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Introduction: Tuberculosis (TB) is an infectious disease caused by a bacterium
calledMycobacterium tuberculosis (Mtb). Previous studies have primarily focused
on the transmissibility of multidrug-resistant (MDR) or extensively drug-resistant
(XDR)Mtb. However, variations in virulence acrossMtb lineages may also account
for differences in transmissibility. In Mtb, polyketide synthase (PKS) genes encode
large multifunctional proteins which have been shown to be major mycobacterial
virulence factors. Therefore, this study aimed to identify the role of PKS mutations
in TB transmission and assess its risk and characteristics.

Methods: Whole genome sequences (WGSs) data from 3,204 Mtb isolates was
collected from 2011 to 2019 in China. Whole genome single nucleotide
polymorphism (SNP) profiles were used for phylogenetic tree analysis. Putative
transmission clusters (≤10 SNPs) were identified. To identify the role of PKS
mutations in TB transmission, we compared SNPs in the PKS gene region
between “clustered isolates” and “non-clustered isolates” in different lineages.

Results: Cluster-associated mutations in ppsA, pks12, and pks13 were identified
among different lineage isolates. They were statistically significant among
clustered strains, indicating that they may enhance the transmissibility of Mtb.

Conclusion:Overall, this study provides new insights into the function of PKS and
its localization inM. tuberculosis. The study found that ppsA, pks12, and pks13may
contribute to disease progression and higher transmission of certain strains. We
also discussed the prospective use ofmutant ppsA, pks12, and pks13 genes as drug
targets.
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1 Introduction

Tuberculosis remains a major cause of suffering worldwide.
Globally in 2020, tuberculosis was the second leading cause of death
from infectious disease in humans worldwide, following COVID-19.
Approximately 10 million individuals contracted tuberculosis
disease, and roughly 1.5 million lost their lives. (Global
tuberculosis report 2021, 2021). Successful TB transmission
depends on the interplay of human behavior, host immune
responses, and Mycobacterium tuberculosis (Mtb) virulence
factors. More attention has been paid to the transmission of
multidrug-resistant (MDR) or extensively drug-resistant (XDR)
Mtb, (Clark et al., 2013; Yang et al., 2017a; Madikay et al., 2017;
Bouzouita I Fau - Cabibbe et al., 2019; Dixit et al., 2019; Jiang et al.,
2020a), or described the dynamics of TB transmission combined
with host risk factors (Genestet C Fau - Tatai et al., 2019; Liu et al.,
2021). To date, there has been no systematic study to delineate the
role of virulence factors in TB transmission. (Global tuberculosis
report 2021, 2021). InMtb, polyketide synthase (PKS) genes encode
large multifunctional proteins that contain all domains required to
catalyze the various steps involved in the biosynthesis of complex
mycobacterial lipids. These lipids have been shown to be key players
for mycobacterial pathogenicity and transmissibility (Camacho
et al., 1999; Cox et al., 1999; Asselineau et al., 2002; Reed et al.,
2004; Tsenova et al., 2005; Astarie-Dequeker et al., 2009; Verschoor
et al., 2012; Cambier et al., 2014; Passemar et al., 2014) and
contributors to the cell envelope permeability barrier to
antimicrobial drugs (Camacho et al., 2001; Alibaud et al., 2011;
Chavadi et al., 2011; Yu et al., 2012).

Polyketide synthases are grouped into three protein structure-
based types: Type I, Type II, and Type III. According to a previous
study, Type I PKS generally synthesizes complex metabolites with
the use of a modular or iterative biosynthetic mechanism (Gokhale
et al., 2007a). In an iterative mechanism, the final product is
produced by repeating the same active sites, while modular
proteins follow an assembly-line mechanism (Gokhale et al.,
2007a). This study primarily focused on three lipids: DIMs,
MPMs, and mycolic acids and their corresponding synthesis
proteins, ppsA, pks12, and pks13, respectively. PpsA, pks13 and
pks12 were belong to Type I PKS. PpsA and pks13 belong to
modular I PKS, while pks12 belongs to iterative I PKS
(Onwueme et al., 2005). Dimycocerosates are a family of
compounds that contain two diols, phthiocerol and
phenolphthiocerol, which have been proven to be major
mycobacterial virulence factors with complex molecular
mechanisms of action (Camacho et al., 1999; Cox et al., 1999;
Reed et al., 2004; Tsenova et al., 2005; Astarie-Dequeker et al.,
2009; Cambier et al., 2014; Passemar et al., 2014). The clusters of
ppsABCDE genes had been shown to be involved in the biosynthesis
of phthiocerol products (Figure 1A). Phthiocerol products are
synthesized by catalyzing a stepwise chain elongation and
functional group modification with modular organization of pps
proteins (Trivedi et al., 2005; Siméone et al., 2010). As shown in
Figure 1C, the pks12 protein is involved in biosynthesis of a
phospholipid MPM (Matsunaga et al., 2004). Recently, it has
been discovered that novel phospholipid MPMs isolated from
Mtb and other pathogenic mycobacteria consist of a mannosyl-β-
1-phosphate. Mycolic acids are key players in the infectious process

(Moody DB et al., 2002; Geisel RE et al., 2005; Layre et al., 2009; Esin
et al., 2013). In mycolic acid synthesis, pks13 performs Claisen
condensation of a C26 α-alkyl branch and C40–60 meromycolate
precursors as the final assembly stage (Figure 1B) (Portevin et al.,
2004). It has been demonstrated that this activity is crucial both
in vitro and in vivo (Portevin et al., 2004; Wilson et al., 2013).
Additionally, according to several genomic investigations, some PKS
disruption mutants in mycobacteria have altered lipid profiles and
some also show virulence attenuation (Sirakova et al., 2001; Dubey
et al., 2002). PKS proteins play a significant role in enhancing the
virulence and pathogenicity of M.tb. Nonetheless, the exact
regulatory mechanism of PKS in M.tb is still unclear, and there
is limited research on how gene mutations affecting PKS impact the
transmission of M.tb. Thus, to develop effective TB control
strategies, it is also necessary to gain a deeper understanding of
the role of PKS gene in TB transmission. Therefore, this study aimed
to identify the role of PKS mutations in TB transmission and assess
its risk and characteristics. We also discussed the prospective use of
mutant PKS genes as drug targets.

2 Materials and methods

2.1 Clinical isolates

Genomic DNA was successfully extracted from 1,468 Mtb
samples from Shandong Provincial over a 5-year period for this
study, and a total of 1,449 samples passed quality control (QC).
Quality control of sequenced reads was carried out using FastQC
software. In this study, we combined the 1,449 Mtb whole genome
dataset with another genome dataset consisting of 1755 isolates,
which were acquired from nine previously published articles (Zhang
et al., 2013; Luo et al., 2015; Yang et al., 2017b; Liu et al., 2018a; Hicks
et al., 2018; Yang et al., 2018; Chen et al., 2019; Huang et al., 2019;
Jiang et al., 2020b). These samples were randomly collected from
21 provinces, 4 municipalities, and 5 autonomous regions in China,
totaling to 3,204 isolates, from 2011 to 2019, to analyze the role of
PKS mutation in TB transmission. Of the 3,204 Mtb isolates,
Shandong contributed the most isolates (1,484), Yunnan the
fewest (2), Xinjiang and Hainan (3), Qinghai and Tianjin (5),
Gansu (8), Chongqing (9) and other provinces, municipalities, or
autonomous regions contributed from 11 to 454 isolates; 73 had
undetermined sources (Figure 2). We added a Supplementary Table
S1) of the list of the1755 isolates, together with their corresponding
meta-data. We also added a flowchart (Figure 3) about the process of
identification and exclusion of genomic data.

2.2 Whole-genome sequencing and SNP
identification

The genomewas sequenced usingHiSeq 4,000 (Illuminia Inc., San
Diego, CA, United States). We discarded low-quality raw reads from
paired-end sequencing. Maximal Exact Match algorithm was
implemented by bwa mem (version 0.7.17-r1188) and was used to
align the read to the H37Rv reference genome (NC_000962). Samclip
(version 0.4.0) and samtools markdup (version 1.15) were used to
remove clamped alignments and duplicated reads, excluding samples
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with coverage less than 98% and depth less than 20 (Li and Durbin,
2009; Li et al., 2009; Li andDurbin, 2010; Li, 2013). Variant calling was
performed using Freebayes (version 1.3.2) and bcftools (version
1.15.1) with a filter parameter ‘FMT/GT = “1/1”&& QUAL>=100
&& FMT/DP>=10 && (FMT/AO)/(FMT/DP)>=0’. Single nucleotide
polymorphisms in previously defined repetitive regions were
excluded, including PPE and PE-PGRS genes, and mobile elements
or repeat regions and repeat bases generated by TRF (version 4.09)
and Repeatmask (version 4.1.2-p1) (Benson, 1999; Saha et al., 2008;
Garrison and Marth, 2012; Danecek et al., 2021). The filtered vcf file
was annotated using snpEff (version 4.3t) to get the final SNP samples
(http://SnpEff.sourceforge.net/) (Cingolani et al., 2012). Genotypic
drug resistance of each isolate was predicted in TBProfiler using an
established library of mutations (https://github.com/jodyphelan/tbdb)
(Coll et al., 2015). The virulence factor database (http://www.mgc.ac.
cn/VFs/) contains various medically important bacterial pathogen
virulence factors, which include 86 experimentally confirmed and
171 putative genes related to the virulence of Mtb (Liu et al., 2022).
There are at least 24 different PKS encoded in the genome (Cole et al.,
1998).

2.3 Mtb lineage and genomic cluster

We used the web-based tool TBProfiler (version 4.3.0) to analyze
3204 M. tuberculosis WGS data to assign lineages and predict drug
resistance (Phelan JE et al., 2019). Genomic clusters were ascertained
independently of the epidemiological data, and Genomic clusters were
inferred based on how genetically similar two isolates were from each
other. The upper thresholds of genomic relatedness or cluster is defined
as 12 SNPs or alleles cut off or less and a recent transmission event is
defined as 5 or less SNPs or alleles (Walker et al., 2013; Kohl TA et al.,
2018). If two isolates exhibited a distance of more than 12 SNPs or
alleles, they were called unique strains. In this study M. tuberculosis
isolates with a genomic difference (s) ≤ 10 single nucleotide
polymorphisms (SNPs) were defined as a genomic cluster (Yang
et al., 2017a) for further analysis of transmission cluster to avoid
missing cases and incorporating recent and old transmission events,
which is similar to definitions used in previous genomic studies of M.
tuberculosis transmission (Walker et al., 2013; Walker et al., 2014;
Guerra-Assunção et al., 2015). As suggested by recent analysis of intra-
patient variation, the estimate of 5 SNPsmay be too low (LiebermanTD

FIGURE 1
Catalytic and mechanistic versatility of ppsA, pks12, pks13. (A) PpsA initiates biosynthesis of phthiocerol products. It does this by extending its
substrate using a malonyl-CoA extender unit; the same has been observed for ppsB and ppsC proteins. The ppsD and ppsE proteins add two (R)-
methylmalonyl units to the substrate. (B) The pks13 protein consists of five domains, including two acyl carrier protein domains, a β-ketoacyl-synthase, an
acyltransferase, and a C-terminal thioesterase (TE) domain, which together contain all the activities required for the condensation of two long-chain
fatty acids. (C) There are two complete sets of modules in pks12, which produce mycoketide using five alternating condensations of methylmalonyl and
malonyl units. The iterative process would generate a fully saturated chain with branching at each alternate ketide unit.
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et al., 2016), we finally chose the cut-off of 10 SNPs to define
transmission clusters for further analysis based on the previous
study (Holt et al., 2018). The clustering was performed based on the
statistical analysis which was not associated with sampling.

2.4 Phylogenetic analysis

Reference genome with only substitution variants instantiated
was used as the sample’s genome. Maximum-likelihood (ML)
phylogenetic trees were constructed and dated by IQ-TREE
(v1.6.12) model “JC + I + G4” with 1,000 ultrafast bootstrap
replicates and treetime (v0.9.0) [GitHub - neherlab/treetime:
Maximum likelihood inference of time stamped phylogenies
and ancestral reconstruction. https://github.com/neherlab/
treetime.] (Zelner et al., 2016)The trees were constructed using

the highest likelihood model selected by automatic model selection
in IQ-TREE (v1.6.12), which utilized the JC model of nucleotide
substitution and invariable site plus discrete Gamma model of rate
heterogeneity to analyze the genome samples with only
substitution variants replaced in reference sequence. Sampling
dates were used to construct a temporal phylogeny using
TreeTime (v0.9.0) [GitHub - neherlab/treetime: Maximum
likelihood inference of time stamped phylogenies and ancestral
reconstruction. https://github.com/neherlab/treetime.] (Zelner
et al., 2016), and tip-randomization was performed to confirm
the presence of a strong temporal signal. Bayesian evolutionary
analyses were conducted to identify the best substitution, clock,
and demographic models, with marginal likelihood estimates used
for model selection. The visualization of the bacteriological
information was performed using Interactive Tree of Life
(Version 6.6) (Letunic and Bork, 2021).

FIGURE 2
Sample size and lineages proportion in different regions of the 3,204 isolates, China, 2011–2019.
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2.5 Statistical analysis

The mutation loci in the polyketide synthesis gene region between
“clustered isolates” and “non-clustered isolates” was compared using
univariate and multivariate logistic regression analysis in different
lineages. Factors with a p-value less than 0.05 in the final model were
considered to be independently associated with genomic clusters. The
odds ratios (OR) and 95% confidence intervals (95% CI) were calculated.
All statistical analyses were performed in R version 4.2.0 unless otherwise

stated. Finally, a sensitivity analysis was performed to determine whether
there was a rank correlation between cluster size and clustering rate with
ordered logistic regression analysis. The R code see Supplementary
Materials 2. Only fixed mutations (25%≤frequency<100%) were
calculated from different lineages. The mutation frequency was
calculated as the percentage of mutation isolates among the number
of total isolates in different lineages. The detailedmutationswere indicated
in Table 3. The clustering rate was calculated as the percentage of cluster
isolates among total isolates (number of cluster isolates/number of total

FIGURE 3
Flowchart 1: a flowchart about the process of identification and exclusion of genomic data.M tuberculosis,Mycobacterium tuberculosis; TB, tuberculosis.
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isolates). Only nonsynonymous mutations were analyzed. Insertions and
deletions were excluded from the analysis as they are often the result of
errors in genome assembly. In terms of SNPs, isolates that possess the
mutation in the PKS gene region are referred to as mutation isolates.

2.6 Predicted impact of mutations on
proteins

Protein prediction algorithm, I-Mutant v2.0 (http://folding.biofold.
org/i-mutant/i-mutant2.0.html), was used to predict the functional
impact of noteworthy SNPs on protein structure and function.

2.7 Genomic data availability

The newly sequenced whole genome dataset of 1,449 M.
tuberculosis strains was deposited in the NCBI Bio Project
(https://www.ncbi.nlm.nih.gov/sra/), and 1755 other isolates were
downloaded from the European Nucleotide Archive repository

(Supplementary Table S1). Additional data can be obtained by
contacting the corresponding authors upon request.

3 Results

3.1 Genetic diversity

shown in themap (Figure 2), 85.73% (2,745/3,204) strains belonged
to Lineage 2 (Beijing lineage), 13.84% (443/3,204) to Lineage 4 (Euro-
American lineage), while only 0.31% (11/3,204) to Lineage 3 (East
African-Indian lineage) and 0.12% (5/3,204) to Lineage 1(Indo-Oceanic
lineage). A maximum likelihood phylogenetic tree was constructed for
lineage 2 and lineage 4 Mtb isolates (Figure 4; Figure 5).

3.2 Clustering rate of the Mtb isolates

One thousand four hundred and sixty-four out of 2,745 isolates
in lineage 2 were grouped into 446 genomic clusters (Table 1). The

FIGURE 4
Phylogenetic tree for lineage2. Green, red and blue branches indicated L2.1, L2.2.2 and L2.2.1 strains, respectively. The inner blue dots indicated the
resistance to known antimicrobial drugs. The outermost red dots showed the strains contained SMs.
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clustering rate was 53.33%, which indicated the transmission of
lineage 2 in China from 2011 to 2019. The genomic clusters
consisted of 2–109 isolates. Majority of the clusters had two
isolates, accounting for 36.47% (534/1,464). There were
52 genomic clusters consisting of two to nine isolates in lineage
4. The clustering rate of lineage 4 was 29.86%.

3.3 Drug resistance associatedwith genomic
clusters

Known antimicrobial resistance mutations were detected in lineage
2 and lineage 4 (Table 2). Mutations in lineage 2 associated with
resistance to rifampicin, isoniazid, pyrazinamide, streptomycin,
ethambutol, fluoroquinolones, and ethionamide were all associated
with genomic clusters (p < 0.05). This was the same as lineage 4,
which was associated with resistance to streptomycin, isoniazid,
rifampicin, and pyrazinamide and had a higher risk of clustering
(p < 0.05). The phylogenetic trees show the drug resistance profile

for 7 anti-TB drugs based on the presence of validated resistance-
conferringmutations (Figure 4; Figure 5).Mutations occurredmainly in
drug resistance genes such as katG, rpoB, rpsL, embB, pncA, gyrA, and
ethA. Drug resistance is an important factor of TB transmission. In our
study, we just used the Drug resistance mutations as exposure factors in
multivariate logistic regression analysis to improve the sensitivity of
analysis results.

3.4 Spread mutation (SM)

As shown in Table 3, the univariate logistic analysis detected
eight loci mutations in the PKS gene region of L2 isolates, which
were statistically significant (p < 0.05). Seven were risk factors
(OR>1) and one was a protective factor (OR<1). The seven risk
factors [ppsA(3,248,074, 3,247,851, 3,247,865, 3,249,025),
pks12(2,302,033), pks13(4,256,210) and pks8(1,885,385)] were
defined as Spread Mutations (SMs), meaning isolates with the
seven SMs were more likely to be clustered than those without.

FIGURE 5
Phylogenetic tree for lineage4. Green, rose red, purple, dark green, red and blue branches indicated sublineage 4.8, sublineage 4.5, sublineage 4,
sublineage 4.3 sublineage 4.2 and sublineage 4.4 strains, respectively. The inner blue dots indicated the resistance to known antimicrobial drugs. The
outermost red dots showed the strains contained SMs.
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The basic information was shown in Table 4. All seven SMs
were found in L2 and three SMs were found in
L4 [ppsA(3248074,3247865,3,247,851)].

The clustering rate of lineage 2 was 53.33%, while lineage
4 was 29.86%. Lineage 2 exhibited a higher clustering rate than
lineage 4 (Table 1), which was determined that the isolates of

L2 spread faster than those of L4. The SNPs of lineage 2 and
lineage 4 were not exactly the same. Some SNPs were found in
lineage 2 but not found in lineage 4. The vast majority of these
SNPs of lineage 2 exhibit high clustering rate (above 52.52%).
Similarly, some SNPs were found in lineage 4 and not found in
lineage 2. The clustering rate of these SNPs of lineage 4 ranged
from 26.79% to 40.91%. We found seven SMs in lineage 2, while
three SMs in lineage 4. However, owing to the smaller sample size
of L4, we cannot guarantee that there were no hidden SMs.
Interestingly, the clustering rate of SNP [pks12(2302033)] was
higher than that of other SNP in lineage 4, but it was not
statistically significant (p < 0.05) in univariate logistic analysis.
We think it was because the amount of mutation isolates that
contained SNP[pks12(2302033)] was too small.

We found four SMs in lineage 2 were statistically significant,
while none in lineage 4 inmultivariable regression analysis (Table 5).
Due to the large standard error, P and OR were undetermined, and
this can be due to the small sample size of lineage 4. In multivariable
regression analysis, factors independently associated with genomic
clusters including SMs and antimicrobial resistance mutations
associated with genomic clusters of different lineages were
introduced into the statistical model. PpsA (3249025), pks12
(2302033) and pks13 (4256210) are risk factors, while ppsA
(3248074) was protect factor. Notably, the OR of ppsA (3249025)
in lineage 2 were larger and the mutation was more likely to be
clustered compared to other SMs.

Our study attempts to identify mutations that increase
transmissibility. Lineage 2.2.1(Beijing lineage) strains are more
transmissible than other Mtb lineages (Holt et al., 2018).

TABLE 1 The cluster size and the number of genomic clusters of the
Mycobacterium tuberculosis isolates in lineage2 and lineage4.

No. of isolates in
clusters

No. of
clusters

No. of
isolates

Proportion
(%)

Lineage2

0 0 1281 46.67

2 267 534 19.45

3 to 6 157 585 21.31

≥7 22 345 12.57

Total 446 2745 100

Lineage4

0 0 310 70.14

2 35 70 15.84

3 to 6 16 53 11.99

≥7 1 9 2.04

Total 52 442 100

TABLE 2 Known antimicrobial resistance mutations associated with genomic clusters of lineage 2 and lineage 4.

Antimicrobial No. of isolates Clustering percetenge (%) OR P Mutation genes

Lineage2

rifampicin 1,203 43.83 1.897 (1.626, 2.211) <0.001 rpoB, rpoC

isoniazid 1,264 46.05 1.897 (1.626, 2.211) <0.001 katG, fabG1, ahpC, inhA

pyrazinamide 519 18.91 1.552 (1.276, 1.887) <0.001 pncA

streptomycin 1,021 37.19 1.753 (1.497, 2.053) <0.001 rpsL, rrs, gid

ethambutol 744 27.10 1.746 (1.500, 2.033) <0.001 embB, embA

fluoroquinolones 458 16.68 1.565 (1.274, 1.924) <0.001 gyrA, gyrB

ethionamide 363 13.22 1.267 (1.013, 1.585) 0.038 fabG1, ethA, inhA

Lineage4

rifampicin 180 40.72 1.719 (1.139, 2.596) 0.01 rpoB, rpoC

isoniazid 180 40.72 1.719 (1.139, 2.596) 0.01 katG, fabG1, ahpC

pyrazinamide 109 24.66 1.786 (1.134, 2.814) 0.012 pncA

streptomycin 70 15.84 1.847 (1.091, 3.129) 0.022 rpsL, rrs, gid

ethambutol 189 42.76 1.333 (0.885, 2.009) 0.169 embB, embA

fluoroquinolones 75 16.97 1.507 (0.896, 2.534) 0.122 gyrA, gyrB

ethionamide 38 8.60 0.826 (0.389, 1.752) 0.618 fabG1, ethA, inhA

OR, odds ratio. The bold values mean these mutations were statistically significant.
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TABLE 3 Univariate regression analysis on SMs associated with clustering in PKS gene region of lineage 2 and lineage 4a

Lineage2 Lineage4

Genomic
position

No. of
isolates

Mutation
frequency

Clustering
rate *

OR P No. of
isolates

Mutation
frequency

Clustering
rate *

OR P

ppsA

3,248,074 2025 73.77% 54.56% 1.21
(1.02,1.43)

0.03 282 63.80% 33.33% 1.61
(1.04, 2.51)

0.035

3,247,851 2,298 83.71% 55.48% 1.70
(1.39,2.09)

<0.001 315 71.27% 33.02% 1.74
(1.09, 2.86)

0.024

3,247,865 2,279 83.02% 55.59% 1.71
(1.40,2.09)

<0.001 310 70.14% 33.55% 1.88
(1.17, 3.07)

0.01

3,249,025 2,723 99.19% 53.65% 7.33
(2.49,31.3)

0.001 0 0 0 0 0

3,247,316 2,733 99.56% 53.24% 0.38
(0.08,1.28)

0.15 440 99.55% 29.77% 0.42
(0.02, 10.80)

0.55

Pks12

2,302,033 2,234 81.38% 55.73% 1.68
(1.38,2.04)

<0.001 22 5% 40.91% 1.67
(0.70,4.01)

0.25

2,296,042 2,730 99.45% 53.26% 0.57
(0.18,1.61)

0.31 250 56.56% 28.00% 0.82
(0.54, 1.23)

0.33

2,300,546 2,607 94.97% 52.89% 0.70
(0.49,0.99)

0.047 399 90.27% 28.82% 0.62
(0.33, 1.20)

0.15

2,296,297 0 0 0 0 0 112 25.34% 26.79% 0.82
(0.50, 1.31)

0.41

Pks13

4,256,210 2,582 94.06% 54.11% 1.69
(1.23,2.34)

0.001 0 0 0 0 0

4,258,106 2,209 80.47 53.87% 1.12
(0.92,1.35)

0.25 0 0 0 0 0

Pks6

485,810 2,738 99.75 53.25% 0.19
(0.01,1.11)

0.12 0 0 0 0 0

488,579 0 0 0 0 0 196 44.34% 29.59% 1.04
(0.69, 1.57)

0.84

Pks7

1,877,744 2,744 99.96% 53.35% # 0.95 0 0 0 0 0

1,881,343 0 0 0 0 0 185 41.86% 31.35% 1.13
(0.75, 1.70)

0.56

Pks8

1,885,772 2,739 99.78% 53.27% 0.23
(0.01,1.42)

0.18 440 99.54% 30.00% # 0.98

1,885,385 2,718 99.02% 53.57% 2.74
(1.24,6.66)

0.017 0 0 0 0 0

Pks15

3,296,371 1803 65.68% 52.52% 0.91
(0.78,1.07)

0.24 0 0 0 0 0

3,296,843 2,728 99.38% 53.19% 0.35
(0.10,0.99)

0.066 440 99.55% 29.77% 0.42 (0.02,
10.80)

0.55

(Continued on following page)
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Genomic evidence for enhanced transmission of the Beijing lineage
has been documented in Russia (associated with antimicrobial
resistance) (Casali et al., 2014) and Malawi (independent of
antimicrobial resistance) (Guerra-Assunção JA et al., 2015). We
also analyzed the SMs in lineage 2.2.1strains (Table 6). There are
four SMs in lineage 2.2.1 strains. Only one SM [pks12 (2302033)]
was statistically significant (p < 0.05) in multivariable regression
analysis. And the data showed that the SMs in lineage 2.2.1 have
higher clustering rate than other lineages which are predicted to be
more transmissible.

Evolutionary convergence has previously been used as a
signal of positive selection to identify mutations associated

with antimicrobial resistance in Mtb (Hazbón et al., 2008;
Farhat MR et al., 2013). We think it can also be used as a
signal of positive selection to identify mutations associated
with genomic clusters. We reasoned that SMs with high
clustering rate contributing to the enhanced transmissibility of
lineage 2 should also be result of positive selection that is
detectable as convergent or parallel evolution. SMs showed an
unexpectedly high level of convergence among lineage 2.2.1,
suggesting the action of selection.

From the above, it can be concluded that ppsA (3,249,025), pks12
(2,302,033) and pks13 (4,256,210) of lineage 2 were the final and
meaningful mutation sites screened in our study, based on the
results and analysis.

3.5 Sensitivity analysis

In the sensitivity analysis, the lineage 2 and lineage 4 data were
divided into four groups and then reanalyzed using an ordinal
regression analysis. As shown in Table 1, the first, second, third,
and fourth group included non-clustered isolates, small clusters
containing two isolates, clusters containing 3 to 6 isolates, and
clusters containing ≥7 isolates, respectively. Only the SMs that
were statistically significant in the univariate analysis and were
risk factors were included in the statistical model.

As show in Table 7, ppsA (3,249,025), pks12 (2,302,033), and
pks13 (4,256,210) of L2 were statistically significant and were risk
factors in the ordinal regression analysis. Interestingly, the results
for the ordinal and multivariate regression analysis were the same.
The P and OR results for lineage 4 were undetermined, this can be
attributed to the large standard error. The SM ppsA(3,249,025) was
also more likely to be clustered than other SMs. Compared with
non-clustered and small isolates, the larger and largest clustered
isolates had higher clustering rate in the ppsA (3,249,025), pks12

TABLE 3 (Continued) Univariate regression analysis on SMs associated with clustering in PKS gene region of lineage 2 and lineage 4a

Lineage2 Lineage4

Genomic
position

No. of
isolates

Mutation
frequency

Clustering
rate *

OR P No. of
isolates

Mutation
frequency

Clustering
rate *

OR P

ppsD

3,267,163 0 0 0 0 0 183 41.40% 31.69% 1.16
(0.77, 1.75)

0.48

Pks1

3,295,663 0 0 0 0 0 127 28.73% 30.71% 1.06
(0.67, 1.65)

0.81

Pks3

1,315,191 2,745 100% 53.33% # # 442 100% 29.86% # #

Pks5

1,722,228 2,725 99.27% 53.36% 1.14
(0.47,2.80)

0.76 0 0 0 0 0

asMs refer to seven loci mutations statistically significant (p < 0.05) which are risk factors in the PKS, gene region of lineage2 isolates. *Genomic position are genomic nucleotide positions inMtb

H37Rv genome NC_000962. * The clustering rate was calculated as the percentage of cluster isolates among total isolates (number of cluster isolates/number of total isolates). #means there is no

result in statistical software or the result was too large and nonsense. OR, odds ratio. The bold values mean these mutations were statistically significant.

TABLE 4 The basic information of the SMs associated with clustering in PKS
gene of lineage 2 and lineage 4.

Genomic position Type References Variant Gene

Lineage2

3,248,074 mnp GC AT ppsA

3,247,851 complex GCCCGG ACTCGC ppsA

3,247,865 complex GCAAA TAGGG ppsA

3,249,025 snp T G ppsA

2,302,033 snp G A pks12

4,256,210 snp G T pks13

1,885,385 snp T G pks8

Lineage4

3,248,074 complex GC AT ppsA

3,247,851 complex GCCCGG ACTCGC ppsA

3,247,865 complex GCAAA TAGGG ppsA
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(2,302,033), and pks13 (4,256,210) genes. The sensitivity analysis
results did not change significantly compared to those of the
univariate and multivariate regression analysis. The results of
ordinal regression analysis based on the size of clustered
isolates were like the main findings: SMs [ppsA (3,249,025),
pks12 (2,302,033), and pks13 (4,256,210)] were risk factors for
TB transmission.

3.6 Deleterious effect of SMs on proteins

The SMs were predicted to negatively affect the respective
proteins that affect the protein instability in nearby structural areas
(Table 7). We also checked the Uniprot database for the protein
domain where the mutation occurs according to the protein sequence
(Trivedi et al., 2005; Siméone et al., 2010). PpsA (3,249,025) and pks13
(4,256,210) occurs in linker, while pks12 (2,302,033) occurs in active
site. Linker was found to be the noncatalytic protein domain that
connects different functional proteins.

4 Discussion

Genetic diversity analysis revealed that the majority of these
isolates belonged to lineage 2(the predominant sublineage was
2.2.1), with lineage 4 accounting for a significant proportion,
while lineage 3 and lineage 1were less frequent. In addition,
lineage 2 exhibited a higher clustering rate compared to lineage
4. These findings suggest that Beijing strains were more
geographically dispersed compared to lineage 4, which are
consistent with previous research (van Soolingen et al., 1995;
Pang Y et al., 2012; Liu et al., 2018b). The overwhelming
majority of TB cases in China were caused by L2 and
L4 strains. The result of analysis also reminds us of the need
to prioritize resources in cases where contact tracing is most
likely to yield results. In China, it may be beneficial to direct
contact tracing resources to lineage 2 and lineage 4 cases, as they
pose the greatest risk of onward transmission resulting in new
active TB cases.

We identified three SMs of lineage 2 in the ppsA (3,249,025),
pks12 (2,302,033), and pks13 (4,256,210) gene regions that can
potentially improve TB transmission. These SMs were predicted
to alter the function of their respective proteins, supporting the
hypothesis that they may affect TB transmission. Several biological
and biochemical studies have determined the importance of the
identified genes, which have proved critical to the virulence of Mtb
in several animal studies (Kondo E Fau - Kanai and Kanai, 1972;
Kolattukudy et al., 1997; Glickman and Jacobs, 2001; Sirakova et al.,
2003). Furthermore, the results of this study are supported by
previous genomic epidemiological articles (Onwueme et al., 2005;
Trivedi et al., 2005; Gokhale et al., 2007b; Chopra et al., 2008;
Quadri, 2014).

The ppsA gene is one of the clusters of ppsABCDE genes that
has been shown to be involved in the biosynthesis of phthiocerol
products (Figure 1A). The biosynthesis of phthiocerol products
requires almost 24 catalytic activities on five large multifunctional
modular proteins (Trivedi et al., 2005). Thus, if there is a mutation
in one of the pps genes that can change protein function, it may
increase or decrease the efficiency of this specificity of hand-to-
hand transfer of the chain from one pps protein to another. The
pks12 protein is involved in biosynthesis of a phospholipid MPM
(Matsunaga et al., 2004). A study by Sirakova et al. (2003) showed
that the growth and virulence of mutant pks12 was attenuated in
an in vivo murine model (Sirakova et al., 2003). In mycolic acid
synthesis, ps13 performs Claisen condensation of a C26 α-alkyl
branch and C40–60 meromycolate precursors as the final
assembly stage (Portevin et al., 2004). According to Alland

TABLE 5 Multivariable regression analysis on SMs associated with clustering in
PKS gene region of lineage 2 and lineage 4.

Genomic position P Or (95%CI)

Lineage2

3,249,025 0.005 37.743
(3.060, 465.584)

2,302,033 <0.001 2.251
(1.487, 3.408)

4,256,210 0.006 1.643
(1.154, 2.340)

3,247,865 0.642 1.229
(0.515, 2.934)

3,248,074 0.042 0.742
(0.557, 0.989)

3,247,851 0.907 0.951
(0.411, 2.201)

1,885,385 0.07 0.133
(0.015, 1.179)

rifampicin 0.001 1.749
(1.271, 2.407)

pyrazinamide 0.462 0.904
(0.691, 1.183)

streptomycin 0.074 1.234
(0.980, 1.554)

fluoroquinolones 0.144 1.202
(0.939, 1.539)

ethambutol 0.752 0.957
(0.729, 1.257)

isoniazid 0.514 1.109
(0.813, 1.514)

ethionamide 0.176 0.834
(0.640, 1.085)

Lineage4

3,247,865 0.999 a

3,248,074 0.832 1.096
(0.471, 2.550)

3,247,851 0.999 a

rifampicin 0.313 1.342
(0.758, 2.377)

pyrazinamide 0.591 1.211
(0.602, 2.436)

streptomycin 0.506 1.272
(0.626, 2.586)

aMeans there is no result in statistical software or the result was too large and nonsense. OR,

odds ratio. The bold values mean these mutations were statistically significant.
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et al. (2000), there is a novel class of thiophenes that prevent fatty
acyl-AMP loading on pks13, interfere with mycolic acid
biosynthesis, and have bactericidal effects on Mtb (Alland

et al., 2000; Wilson et al., 2013). Aggarwal et al. (2017) found a
novel benzofuran class lead molecule that targets pks13 with
fantastic drug-like characteristics and excellent pharmacokinetic

TABLE 6 Ordinal regression analysis on SMs associated with clustering in PKS gene region.

Genomic position* Value Std.Error T value Ordered analysis

Or (95% CI) P

Lineage 2

ppsA

3,249,025 3.5 0.91 3.86 33.069 (5.914,220.171) <0.001

3,248,074 −0.41 0.12 −3.39 0.665 (0.525,0.842) <0.001

3,247,865 0.41 0.39 1.04 1.505 (0.703,3.329) 0.15

3,247,851 −0.08 0.38 −0.22 0.92 (0.422,1.929) 0.415

Pks12

2,302,033 0.68 0.19 3.49 1.973 (1.351,2.901) <0.001

Pks13

4,256,210 0.33 0.17 1.97 1.389 (1.005,1.934) 0.024

Pks8

1,885,385 −1.71 0.64 −2.68 0.181 (0.051,0.661) <0.001

Lineage 4

ppsA

3,248,074 0.15 0.39 0.38 a a

3,247,865 7.92 35.38 0.22 a a

3,247,851 −7.48 35.38 −0.21 a a

aThe standard error of regression coefficient in Lineage4 was too large. The bold values mean these mutations were statistically significant.

TABLE 7 Deleterious effect of SMs on PKS proteinsa.

Genomic position* Nucleotide change Amino acid change Protein prediction Protein domain*

ppsA

3,249,025 T=>G L1194R Large decrease of stability Linker*

3,248,074 GC=>AT R877H Large decrease of stability Acyltransferase

3,247,865 GCAAA=>TAGGG AQN807ARD Large decrease of stability Acyltransferase

3,247,851 GCCCGG=>ACTCGC AR803TR Large decrease of stability Acyltransferase

Pks8

1,885,385 T=>G L1228V Large decrease of stability Linker*

Pks12

2,302,033 G=>A R1652H Large decrease of stability Enoyl reductase 1

Pks13

4,256,210 G=>T A1646S Large decrease of stability Linker*

aFunctional impact of the SMs on protein structure and function was predicted on one protein prediction algorithms, I-Mutant v2.0 (http://folding.biofold.org/i-mutant/i-mutant2.0.html).

*Linker is the noncatalytic protein domain that connects different functional proteins. *Protein domain where the mutation occurs was checked in Uniprot database according to the protein

sequence.
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and safety features that are active against MDR and XDR Mtb
clinical strains in vitro.

In addition, we predicted the impact of SMs on protein
structure. Mutations in ppsA, pks12, and pks13 genes affect
instability in nearby structural areas, which may affect nearby
biological functions. Modular PKSs are multidomain proteins.
Each module contains at least three essential domains, which
are catalytic sites or active sites, namely, acyl transferase (AT),
acyl carrier protein (ACP), and keto synthase (KS) domains. These
catalytic sites or active sites are interconnected by small stretches
of relatively unconserved sequences called linkers, which are more
than covalent connectors (Gokhale and Khosla, 2000). Some SMs
occur on active sites while others occur on linkers. Apparently, if
the mutation occurs at active sites, it can affect the function of the
pks gene. New progress has shown that linkers play a strong role in
building the structural and functional assemblies of these diverse
modular proteins in signal transduction and polyketide
biosynthesis (Briggs and Smithgall, 1999; Gokhale et al., 1999;
Xu et al., 1999; Gokhale and Khosla, 2000). Chopra et al. (2008)
found that these linkers play an important role in the formation of
docking domains through interacting helices. This study also
showed that single amino acid substitutions in the linkers had
an effect on the catalytic rates of product formation (Chopra et al.,
2008). Similar studies based on the erythromycin PKS have shown
the crucial role of single amino acids in forming a docking complex
(Weissman, 2006). Thus, if the mutation occurs in linkers, it can
also have an impact on protein-protein interactions and affect
catalysis (Chopra et al., 2008). Since the positions of the modules
can be changed by suitable linker engineering (Gokhale et al.,
1999), it is worth studying the mechanism of linker action in
chemical biology.

In conclusion, this study presents evidence through
statistical analysis that three Mtb PKS genes in lineage 2 may
contribute to disease progression and higher transmission of
certain strains. Previous studies suggest that virulence change is
caused not by mass nonsynonymous mutations, but rather by
several critical mutations that affect gene product activity
(Hershberg et al., 2008; Mikheecheva et al., 2017). Distinct
lipids in the cell wall of mycobacteria synthesized by the
three genes are critical to the pathogen’s ability to survive in
the host’s hostile environment. Their production involves a
complex process that requires many enzymes (Mehra et al.,
1984; Chan et al., 1989; Vachula et al., 1989). When these
lipids are lost due to mutation, M. tuberculosis becomes less
virulent in the host (Camacho et al., 1999; Cox et al., 1999). This
process offers multiple ways to intervene in lipids production
and thus opens up many possibilities for designing
antimycobacterial agents. It might be possible to view the
three SMs as specific targets for the development of
medications for the treatment of mycobacteria-related
infections in people. Notably, the OR of ppsA (3,249,025) in
lineage 2 were larger and the mutation was more likely to be
clustered compared to other SMs. Perhaps we should pay more
attention to SNP: ppsA (3,249,025) in the following study. The
SNP [ppsA (3,249,025)] should be further evaluated with animal
and immunological experiments to test its importance regarding
biological impact and as a new drug target.

5 Strength and limitations

This study has several limitations. First, we did not conduct
animal and immunological experiments to find biological
support for the SMs identified in this study. Second, we lack
key host factors that may influence disease transmissibility, such
as age, host immune status, and pulmonary cavitation, to rule out
the effect of confounding factors, which could reveal independent
effects of SMs influencing transmissibility. Finally, for the small
sample size of lineage 4, hidden mutation sites may not be
screened out. We cannot tell if the SMs of lineage 4 and
lineage 2 were the same or different. Of course, the sample
size of lineage 2 is large enough. The SMs we found were
more reliable, which could provide credible data for TB
prevention and treatment.
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