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The results of gene expression analysis based on p-value can be extracted and
sorted by their absolute statistical significance and then applied to multiple
similarity scores of their gene ontology (GO) terms to promote the
combination and adjustment of these scores as essential predictive tasks for
understanding biological/clinical pathways. The latter allows the possibility to
assess whether certain aspects of gene function may be associated with other
varieties of genes, to evaluate regulation, and to link them into networks that
prioritize candidate genes for classification by applying machine learning
techniques. We then detect significant genetic interactions based on our
algorithm to validate the results. Finally, based on specifically selected tissues
according to their normalized gene expression and frequencies of occurrence
from their different biological and clinical inputs, a reported classification of genes
under the subject category has validated the abstract (glomerular diseases) as a
case study.
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1 Introduction

C3 glomerulopathies (C3G) are a group of related conditions that cause kidney
dysfunction (Riedl et al., 2017), characterized by the presence of glomerular deposits
composed of C3 (Cook and Pickering, 2015). Many conditions in glomerular diseases
(GD) have a variety of genetic/environmental causes (Coelho et al., 2019). C3G is associated
with changes (mutations) in many genes. Most of these genes provide instructions for
making proteins that help regulate a part of the body’s immune response known as the
complement system (Iatropoulos et al., 2016). This system works together as a group of
proteins to destroy foreign invaders/triggers/inflammation. The complement systemmust be
regulated, targeting all unwanted materials without damaging the body’s healthy cells. A
specific mutation in the complement system-related genes, like C3, ADAM19, ADAMTS13,
C3AR1, C8A, CD46, CFB, CFD, CFI, CFHR (1-5), in addition to other complement system-
related genes (Tsai et al., 2000; Xiao et al., 2014), risk haplotypes of CFH and CD46 have been
identified that modify disease penetration and severity (Legendre et al., 2013; de Cordoba
et al., 2014). In most cases, the cause of the C3G is unknown.
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Many kinds of research are still devoted to discovering genes
involved in specific phenotypes and diseases. Multiple gene selection
techniques are defined in the literature. Whichever confidence in
using a single criterion for selecting genes is not always adopted
which specific used one should be diffident.

This question inspired us to consider the ranking of all criteria in
the evaluation of the gene and propose a new selection of genes for
transcriptomic data, focusing on the gene expression adjustment to
the similarity score. Thus, the genes for each criterion would be
systematically computed and validated by our algorithm. Our
solution can be considered the most informative and stable
method for gene prediction/selection and classification steps. In
the meta-analysis process, the input of gene expression results
consisted of normalized gene expression measurements. From
this, a linear model fit for all genes of our transcriptomics data
can be computed as an appropriate contrast function to test
hypotheses of interest and to find genes with significant
differential expression (DE) between different conditions (Klaus
and Reisenauer, 2016) from understudied raw data (as a set of binary
files in CEL format), accessible via the public repository of
microarray data, the NCBI Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016). The raw data were chosen to be used
as extracted from the source rather than processed data, although
their analysis is very similar, as mentioned in (Figure 1) representing
a literature review. The first step in pre-processing is data quality
control. The latter is an essential step in any analytical process and a
relative concept that depends on the nature of the biological sample,
experimental settings, and other factors. Hence, poor-quality data
can directly lead to the absence of some positive results. Moreover,
we evaluated the measure of precision to reduce deficiencies over
time and under varying operating conditions (Bolstad et al., 2003;
Kauffmann et al., 2009; Carvalho and Irizarry, 2010). Different
normalization methods have been developed in the context of
gene expression analysis. A specific normalization method in
microarray data analysis is crucial to ensuring accurate and
reliable results. RMA (Robust Multi-array Average) was chosen
over other methods such as MASS, GCRMA, PLIER, PUMA, etc.

Microarray data and RNA-Seq data are generated through
different technologies and have distinct characteristics.
Microarrays measure the relative abundance of pre-selected

probes for known genes, while RNA-Seq directly sequences and
quantifies the transcriptome, including known and novel
transcripts. Initially developed for microarray data, the RMA
algorithm can be applied to RNA-Seq data with different disease
modalities and normalization methods, offering new insights into
gene expression analysis for different biological contexts. While
some concepts and principles from microarray data analysis may be
relevant to RNA-Seq analysis, it is crucial to use appropriate RNA-
Seq-specific methods to accurately handle the data and obtain
reliable results.

The RMA algorithm was performed on our data to background-
correct, normalize, and summarize the process (Okoniewski and
Miller, 2006; McCall and Irizarry, 2011), offering several advantages,
such as reducing the impact of extreme values. The choice of RMA
over other methods depends on the specific characteristics of the
dataset and the specific research questions of the analysis. RMA is
often favored due to its robustness and simplicity compared to other
methods like GCRMA, PLIER, or PUMA that might be more
suitable.

The organization of this article is presented in two main
sections, according to the following principles. The first one
(methods) includes gene signature identification in connection
with the search for a therapeutic target involved in the detection
of differentially expressed (DE) genes, followed by a subsequent step
leading to the construction of the workflow and its structure to
prioritize and interact with a gene on each cluster based on
Expression-Similarity-Frequency of occurrence. A second section
(results and discussion) covers the interpretation of the biological/
clinical results as a form of evaluation and validation of our
hypothesis.

2 Materials and methods

The main focus of this follow-up study (Figure 2) is to propose
and validate a novel matrix-expression-similarity-frequency
consisting of a new scoring scheme based on a given combined/
adjusted linear DE measurement selection in diverse experimental
conditions for individual samples. Machine learning tasks then
combine a mathematical algorithm with our prediction results

FIGURE 1
Literature review of Affymetrix microarray data pre-processing for processed (A) and raw data (B).
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analysis (Tarca et al., 2007; Xu and Jackson, 2019; Sabir et al., 2021).
The gene cluster lists suggested using unsupervised learning based
on their normalized matrix-expression-similarity-frequency-based
scores of occurrences first to find out the structure as groups of a
similar category. In this case, the data contains only inputs and no
desired output labels. Then, classification is the second step in which
the algorithm keeps in check both the inputs and the desired outputs
(a limited set of outputs) to construct co-regulation and link them
into networks that prioritize candidate genes as a logistic regression
tool. In addition, significant genetic interactions for a specific tissue
type, genetic background, experimental stimulus, or clinical variable
are detected and validated in the results.

2.1 A computational algorithm for gene
correction

The statistical methods used to detect DE genes were calculated
as moderated t-statistics for the microarray data based on a linear
model fit by fixing three different p-values (p1 = 0.01, p2 = 0.001,
p3 = 0.0001), which are estimated as the prior probability that a gene
is DE (Jeffery et al., 2006; Sartor et al., 2006). It should be noted that
when we fixed a different p-value distribution to our dataset, we
demonstrated that the expression of these candidate genes between
these p-values is expected to change the methods employed in GD
diagnosis and prognosis. The semantic similarity computation was
assumed based on the Wang method (Wang et al., 2007), and using
the GOSemSim (Yu et al., 2010) package between gene products
based on the information content (IC) and a directed acyclic graph
(DAG) (Mazandu and Mulder, 2013). The IC-based measures
depend on the frequencies of two GO terms involved in their
closest common ancestor term in a specific corpus of GO
annotations. The GO terms were classified into three different
aspects: molecular function (MF), biological process (BP), and
cellular component (CC). The molecular function is a process
extended by two actions described as biochemical binding
activities, referring to a protein that functions as a receptor. The
second aspect is that the biological process represents an organism’s
specific and significant objective (Gaudet et al., 2017; Thomas,
2017). Finally, the cellular component, in terms of cellular

structures and location, provides information about where a
molecular process may occur. The best-match average (BMA)
method calculates the average of all maximum similarities on
each row and column. Furthermore, a new score for the gene
similarity measures was calculated for each pair of genes as
demonstrated here (Eq. 1), through which the matrix evaluates
whether the mean and normally distributed score within each
independent pair of genes of samples evaluates an important
significance or not by introducing the matrix-similarity-based.

Msimsc g1, g2( ) � ∑Lengthx

n�1
∑Lengthx

n�n+1

�����������
1
2
*

δ21
δ22

+ δ22
δ21

( )√⎛⎝ ⎞⎠p
μ1 + μ2

2
( )2

(1)

• Msimsc represents the similarity of the gene measurement
matrix.

• Only paired groups of genes can perform the paired test.
• Based on the first two DE genes, ∑n=1 ∑n=n+1 up to the full set
of genes as mentioned in Lengthx were selected for Msimsc.

• The sample means are denoted as μ1 and μ2 for each similarity
score.

• Each score is sampled independently and randomly.
• The sample standard deviations δ1 and δ2 are normally
distributed within each of the two rows.

Gene prediction model (based on their gene expression and
gene-GO similarity) represented as matrix-expression-similarity-
frequency-based consisting of a new adjusted scoring scheme of
the score and frequencies (as results) for a given linear DE
measurement selection results mixed with their scores and
frequencies of occurrence of matrix-similarity-based, which yield
the final association score. The genes with the highest scores were
first selected and improved to serve as inputs for the machine
learning steps.

MCombSc � nexprpMexpr + nselpMsimsc (2)

• A number of expressed genes nexpr provided with fixed
p-values Mexpr were combined into the expression matrix.

• A number of correlated genes nsel were combined into the
semantic similarity matrix Msimsc.

FIGURE 2
An overview of the schematic workflow of the developed approach, consisting of five components: first, transcriptomics data collection and pre-
processing steps; then, gene prediction and prioritization. Finally, a human genome-scale genetic interactionmodel is followed by hypothesis evaluation
and validation.
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2.2 Prioritization of candidate genes based
on machine learning

Machine learning methods (Ganggayah et al., 2019; Zhang,
2020; Ke et al., 2021) were first performed as clustering
algorithms (Chou et al., 2007; Maulik et al., 2009), building a
mathematical model from the normalized final scores of our
matrix-expression-similarity-frequency-based (Eq. 2) to segment
them into k clusters to understand biological processes in
addition to molecular functions. Each cluster represents a group
of similar observations performed using the Ward method and
Euclidean distance for a given value of k as a possible solution
(i.e., high intra-class similarity). Although objects from different
clusters are as dissimilar as possible (i.e., low inter-class similarity),
to improve the initial partition obtained from hierarchical
clustering. The algorithm can stop when the assignment of genes
to clusters no longer changes or when the specified maximum
number of iterations has been reached (Gry et al., 2009; de
Winter et al., 2016). Justifying the choice of distance metric and
comparing the results with several known distances are essential
steps that can significantly impact the results and ensure the
robustness and reliability of the machine learning model,
including candidate gene classification. The appropriateness of
the Euclidean distance depends on the nature of the data and the
problem at hand for candidate gene classification:

The classical methods for distance measures are Euclidean,
Manhattan, and correlation-based distances, used for gene
expression, such as Pearson correlation distance and Spearman
correlation distance. The correlation-based distance considers two
similar objects if their features are highly correlated. The
convergence between the Manhattan distance and Euclidean
distance for gene expression depends on some specific
characteristics and distributions of gene expression data. The
lasts are widely used to measure the similarity or dissimilarity
between samples based on their gene expression profiles. In
summary, the choice between Manhattan and Euclidean distances
for gene expression data should consider the vector space
(dimensionality) of the data and the number of genes being
analyzed. When the number of genes is relatively small due to
the pre-processing and DE analysis, both Manhattan and Euclidean
distances may behave similarly, especially if the genes are highly
correlated or there is little variability in the data. Additionally, it was
essential to experiment with different metrics and compare their
performance using appropriate evaluation techniques such as cross-
validation to select the best distance metric, which is why we tried all
the discussed methods, and the results are accessible in our two
previous published papers (Ettetuani et al., 2019; Ettetuani et al.,
2020). Finally, the Euclidean distance assumes that all features have
the same scale and are equally important. Euclidean distance treats
each feature independently, without considering correlations
between them.

Further, each gene cluster list was exposed to the
(hgu133a,hgu133plus2) database of Homo sapiens as a direct
mapping of a gene symbol to a vector containing the
corresponding Entrez gene identifier (Smedley et al., 2009; Yu
et al., 2012), then implemented in a hypergeometric model to
assess whether the number of selected genes is linked/associated
with the pathogenesis of the diseases (Yu, 2012; Fabregat et al.,

2018). All enriched terms were associated with their enrichment
scores (p-values) as a first step of supervised learning, allowing the
possibility to cross from high-level concepts to detailed pathway
diagrams showing bio-molecular events using the groupGO(), and
enrichGO() functions (Sidiropoulos et al., 2017; Wu et al., 2021).
Genetic variation was also studied through our first step of
supervised learning, which is the genome-wide association study
(GWAS); based on the GWAS catalog used to tag variation across
the genome and enable investigations to identify causal variants
(Johnson et al., 2010; Scharf et al., 2013; Butler et al., 2017; Garfield,
2020) and variant-trait associations mapped to their chromosomal
positions in the human genome. Many computational approaches
have been developed to support the identification of the most
promising candidates (Zolotareva and Kleine, 2019). oPOSSUM
(Ho Sui et al., 2007) web applications containing a great variety of
the conserved non-coding regions of the promoters/enhancers were
used to select the interaction between our candidate’s genes, whose
interactions between genes and transcription factors (TFs) were a
major to understand gene regulation and the origin of complex
protein components (Suravajhala and Benso, 2017).

To facilitate the prioritization of causative genes as the second
step of supervised learning and based on algorithmic tools, we
illustrate a new gene prioritization model for candidate genes
based on the logistic regression method (Lee et al., 2018; Zhang
et al., 2018; Christodoulou et al., 2019; Nusinovici et al., 2020). Gene
prioritization schemes boost the power to identify the most
promising phenotype-associated among those clusters under
normal conditions in different tissues [where each gene can have
a normalized expression score in the tissue expression database
(Palasca et al., 2018)].

Scoreprioritization Genei |Tissuet( ) � μ0 + μ1X1 + μ2X2 + μ3X3 +/

+ μnXn

(3)

• μ0 is the tissue-specific means of expression for a given gene
with fixed tissues.

• μ1, μ2, μ3, . .μn are the means of (frequencies of occurrence) for
target genes for each process.

• X1, X2, X3, , Xn represent the normalized expression values of
biological processes, GWAS, TFs, etc.

• The parameters in logistic regression cannot simply be
replaced by average values, especially when the output is a
probability-related value. The parameters in logistic regression
represent the relationship between the input variables (in this
case, gene expression means) and the probability of
normalized expression values based on biological processes.

• Replacing the parameters with average values would be highly
unusual and would be approved later by the methodology
results.

Following the hypothesis that genes underlying similar tissues
will share functional and phenotypic characteristics, we
incorporated logistic regression for any training genes that need
to be prioritized (Eq. 3). When applying logistic regression, it is
generally recommended to split the available data into three separate
sets: a training set to estimate the model parameters, a validation set
to tune themodel hyperparameters and assess its performance, and a
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test set. The formulated model arranged the candidate genes (i) in
the order of their tissues (t) first to be sure they were associated with
the pathology. The algorithm took two inputs: a collection of
evidence sources defining a phenotype/trait of interest, and

enhancer/promoter interaction information, extracted for a given
gene, linked to each other with a normalized score reflecting the
“likelihood” for each gene to be responsible for the phenotype. Then
a second factor; frequencies of occurrence of each entire represents a

FIGURE 3
Data Warehouse Star Schema represented in SQL: A fact table representing the prioritization and interaction model for different dimension tables.
Data were collected based on Eq. 3, stored in SQL databases and structured in tables with predefined schemas.
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mean of the prioritization factor. The output of the algorithm
resulted in a list of candidate genes arranged according to the
calculated scores for each tissue.

Overall, the process of extracting, transforming, and loading
ETL data from homogeneous or heterogeneous sources was
established to access our data (Biswas et al., 2020; Biswas et al.,
2018). In short, it was an essential component in cleansing,
customizing, reformatting, integrating, and inserting the
prerequired data (Greiff et al., 2015; Tecnico, 2015). In this
paper, we tried to navigate through our adjusted genes to
conceptualize the ETL processes, as shown in (Figure 3), first
modeling a prioritization tool, then modeling genetic interaction
constructs into proper storage (format/structure) for querying and
analysis.

The Primary Key (PK) uniquely identified each row in an
interactive table. In the star schema, the dimension tables were
typically designed with surrogate keys that were independent of the
source data. These surrogate keys were used to establish
relationships between the schema dimensions and the fact
table(s). A proper star schema design often includes a central fact
table that contains the Primary Foreign Key (PFK) of the dimension
tables, along with the numerical values (facts) associated with those
dimensions as a combination of a primary key and a foreign key in a
database. It was used to establish a relationship between different
tables, allowing and creating a link between a table to reference
another table’s primary key. The dimension tables have descriptive
attributes that provide additional information about the dimensions.
A collection of candidate geneIDs arranged according to a specific
tissue (kidney and urine and Immune system and blood and

Embryonic dev) with the highest information of the gene related
to specific biological pathway terms, the gene-variant-trait
associations among the GWAS catalog, and the genes and
transcription factors (TFs) interaction are the most efficient
approaches to representing genomic data. A Foreign Key (FK)
column in the prioritization table refers to the primary key in
another table to create our study a connection between each
calculated score-related data, allowing for data retrieval and
enforcing referential integrity.

One way to understand these terms and enforce data integrity
involves defining the structure and relationships based on primary
and foreign keys (PK and FK). Primary keys uniquely identify each
record in a table, while foreign keys establish relationships between
tables to design, build, and manage efficient and reliable databases,
preventing invalid or inconsistent data from being inserted or
updated.

2.3 Gene interaction

Genetic interactions of omics data refer to a combination of
pairs of genes in different tissues of fixed clusters, as shown in
(Figure 4), whose contribution to a phenotype between specific
variants in complex traits and tissues remains a challenge (Gomez-
Cabrero et al., 2014; Vasaikar et al., 2018; Subramanian et al., 2020).

A novel algorithm-based model called Mixed-Gene Tissue
Interaction (MGTI) was developed based on previous data. Gene
prioritization scores were first calculated, and then significantly
interacted mixed genes between the selected tissues were

FIGURE 4
Gene prioritization results are based on tissues that are related to each other by regulating disease links. The prioritization scheme in Figure 4 is used
to facilitate the comprehension of different Supplementary Figures and serves as a starting point for the sequence in Figure 3.
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identified using (Eq. 4), reflecting the strengths of regulatory
interactions to understand the etiology of our glomerular disease
as a use case.

Scoreinter g1, g2( ) � log10 Sp g1( )( ) + log10 Sp g2( )( )
2 + log10 max Sp g1, g2( )( )( ) (4)

• Scoreinter(g1, g2) represents an interaction score for each pair of
genes.

• Each gene is represented by the prioritization score Sp, which is
based on multiple calculated scores as mentioned in Eq. 3.

• max(Sp(g1, g2)) represents the maximum gene prioritization
score between the two selected genes.

• The interaction scores are between (0, 1).
• When the interaction scores are � (0.31, 1), the MGTI model
reflects an increased regulation of disease.

• When the interaction scores are � (0.1, 0.3), the MGTI model
reflects a reduced regulation of disease, where we should
interact more with other possible genes.

• There is no gene score between � (0, 0.1), because each gene is
selected following a selection score and then validated to have
n minimum pathway information in the prioritization section.

Moreover, as the number of interacting genes increases,
traditional statistical methods are limited in their ability to
identify interacting genes in high-dimensional data (Yang et al.,
2011; Gordon et al., 2020; Sun et al., 2020).

3 Results and discussion

The detection of significant genetic interactions was focused on
large-scale studies based on a selection of gene expression mixed
with multiple similarity scores of their gene ontology (GO) terms. As
well as their sources of biological became widely adopted. Our
algorithm adjusted them to evaluate the regulation and link them
into networks that prioritize candidate genes as classification by
applying machine learning techniques related to glomerular
diseases (GD).

The spectrum of glomerular diseases is defined by the abnormal
control of complement cascade activation, whose actions are
considered part of the innate immune system, procuring an
immune complex deposition of fragments of C3 in glomeruli
(Pickering et al., 2013). GD often results in kidney damage, the
cause of which is unknown.

The first thing to do to measure the level of transcriptional genes
was to validate the information stored in the raw data measurements
(Dalman et al., 2012; Kharchenko et al., 2014), which were analyzed
as described in our paper (Ettetuani et al., 2019), published by the
ACM organization, Proceedings of the New Challenges in Data
Sciences: Acts of the Second Conference of the Moroccan
Classification Society, as a validation process of the information
stored in expression sets. In this meta-analysis approach, each
experiment was first analyzed separately, and all the results were
then combined based on their primary statistics (p-values) (Walsh
et al., 2015). Here, we fit the linear model for all genes and defined
appropriate contrast functions to test hypotheses of interest to find
genes with significant DE within each condition.

3.1 Experimental data

Based on the PubMed database, for Data retrieval, summarizing
and comparing topics according to their frequencies of occurrence
(Rani and Ramachandran, 2015; Gusenbauer and Haddaway, 2020),
to broaden or/and narrow a search Kovalchik (2015), and to exclude
unwanted search terms/concepts from a specific speech as
“glomerulopathies” “diabetic kidney disease” “tumor Nephrectomy”
“diabetic nephropathy” “focal segmental glomerulosclerosis” “rapidly
progressive glomerulonephritis” “minimal change disease” and
“membranous glomerulonephritis.”

In addition, five datasets (Table 1) were extracted consisting of
human kidney biopsies of patients are used in our analysis,
providing a comparison of the glomerular transcriptome for
multiple profiles as the adult-onset steroid-sensitive focal
segmental glomerulosclerosis and minimal change disease (Tong
et al., 2015), transcriptomic and proteomic profiling reveals insights
of mesangial cell function in patients with IgA nephropathy (Liu et
al., 2017), glomerular transcriptome from subjects in the NEPTUNE
cohort (Mitrofanova et al., 2018), and shared molecular targets in
the glomerular transcriptome from patients with nephrotic
syndrome and ANCA-associated vasculitis, and glomerular
transcriptome from European renal cDNA bank subjects and
living donors (Grayson et al., 2018).

3.2 Genetic contributions and their statistical
impact on the estimation of predictive
models of gene

The results of each number of DE genes were extracted as
mentioned in (Figure 1), combined, and estimated in a uniform
distribution for the p values corresponding to five different datasets
(Table 1). Our study was performed based on P3 (p-value) for the
simple reason that the significance of other selected genes (P2 and P1) is
correlated with P3, as visualized in the corresponding figure
(Supplementary Figure S1). The results of the ontology analysis are
represented as the distance of (dis)/similarity between our list of genes
in the interval of (0, 1). When Sim(gi, gj) = 1, it means that (i = j), and
when Sim(gi, gj)�[0.6, 1], it means that the precision of semantic
similarities over genes in GO(gi, gj) is more significant and related to
common pathologies. Then, when Sim(gi, gj)�[0, 0.5]; is referred to the
precision of semantic similarities over genes in GO(i, j), which may be
significant or related to other common pathologies. However, many
genes had a high score on the expression in parallel to a low score of GO
(or the reverse). Their classical functional analysis in the literature is
based only on the selection of genes from experiments while searching
for their dis/similarity score is the input of the classification/regulation
analysis inmost cases. This problem inspired us to combine/adjust both
scores (expression and similarity-based GO annotation) into a single
formula that gives us a better chance to predict genes related to our
pathologies based on their occurrence frequencies. Consequently, we
propose a novel gene selection method by introducing a novel matrix-
expression-similarity-frequency-based. Different threshold values give
different levels of sensitivity and specificity. Whether the low threshold
represented with red color refers to a false positive and the highest with
blue color refers to a true positive, as fixed for the validation of our
study. This makes it more likely to be specific with more high positives
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against more sensitive with more low positives, as shown in the
corresponding figures (Supplementary Figure S2; Supplementary
Tables S1, S2) with a given fixed threshold of observations.

3.3 Evaluation and prioritization of tissue
using a regression model

An estimating matrix-expression-similarity-frequency-based score
for each gene was the input for computing the clustering algorithms
(unsupervised learning) to understand biological processes along their
molecular functions. Four clusters were found to represent a group of
similar observations. To search for shared functions as the first step of
supervised learning, all selected genes (in terms of the fixed threshold
provided by our prediction analysis) were linked to different databases
as enrichment, traits (non-coding variants), tissue databases, and the
over-represented conserved transcription factor binding sites based on
their score of %GC content. GC content is a measure of the proportion
of nucleotides in a DNA sequence that are either guanine (G) or
cytosine (C). It is often expressed as a percentage. “GC” is one of the
factors considered when identifying over-represented transcription
factor binding sites (TFBS) in co-expressed genes Gao et al. (2022).
Such analyses generate a mixture of data that requires a biological
interpretation. The majority of these genes fall under (kidney, blood,
urine, immune system, and embryonic) tissues.

In the hypothesis interpretation and validation section for the GD,
we were based on a specific entire to generate a list of the highest
information of the gene related to particular biological pathway terms
such as the regulation of inflammatory response, regulation of acute
inflammatory response, regulation of protein processing/maturation,
positive regulation of glomerulus development, of glomerularmesangial
cell proliferation, of the adaptive immune response, and complement
activation, etc., as shown in the Circos plot (Supplementary Figure S3)
as one of the most efficient approaches to visualize genomic data; it
allowed us to easily represent all this information on a single plot.

Before evaluating the prioritization model as the second step of
supervised learning for our gene clusters, we reanalyzed the highest
(more conservative) and lowest threshold (more sensitive) to be sure
and to validate the score of a prediction selection, while also justifying
that genes selected with the lowest threshold score are not sufficiently

expressed in the tissues and/or traits and/or biological processes of
interest. A heatmap-like functional classification plot (Supplementary
Figure S5) was used to visualize the most significant terms (with the
terms expected from the literature), according to some scores, while
simultaneously visualizing the sub-ontologies of causative genes as
(EGR1, IL33, BMP2, SLAMF8, etc.), in which we filtered/selected
the most dominant terms according to our pathology (GD), as well
as their GO annotations include (kidney vasculature development,
regulation of cell activation, inflammatory, immune effector,
adaptive immune, glomerulus, and glomerular mesangial cell
proliferation development, etc.).

A bar plot (Supplementary Figure S4) was used to visualize the
gene-variant-trait associations among the GWAS catalog used for the
most dominant terms such as (complement C3, C4, C7 measurement,
and serum IgE/IgA measurement, c-reactive protein measurement,
nephrotic syndrome, immune system disease, tuberculosis,
glomerular filtration rate, chronic kidney disease, urinary metabolite
measurement, C-reactive protein measurement, glomerular filtration
rate, etc.). In addition, many genes such as (TNXA, FCER1A, NME3,
FMOD, BTG2, PTGER4, AXL, CYP1A2, CYTL1, BHLHE40, IFI16,
SPON1, ETNPPL, COL14A1, ITGAV, MYOZ2, CAMK2A, SORT1,
RANBP1, etc.) showed some trait association.

Finally, a PieChart plot (Supplementary Figure S6) was used to
represent the mean expression of genes in the selected tissues
(kidney, renal cancer cell, immune system, urine, blood, blood
vessel, blood plasma, hematopoietic stem cell, parenchyma,
uroepithelium, HEK 293 EBNA cell, HEK 293ET cell, HK 2 cell).

The gene prioritization model could be formulated as follows (two
parts): arrange candidate genes in the order of their normalized scores
and frequencies of occurrence from matrix-expression-similarity-
frequency-based, then to their normalized scores and frequencies of
occurrence for categorical tissues, biological processes, TFs, and
variants. The logistic regression model (parametric regression) was
performed on categorical data to prioritize the dependent variable using
a given set of independent variables to solve classification problems. In
logistic regression, linear connections between the dependent and
independent variables are not needed. However, there should be no
collinearity between the independent variables. As discussed above,
logistic regression was used to classify the elements of each cluster under
different tissues by calculating themean of the normalized expression of

TABLE 1 Description of the five datasets, in which all types of data were transcribed by array, with their fixed p-values when annotated to the human databases,
and selected matrix-expression-similarity-frequency-based.

Id Status Number of samples Number of genes P1 P2 P3

E-GEOD-69814 4-Jan-17 11 32,321 10 22 71

E-GEOD-93798 3-Jul-17 42 54,675 11 22 34

GSE108113/E-GEOD-104066 26-Jun-19 76 1,416,100 3 11 53

GSE108113/E-GEOD-108109 17-Jul-18 111 1,416,100 6 23 68

E-GEOD-104948 24-Jan-18 196 76,958 22 51 183

Total genes 52 129 415

Not duplicated 52 129 412

Annotated 33 78 209

Selected 18 45 100

Frontiers in Genetics frontiersin.org08

Ettetuani et al. 10.3389/fgene.2023.1215232

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1215232


each set. A confidence regression line provides a representation of the
uncertainty in the sense that, among a cluster of genes, we can prioritize
the most promising ones based on their prioritization scores on each
selected tissue, as visualized in (Figure 5). Many redundant genes were
more promising by applying the priority model to fixed tissues, as noted
in the table (Table 2). This has only one interpretation, which has great
value in the expression in the different tissues analyzed. The process of
arranging all possible prioritizing disease-causing genes based on their
logistic regression has shown that consistent genesmay reside in distinct
pathways and affect the promoter/regulatory region of location-related
organisms. Based on PubMed resources, 972 abstracts were extracted
and approved that included 11 genes (COL4A5, EGR1, GDF15, CPE,
CASK, NT5E, JUN, AXL, CCL3, IL33, ITGAV) from our candidate
genes that have already been reported in previous studies on GD.

3.4 Genetic interactions bridging
transcription factors and pathways in
genome-wide association studies

Traditional statistical methods consider gene-gene interactions
and estimate interactions among only a fixed or small number of
phenotypes information with significant main effects. However, our
MGTI algorithm-based model can be applied when the data are
highly dimensional (many attributes or independent variables) or
when interactions between more than two tissues may play a role in

human disease etiology and regulation data mining analysis. To
perform ETL (extract-transform-load) operations, a vector of SQL
commands was used to select data based on a specific entity,
focusing on choosing the best score of gene-gene interaction and
supporting and validating the hypothesis validation. Representatives
Table 3 show some random gene-gene interaction algorithm tools
based MGTI model.

Based on the interaction between IL33 and RANBP1 genes,
which are expressed in the immune system and kidney tissue,
respectively, they contribute to indirect immune-mediated renal
disease, often many acute forms of renal disease, and play a central
role in the progression of chronic kidney disease. When the
interaction between these genes is high, the network interaction
leads to new diagnostic methods and treatment solutions to inhibit
further progression and promote appropriate tissue repair.

A glomerular filtration rate, expressed between urine and kidney
tissue, checks how well the kidneys are working. The kidneys are two
organs on either side of the spine, near the waist. They have tiny filters
called glomeruli. These filters remove waste and extra water from the
blood and get rid of them through urine. When the kidneys are
damaged by kidney disease, they cannot filter blood as fast as they
should. The interaction between the MYOZ2 and SORT1 genes can be
used to check for kidney disease by measuring how much blood is
filtered in the kidneys and how much C-reactive protein is increased.

Finally, the gene interaction results encode a superfamily of
proteins that plays a role in transcriptional expression, whether

FIGURE 5
Correlation plot line of the prioritization model as logistic regression for gene clusters consisting of a new scoring including expression, similarity,
and frequency from mean expression of various tissues of interest, under each element of the set (phenotype/trait, and enhancer/promoter).
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ligands of this family bind various enzyme binding and receptors/
initiators leading to recruitment and activation of family
transcription and signaling factors regulating the level and
stability of gene expression. The encoded proteins possess
different motifs composed of intracellular and extracellular
domains. Several cellular functions may be involved in multiple
cell types and various tissues. While alternative splicing results in

multiple transcript variants of these candidate genes. While
alternative splicing results in multiple transcript variants of these
candidate genes.

Based on a suite of queries such as network analysis, functional
enrichment analysis, and cross-validation with network analysis that
represent different types of analyses performed on the data
warehouse comparing the results to previously validated ones.

TABLE 2 The most promising genetic head data prioritization-models for the four clusters.

Cluster N 1

Kidney Urine Immune system Blood Embryonic dev

IL33 SPON1 SPON1 SPON1 SPON1

RANBP1 IL33 IL33 IL33 IL33

ANK1 RANBP1 RANBP1 RANBP1 RANBP1

MYOZ2 ANK1 ANK1 MYOZ2 ANK1

MEOX1 MYOZ2 MYOZ2 PALB2 PALB2

CACNA1G MEOX1 MEOX1 CACNA1G MYOZ2

PALB2 CACNA1G CACNA1G ANK1 MEOX1

Cluster N 2

Kidney Urine Immune system Blood Embryonic dev

BMP2 BMP2 COL15A1 BMP2 BMP2

COL15A1 COL15A1 ITGAV COL15A1 COL15A1

ITGAV ITGAV BMP2 ITGAV ITGAV

ATP13A3 ATP13A3 ATP13A3 ATP13A3 ATP13A3

TNFSF10 TNFSF10 TNFSF10 TNFSF10 TNFSF10

FGF7 FGF7 FGF7 FGF7 FGF7

Cluster N 3

Kidney Urine Immune system Blood Embryonic dev

SPON1 SPON1 SPON1 SPON1 SPON1

RET RET RET RET RET

FOS FOS FOS FOS FOS

SFRP4 SFRP4 SFRP4 AXL AXL

AXL NME3 P2RY14 SFRP4 SFRP4

NME3 CA10 NME3 GDF15 GDF15

CA10 BTG2 CA10 NME3 CCL4

Cluster N 4

Kidney Urine Immune system Blood Embryonic dev

SPON1 SPON1 SPON1 SPON1 SPON1

MYOZ2 MYOZ2 MYOZ2 TDG TDG

PALB2 PALB2 PALB2 PALB2 PALB2

SORT1 RAP1B RAP1B SPRY1 MYOZ2

RAP1B NME3 P2RY14 MYOZ2 SORT1

TDG SORT1 NME3 RAP1B SPRY1
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TABLE 3 Global summary of the mixed-gene tissue interaction (MGTI) model based on gene prioritization results and randomly selected genes from the results.

Cluster N 1

IL 33: Interleukine 33 Genes 2: RANBP1: RAN binding protein 1

Mean-coExp (adjusted) 0.17 0.87

Mean-tissues 5.8 2.4

Description-tissues “Immune system” “Kidney”

Mean-BP 0.59 -

Description-BP “Regulation of: inflammatory response.” of immune effector
process.“response to external stimulus.” cytokine production. “inflammatory
response.” adaptive immune response based on somatic recombination of
immune receptors built from immunoglobulin superfamily domains.”
proteolysis.” adaptive immune response.” neuroinflammatory response.” of
cell activation.”

-

Mean-TFs 0.77 1.54

Description-TFs “Myc”, “CEBPA”, “USF1”, “TBP” “Zfx”, “MYC::MAX”

“Mycn”, “RXRA::VDR”

“FOXO3”, “Arnt::Ahr”, “Sox5” “ZNF354C″, “Myc”, “Egr1”

Mean-GWAS 4.75 0.4

Description-GWAS “Acute kidney injury” “Urinary metabolite

Measurement”

“Chronic kidney disease”

“Blood protein measurement”

“Platelet count”

“Serum IgG glycosylation

Measurement”

Prioritization score 16.53 16

Interaction score: 0.75

Cluster N 2

Genes 1: ITGAV: Integrin alpha V Genes 2: FCER1A: Fc fragment of IgE

Mean-coExp 1.05 1.69

Mean-tissues 3.35 1.9

Description-tissues “Hematopoietic stem cell” “Parenchyma” “Kidney”

Mean-BP 0 0

Description-BP

Mean-TFs 1.18 0.96

Description-TFs “IRF2”, “Sox17”, “Esrrb”, “ARID3A″ “NFYA”, “NHLH1”, “Gata1”

“RORA1”, “SOX9” “Myf”, “FEV”

Mean-GWAS 2.38 0.003

Description-GWAS “Urinary albumin to creatinine ratio” “C-reactive protein measurement”

“Microalbuminuria” “Leukocyte count”

“Serum IgE measurement”

Prioritization score 16.01 6.6

(Continued on following page)
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TABLE 3 (Continued) Global summary of the mixed-gene tissue interaction (MGTI) model based on gene prioritization results and randomly selected genes from
the results.

Cluster N 1

IL 33: Interleukine 33 Genes 2: RANBP1: RAN binding protein 1

Interaction score: 0.63

Cluster N 3

Genes 1: PHLDA2: Pleckstrin Homology Like Domain Family AMember 2 Genes 2: BTG2: BTG Anti-Proliferation Factor 2

Mean-coExp 0.96 0.23

Mean-tissues 2.4 3.15

Description-tissues “Kidney” “Blood”

“Blood vessel”

Mean-BP - -

Description-BP “Regulation of binding” -

“Regulation of protein binding”

Mean-TFs 1.19 1

Description-TFs “GABPA”, “NFE2L2” “INSM1”, “NFYA”, “Tcfcp2l1”

“IRF1”, “ELK4” “CREB1”, “Zfx”, “Klf4”

“Egr1”, “FEV”

“RELA”

Mean-GWAS - 0.49

Description-GWAS - “Mean corpuscular hemoglobin”

“Red blood cell distribution width”

“Immunoglobulin isotype switching

Measurement”

“Multiple sclerosis”

Prioritization score 10.17 9.26

Interaction score: 0.65

Cluster N 4

Genes 1 : MYOZ2 : Myozenin 2 Genes 2: SORT1: Sortilin 1

Mean-coExp 1.8 3.15

Mean-tissues 1.5 1.7

Description-tissues “Kidney” “Urine”

Mean-BP - -

Description-BP - -

Mean-TFs 1.08 1.5

Description-TFs “PLAG1”, “MEF2A″ “RORA2”, “MEF2A″, “RREB1”

“ELF5”, “Myb”, “FOXD1” “NFYA”, “CREB1”, “Gfi”

Mean-GWAS 2.27 0.06

Description-GWAS “Body height” “glomerular filtration rate” “serum IgE measurement”“renal
transplant outcome measurement” “donor genotype effect measurement”

“Blood protein measurement” “C-reactive protein measurement”
“glomerular filtration rate” “C-reactive protein measurement” “creatinine
measurement” “body height” “chronic kidney disease”

Prioritization score 13.9 11.7

Interaction score:0.7
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The currently proposed search validation approach to gene
prioritization and data warehouse results is based on selecting
these improved best interaction scores to solve the sequencing
analysis. The best-improved scores were considered biomarker
modules to detect and rank novel forms of the activation of
glomerular disease genes.

The early diagnosis and prognosis of any type of disease are
correlated with the need for bioinformatics tools, as they can
facilitate the subsequent clinical management of patients, in
which the follow-up analysis can be applied to other types of
data such as cancer data, etc. Finally, our global objective was to
incorporate/develop a Shiny web-based application as an R
framework designed to help and facilitate users’ navigation under
“Shiny apps” as to test our algorithms tools: gene prediction,
prioritization, and interaction.

4 Conclusion

The long-term goal of this research is to improve our
understanding of the molecular/biological mechanisms of
activation and regulation of a set of novel/common genes
implicated in our pathology in different target cells. To address
the above issues, we proposed three contributions combining and
adjusting multiple similarity scores of gene expression gene ontology
terms based on similarity scores, which were explained by our
algorithm as essential prediction tasks for evaluating the
regulatory pathways. Then, machine learning techniques to
prioritize candidate genes were demonstrated. Finally, some
significant genetic interactions were detected as a validation of
the results by applying our algorithm model.

The linked resources of biological/clinical data-based expression
profiles (adjusted scores) are used to validate molecular biology
research. Experimental validation of all associations facilitates the
discovery of causative genes related to glomerular diseases (GD).
Genes such as EGR1, IL33, BMP2, and SLAMF8 have their GO
annotations such as kidney vasculature development, regulation of
cell activation/inflammation/immune effectors/adaptive immune/
glomerulus/glomerular mesangial cell proliferation] development, etc.

Other genes such as TNXA, FCER1A, NME3, FMOD, BTG2,
PTGER4, AXL, CYP1A2, CYTL1, BHLHE40, IFI16, SPON1, ETNPPL,
COL14A1, ITGAV, MYOZ2, CAMK2A, SORT1, RANBP1, in which
their variants information include complement a set of C(3,4,7) protein
measurement, serum IgE/IgA measurements, c-reactive protein
measurement, nephrotic syndrome, immune system disease,
tuberculosis, glomerular filtration rate, chronic kidney disease, etc.

The latter enables a rapid interpretation of complex gene
expression studies and illustrates an overview of a computational
model for gene prioritization and their genetic interactions.

Finally, the majority of our prioritized genes fall under
transcription co-factor binding, regulation of glomerular
mesangial cell proliferation, regulation of adaptive immune
response, complement activation, etc.

As a future area of study, new deep neural network algorithms
are proposed to summarize the clustering of genes based on their
regulatory pathway results, not only on their expression. This can

be challenging due to the many gene ontology (GO) terms
connected as directed acyclic graphs. This new area of analysis
can bring about changes in molecular, cellular, and biological
processes. Finally, we demonstrated that genotype-phenotype
associations can be adjusted and updated by using our feed and
back-propagation algorithms, which minimize the loss function
for gene ontology (GO) terms.
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