves and a concordance index (C-index) were
introduced to further validate the predictive ability of the
signature in the overall cohort. The CPH function from the ‘rms’
R package was used to perform C-index analysis. Univariable and
multivariate Cox regression analyses were used to examine potential
independent predictors of survival in the overall cohort by
combining signature and clinical characteristics. In addition, this
signature was applied to the overall cohort to assess its prognostic
potential in subgroups of individual clinical characteristics. Of note,
the cutoff values for continuous clinical characteristics were age/
60 years, blast cells/median value, bone marrow/median value,
hemoglobin/median value, and leucocytes/median value,
respectively, while subgroups of the remaining clinical
characteristics were cytogenetic risk (favorable/normal vs. poor),
FAB classification (non-M3 vs. M3), and sex (male vs. female).
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Functional enrichment analysis

We compared the gene expression of the high-risk and low-risk
groups to obtain differential genes that must meet the following
criterion: false discovery rate (FDR) < 0.05 and log2-fold change
(logFC) > 1. Then, Gene Ontology (GO) enrichment analysis was
used to identify biological processes (BPs), cellular components
(CCs), and molecular functions (MFs). The Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis was used to explore
potential biological signaling pathways.

Investigating the association of immune
function, Tumor Immune Dysfunction and
Exclusion, and tumormutation burden using
the obtained signature

Single-sample gene set enrichment analysis (ssGSEA) was used
to assess the different immune functions between the high-risk and
low-risk groups. The Tumor Immune Dysfunction and Exclusion
(TIDE) score can help physicians select patients who are best-suited
to receive immune checkpoint therapy, so we calculated the TIDE
score of AML patients in TCGA. The TIDE algorithm was used to
calculate the TIDE score, and we compared the differential TIDE
values between the high- and low-risk groups using the Wilcoxon
rank-sum test. We further implemented the R package “maftools” to
visualize the mutation profiles of AML patients. The first 16 mutated

genes were TP53, TTN, IDH2, NPM1, DNMT3A, FLT3, ASXL1, KIT,
PAN2, FAT2, IDH1, IQCN, KRAS, MUC16, RUNX1, and BCORL1.
The difference in the tumor mutation burden (TMB) between the
high- and low-risk groups was compared using the Wilcoxon rank-
sum test. The differences in survival probability between the high-
TMB and low-TMB groups are also presented using KM curves. The
optimal cutoff value for the TMB was determined using the surv_
cutpoint function in R.

IC50 scores

The determination of the half-maximal inhibitory concentration
(IC50) serves as a crucial parameter for assessing the effectiveness of
and response to a drug treatment. In our study, we utilized the
“pRRophetic” package to predict the clinical chemotherapeutic
response for each sample.

Statistical analysis

Statistical analyses were performed using R software. Pearson’s
correlation analysis, LASSO Cox regression, univariable and
multivariable Cox regression, Kaplan–Meier curves, ROC curves,
C-index, and Wilcoxon rank-sum test were used to analyze our
study data. p < 0.05 was considered significant. *p < 0.05; **p < 0.01;
and ***p < 0.001; ns: not significant.

FIGURE 1
Study flowchart for our analysis. TCGA: The Cancer Genome Atlas; KM curve: Kaplan–Meier curve; ROC: receiver operating characteristic; C-index:
concordance index; GO/KEGG: Gene Ontology/Kyoto Encyclopedia of Genes and Genomes; TIDE: Tumor Immune Dysfunction and Exclusion; and
TMB: tumor mutation burden.
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Results

Establishing a signature from HSP/
ferroptosis-associated lncRNAs (HSP/
ferroptosis-lncRNAs) in AML patients

The flowchart of this study is given in Figure 1.We extractedHSP,
ferroptosis, and lncRNA gene expression from the RNA-seq data of
AML patients from the TCGA database. Using Pearson’s correlation
analysis (|R|>0.6 and p < 0.001), 713 lncRNAs associated with HSP
genes and 1,537 lncRNAs associated with ferroptosis genes were
identified (Supplementary Table S2, 3). Overlapping 526 lncRNAs
from the HSP-associated and ferroptosis-associated lncRNAs were
determined as HSP/ferroptosis-lncRNAs (Supplementary Table S4).
Subsequently, 131 patients (gene expression and survival data) were
randomized to the training and test cohorts in a 1:1 ratio. We then

determined the prognostic signature in the training group. First, in
combination with survival data, we used univariable Cox regression to
find the top 64 lncRNAs that were associated with survival time
(Supplementary Table S5). To further test the lncRNAs for survival,
we used LASSO Cox regression and obtained five lncRNAs
(AL138716.1, AC000120.1, AC004947.1, AC020934.2, and
LINC01547) (Supplementary Figure S1). In addition, multivariate
Cox regression analysis was performed to generate a novel prognostic
signature containing four lncRNAs associated with HSP/ferroptosis
(AL138716.1, AC000120.1, AC004947.1, and LINC01547) (Table 1).
As shown in Supplementary Table S6, all clinical factors were
unbiasedly distributed between the training and test cohorts, which
was confirmed by using the chi-squared test method (p-values >0.05).

Evaluating and confirming the prognosis of
the signature

We calculated the risk score of each patient using the
formula given in Materials and Methods. According to the
median value of the risk score of the patients in the training
cohort, we classified the patients in the three cohorts (training,
test, and overall cohorts) into high- and low-risk groups. The
risk level, survival status, and survival time between the high-
and low-risk groups in these three cohorts are shown in Figure 2
and Supplementary Figure S2. The expression of the four

TABLE 1 Multivariate Cox regression analysis.

LncRNA Coefficient

AL138716.1 −0.936

AC000120.1 −1.149

AC004947.1 0.658

LINC01547 0.798

FIGURE 2
Establishment of a prognostic HSP/ferroptosis-lncRNA signature. (A) Survival time, risk score, and heatmap for the overall cohort. (B) KM survival
curve for AML patients in the overall cohort. (C) C-index analysis for the risk score (based on the signature) and clinical characteristics. (D) ROC curves of
the risk score (based on the signature) and clinical characteristics (left) and ROC curves for risk score (based on the signature) at different time points (1, 3,
and 5 years) in the overall cohort. (E) Multivariate Cox regression analysis. (F) PCA of the HSP/ferroptosis-lncRNA signature.
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lncRNAs associated with HSP and ferroptosis for each patient in
the different cohorts is shown as a heatmap (Figure 2A and
Supplementary Figure S2A). Survival analysis (KM method)
showed that the OS of the low-risk group was longer than
that of the high-risk group in the training cohort (p < 0.001),
test cohort (p = 0.046), and overall cohort (p < 0.001) (Figure 2B
and Supplementary Figure S2B). The prognostic significance of
the signature was further confirmed using the ROC curve and
C-index analysis in the overall cohort. As shown in Figure 2C,
the risk score based on our signature and age showed values
greater than 0.65 for the C-index method, and the risk score is
higher than the age. Moreover, compared with other clinical
characteristics, the risk score has the highest AUC (0.741) in the
ROC curve (Figure 2D). In addition, the AUC values of the ROC
curve at different time points were all above 0.700 at 1 year
(AUC = 0.741), 3 years (AUC = 0.719), and 5 years (AUC =
0.783) (Figure 2D). Thus, the signature represents a robust
model for predicting survival in AML patients.

Univariable cox regression was used to confirm that the risk
score (based on the signature), FAB classification, and age are
factors that can predict survival in AML patients (Supplementary
Figure S2C). In addition, by combining the risk score (signature-
based) and clinical characteristics, we confirmed the risk score and
age to be independent predictors of survival in AML patients using
multivariate Cox regression (Figure 2E). PCA was then performed
to test the ability to cluster the high- and low-risk patients in
different groups including the HSP/ferroptosis-lncRNA signature,
overall gene expression profile, HSP genes, HSP-associated
lncRNAs, ferroptosis genes, ferroptosis-associated lncRNAs, and

HSP-associated and ferroptosis-associated lncRNAs.
Supplementary Figure S3 and Figure 2F show that the HSP/
ferroptosis-lncRNA signature group showed a significant
distribution between the high- and low-risk subgroups, whereas
the other groups were relatively dispersed between the high- and
low-risk subgroups. These results showed that the prognostic
signature can discriminate well between high- and low-risk
groups.

Given that elderly patients, patients with high leukocyte value
and/or poor cytogenetics risk, etc., have poor prognosis in clinic,
we further assessed the predictive ability of the obtained signature
in clinical subgroups using KM curves (Figure 3). We divided the
clinical characteristics into the following subgroups: sex (male and
female), age (≥60 and <60), FAB (M3 and non-M3) and
cytogenetic risk (favorable + normal and poor), blast cells (high
and low), bone marrow blast cells (high and low), hemoglobin
(high and low), and leucocytes (high and low). Of note, the
classification of blast cells, bone marrow blast cells,
hemoglobin, and leucocytes into high and low groups was
based on their median value. After applying the obtained
signature to classify the patients into low and high risk, the
differential survival probability between low- and high-risk
patients was shown as gender (male, p = 0.001), gender
(female, p = 0.016), age (≥60, p < 0.001), age (<60, p = 0.024),
FAB (M3 group, p = 0.198), FAB (non-M3, p = 0.002), cytogenetic
risk (favorable + normal, p = 0.002), cytogenetic risk (poor, p =
0.008), blast cells (high, p = 0.005), blast cells (low, p = 0.006),
bone marrow blast cells (high, p = 0.087), bone marrow blast
cells (low, p < 0.001), hemoglobin (high, p < 0.001), hemoglobin

FIGURE 3
Evaluating the predicting ability of the obtained signature in clinical subgroups using KM curves.
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FIGURE 4
Functional enrichment and immune and mutation-associated analysis. (A, B) GO and KEGG enrichment analysis. (C, D) Differential immune
indicators and TIDE scores between low-risk and high-risk groups based on the obtained signature. (E)Waterfall plot showing the mutation landscape of
high-risk and low-risk group AML patients. (F) Difference in the TMB between high-risk and low-risk groups. (G) Survival probability between high- and
low-expression TMB.

FIGURE 5
Distribution of IC50 scores of targeted drugs in different HSP-ferroptosis-related lncRNA risk groups. (A) 17-AAG, (B) axitinib, (C) CGP-60474, (D)
CP466722, (E) crizotinib, (F) cytarabine, (G) GDC0449, (H) GNF-2, (I) GSK429286A, (J) NG-25, (K) NPK76-II-72–1, (L) NSC-207895, (M) PF-4708671, (N)
TGX221, (O) TL-2-105, (P) tubastatin A, and (Q) ZM-447439.
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(low, p = 0.241), leucocytes (high, p = 0.781), and leucocytes
(low, p < 0.001) in Figure 3. Overall, the signature has prognostic
ability in most clinical subgroups.

Correlation of functional enrichment,
immune function, mutations, and TIDE
analysis with the obtained signature

To elucidate the relationship between the signature and
potential function (BP, CC, MF, and pathway), we performed
functional enrichment analysis using the GO and KEGG method
(Figures 4A,B). Interestingly, the enrichment analysis revealed the
involvement of many immune-related BPs, MFs, and pathways for
the signature. To examine changes in immune markers between the
high- and low-risk groups based on our signature, we used the
ssGSEA and Wilcoxon rank-sum test (Figure 4C). The results
showed that APC inhibition/stimulation, interferon (IFN) type
I/II responses, chemokine receptor (CCR), para-inflammation,
human leukocyte antigen (HLA), major histocompatibility
complex (MHC) class I, checkpoint, T-cell stimulation, and
promotion of inflammation were significantly more active in the
high-risk group than in the low-risk group. Thus, this signature is
implicated in the immune progression/functioning in AML patients.
Considering this, we further investigated the association of the
immune checkpoint blockade with the signature using TIDE
analysis (Figure 4D). The high-risk group showed a high TIDE
score compared to the low-risk group, suggesting a lower sensitivity
to immune checkpoint inhibitors in the high-risk group, which
could help in predicting ICI treatment in the clinic for patients
classified based on the signature.

Given that gene mutations are an important part of AML, we
analyzed the mutation data in our study. The 16 most mutated genes
from 84 samples (samples that contained gene mutation data) were
used in a high-risk group (48 samples) and a low-risk group
(36 samples) to assess the differential mutation landscapes, as
shown in Figure 4E. In particular, the mutation rates of the
NPM1 and RUNX1 genes in the high-risk group and the
IDH2 gene in the low-risk group were 10%, 10%, and 14%,
respectively. As shown in Figure 4F, the TMB estimates in the
low-risk group exceeded those in the high-risk group (p = 0.0076).
However, there was no difference in survival time between the high-
and low-risk groups with respect to the TMB (Figure 4G).

IC50 scores

In our study, we examined the differences in the IC50 scores for
chemotherapy between high- and low-risk groups based on the
obtained signature. Specifically, we observed that the IC50 values for
axitinib, CP466722, crizotinib, cytarabine, GNF-2, GSK429286A, NK-
25, NPK76-II-72–1, NSC-207895, PF-4708671, TL-2-105, tubastatin,
and ZM-447439 were higher in the high-risk group. Conversely, the
IC50 values for 17-AAG, CGP-60474, GDC0449, and TGX221 were
lower in the high-risk group (Figure 5). These findings support the
notion that there is a statistically significant difference in the
distribution of IC50 values for targeted agents among high- and
low-risk groups based on the obtained signature.

Discussion

Although studies in recent decades have improved our
understanding of AML, the underlying pathogenesis of this lethal
disease has not yet been fully elucidated. With the development of
NGS technologies, more and more AML-related mechanisms have
emerged, including the eventual contribution of long noncoding RNAs
(lncRNAs) (Mer et al., 2018; Liu et al., 2019; Mishra et al., 2022). In fact,
several studies have established lncRNA-based prognostic models for
clinical characterization in AML patients (Zhao et al., 2021; Ding et al.,
2022; Li et al., 2022; Zhang et al., 2022). Independently, an association of
HSPs (Li and Ge, 2021) and ferroptosis-related lncRNAs (Zheng et al.,
2021) has been demonstrated in AML. Given that HSPs and ferroptosis
appear to be closely linked to tumorigenesis (Liu et al., 2022), using a
comprehensive bioinformatics approach, we sought to identify
lncRNAs that may overlap with these processes with predictive
relevance for AML patients.

To determine this, we extracted the HSP-, ferroptosis-, and
lncRNA-related gene expression data of AML patients using
the TCGA database. Using Pearson’s correlation analysis, we
identified overlapping lncRNAs (termed HSP/ferroptosis-
lncRNAs), and subsequent analysis revealed four lncRNAs
associated with HSP/ferroptosis genes (AL138716.1, AC000120.1,
AC004947.1, and LINC01547) as a prognostic signature. In
particular, AC000120.1 has been recently reported in a prediction
model based on seven cuproptosis-related lncRNAs for AML
prognosis (Zhu et al., 2023). Similarly, LINC01547 has been
reported in m6A-related lncRNAs associated with prognosis and
immune response in AML patients (Li et al., 2021). While
AC004947.1 has shown oncogenic potential (Zhao et al., 2020),
AL138716.1 has not yet been reported in studies. Notably, when
we tested the obtained signature to classify AML patients, we
found that high-risk patients had a lower survival probability
compared to the low-risk group, indicating the prognostic ability of
the signature in AML, and the following analysis confirms that the
signature is a robust independent factor for AML patients. In addition,
the prognostic ability also presents its potential predicting ability in
different clinical subgroups.

Both GO and KEGG analysis provided immune-related evidence in
AML. Some immune indicators in possible different between low-risk
and high-risk group.Moreover, the high-risk group showed a highTIDE
score, indicating a lower sensitivity to immune checkpoint inhibitors in
the high-risk group, potentially helping to predict ICI treatment in the
clinic for patients classified on the basis of the signature. Overall, these
lines of evidence revealed the relation of the obtained signature with
immune response. The differential landscapes of gene mutation and
tumor mutational burden were found between high- and low-risk
groups, which may partly contribute to the prognostic ability of our
signature. Furthermore, our study contributes valuable insights into the
varying treatment sensitivity among AML patients by conducting drug
sensitivity analysis for the high-risk and low-risk groups based on the
HSP–ferroptosis–lncRNA status.

It is also worth noting the limitation to this study, as the analysis
relies purely on comprehensive bioinformatics and requires effective
experimental validation. Nevertheless, two out of four lncRNAs in
our signature have been proven in AML, thus providing evidence
that our predictive model of lncRNA may correlate with the
processes of HSPs and ferroptosis in AML.
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