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This perspective highlights the potential of individualized networks as a novel
strategy for studying complex diseases through patient stratification, enabling
advancements in precision medicine. We emphasize the impact of interpatient
heterogeneity resulting from genetic and environmental factors and discuss how
individualized networks improve our ability to develop treatments and enhance
diagnostics. Integrating system biology, combining multimodal information such
as genomic and clinical data has reached a tipping point, allowing the inference of
biological networks at a single-individual resolution. This approach generates a
specific biological network per sample, representing the individual fromwhich the
sample originated. The availability of individualized networks enables applications
in personalized medicine, such as identifying malfunctions and selecting tailored
treatments. In essence, reliable, individualized networks can expedite research
progress in understanding drug response variability by modeling heterogeneity
among individuals and enabling the personalized selection of pharmacological
targets for treatment. Therefore, developing diverse and cost-effective
approaches for generating these networks is crucial for widespread application
in clinical services.
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1 Introduction

Complex diseases arise from the intricate interplay of multiple genetic and
environmental risk factors. The phenomenon of simplexity, where simplicity at the
phenotypic level coexists with complexity at lower organizational and molecular levels
(Stewart and Cohen, 2000; Kauffman et al., 1993), suggests the existence of disease subtypes
(Wallstrom et al., 2013) and emphasizes the uniqueness of each patient despite shared
characteristics with others (Smith, 2011). Unfortunately, most approaches to studying
complex diseases rely on identifying differences between groups based on average
biomarker values, overlooking the intricate biological intricacies of these diseases. For
this reason, it is necessary to use a more holistic approach that considers the molecular
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complexity of diseases, which involves thousands of genes across
multiple cell types in different body parts (H. Zhang et al., 2019) and
poses challenges for developing personalized, targeted therapies
(Sierksma et al., 2020; Rouzier et al., 2005; Shipitsin et al,. 2007;
Charitou et al., 2016; Khurana et al., 2013; Chan and Loscalzo, 2012).

Network biology is a rapidly developing area of research that
recognizes that biological processes are not chiefly controlled by
individual proteins or by discrete, unconnected linear pathways but
rather by a complex system-level network of molecular interactions
(X.-M. Zhang et al., 2021; Khurana et al., 2013; Charitou et al., 2016).
Graph neural networks and deep-learning-based data integration
models can predict disease progression and identify disease subtypes
more accurately by integrating multimodal data from disparate
sources, such as genetic, clinical, and imaging data (X.-M. Zhang
et al., 2021; Zhou et al., 2022). Therefore, a more holistic approach
that considers the molecular complexity of diseases and integrates
multimodal data can provide a more comprehensive understanding
of complex diseases, leading to the development of personalized,
targeted therapies and improved patient outcomes in the era of
precision medicine.

Cancer is a prime example of disease heterogeneity, where
variability exists in various aspects, including driver mutations,
making it challenging to identify causal mutations from an
average view of the entire patient cohort (Lengerich et al., 2018).
Moreover, diseases such as Autism spectrum disorders and epilepsy
exhibit vast degrees of heterogeneity at multiple levels, including
genotypes and phenotypes, resulting in diverse clinical
differentiations and treatment responses (Lombardo et al., 2019).
The clinical variability observed in diseases like Parkinson’s and
Alzheimer’s further highlights the need to go beyond mean values
and explore other approaches that capture the heterogeneous nature
of complex diseases (Freudenberg-Hua et al., 2018; Ma et al., 2018).

Clinical studies of diseases often suffer from biases due to
demographic, social, genetic, and ethnic factors, leading to the
underrepresentation of specific population groups (Prosperi et al.,
2018). This underrepresentation hampers the generalizability of
conclusions to a larger population, hindering the development of
effective treatments (Kessler et al., 2016; Popejoy and Fullerton,
2016; Popejoy et al., 2018; Gurdasani et al., 2019). The failure of
numerous clinical trials and the lack of a cure for diseases like
Alzheimer’s emphasize the need to account for population
heterogeneity in trial design and consider the underlying
biological mechanisms for disease subtyping (Devi and Scheltens,
2018).

While challenges exist in identifying biomarkers for
heterogeneous diseases, scale-out learning approaches often need
more specificity and may not be applicable in clinical practice
(Khurana et al., 2013). Additionally, invasive and costly
procedures or limited access to relevant tissues hinder studying
central nervous system diseases (Koníčková et al., 2022). Therefore,
it is necessary to adopt new approaches that precisely consider the
underlying biological mechanisms in disease subtyping (Yin et al.,
2019), incorporating clinical and omics analyses to improve
treatment responses (Zhou et al., 2022; X.-M; Zhang et al., 2021).

The study of complex diseases is not only a scientific effort but
also a public health concern. The increasing availability of drugs that
can contribute to molecular-tailored treatments based on predictive
biomarkers underscores the importance of improving our

understanding of individual patients to enhance their quality of
life (Zhou et al., 2022). To address these challenges, we require new
approaches that exponentially scale up learning on complex
diseases, enabling a deeper understanding of each individual and
more effective interventions (X.-M. Zhang et al., 2021). By
embracing these novel approaches, we can advance our
knowledge of complex diseases, refine disease subtyping, and
guide the selection of personalized treatment strategies to
improve patient outcomes and enhance public health.

1.1 Individualized networks and personalized
medicine

Individualized networks and personalized medicine are essential
for accelerating the development of new therapies for complex
diseases. Unlike the current reductionist approach, we require a
system-level understanding of individuals, which can be achieved
through biological networks (Ahn et al., 2006; Younesi and
Hofmann-Apitius, 2013). Biological networks provide a systems-
level understanding of disease mechanisms, enabling the
identification of differential molecular mechanisms altered in
different subtypes of disease and the disease’s progression
trajectory. Networks integrate data from multiple patients to
predict disease subtypes and progression, facilitating the
identification of prognostic biomarkers (Furlong, 2013; Younesi
and Hofmann-Apitius, 2013; McGillivray et al., 2018).
Computational strategies for biological network inference have
been developed to improve our understanding of biological
systems (Browne et al., 2009; Liu et al., 2016; Lengerich et al.,
2018; Van Der Wijst et al., 2018; Zanin et al., 2018).

Developing new therapies requires a system-level understanding
of individuals with complex diseases. Biological networks are a
powerful tool for this approach, enabling the modeling of
complex systems (Ahn et al., 2006; Younesi and Hofmann-
Apitius, 2013). By integrating data from several patients,
biological networks can predict differential molecular
mechanisms altered in different disease subtypes and identify the
progression trajectory of the disease (Fröhlich et al., 2018). Network
analysis can lead to identifying prognostic sets of biomarkers and
constructing explanatory models proving their value for precision
medicine. Computational strategies through biological network
inference have been developed and widely validated to improve
our understanding of biological systems (Browne et al., 2009).
Networks can be analyzed based on graph theory tools, such as
determining node properties like degree, betweenness, and other
centralities (Mulder et al., 2014), and global or local graph-
theoretical features describing the network may constitute
potential prognostic biomarkers instead of or in addition to
traditional covariates. Machine learning and artificial intelligence
techniques have been employed to analyze networks (Zitnik and
Leskovec, 2017; Agrawal et al., 2018; Ma et al., 2018; Zitnik et al.,
2018), allowing for the identification of gene signatures that serve as
prognostic markers, as demonstrated in clear renal cell carcinoma
patients (Büttner et al., 2019). Several authors have developed
computational strategies through biological network inference
(Liu et al., 2016; Lengerich et al., 2018; Van Der Wijst et al.,
2018; Zanin et al., 2018), and network-based analytics plays an
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increasingly important role in precision medicine (W. Zhang et al.,
2017). These strategies provide a comprehensive approach to
modeling biological systems, enabling construction of explanatory
models that can inform precision medicine.

Furthermore, individual-specific network analysis is valuable for
prediction modeling in medicine and applied health research,
identifying potential prognostic biomarkers, and discovering
relationships between gene modules and disease traits.
Addressing these points would make the perspective more
informative and engaging for readers interested in personalized
medicine and the use of biological networks, machine learning,
and artificial intelligence in disease research. However, it is
important to carefully validate and interpret the results of the
network-based analysis to ensure that they are biologically
meaningful and clinically relevant (Sonawane et al., 2019;
Galindez et al., 2023). Therefore, the clinical application of
precision medicine will likely require a fusion of approaches
tailored to each clinical problem (Duffy, 2016).

Individualized networks provide a powerful data integration and
analysis paradigm, offering a systems-level understanding of disease
mechanisms and underlying causes (Furlong, 2013; McGillivray et al.,
2018). Combining biomedical data with appropriate network
modeling approaches makes it possible to derive disease-associated
information and outcomes, including biomarkers, therapeutic targets,
phenotype-specific genes, survival prediction, and interactions
between molecules and disease subtypes (Sonawane et al., 2019).
An emergent area known as Network Medicine (Loscalzo, 2019),
these approaches have allowed the stratification of cancer into
subtypes predictive of clinical outcomes, such as response to
therapy, patient survival, and tumor histology (Hofree et al., 2013).
However, there are limitations to network-based approaches for
precision medicine, such as accounting for patient heterogeneity
and variability and constructing appropriate network models that
depend on study design, molecular entities measured, and the type
and size of data (Sonawane et al., 2019). The field should strive to
integrate genomic and clinical data to build networks that detect
differences for each sample. This new avenue will allow us to classify
complex diseases into clinically and biologically homogeneous
subtypes, leading to a better understanding of disease
pathophysiology and developing more targeted interventions

(Sørlie et al., 2001). By employing computational and systems
biology applications to develop individualized protocols, it is
possible to minimize patient suffering while maximizing treatment
effectiveness, allowing for the progression of precision medicine and
exploring differences between individuals (Barh et al., 2020).

The advantage of individualized protocols seen from the network
paradigm over other strategies is that we can study one network per
sample, make identification of modules in each network, compare
patients by comparing their respective networks, cluster individuals
based on sample-specific networks, and associate networks (sub-)
structure to disease status (more detailed in Table 1).

1.2 Approaches for generating individualized
networks

Nonetheless, it is possible to identify pathways and further
elucidate the molecular mechanisms of disease for individual
patients using biological systems strategies. Evaluating
correlations or other quantitative measures between molecules for
each individual, which are usually unavailable in clinical practice, is
the goal of the individualized network approach. However, this
requirement for molecular data seriously limits the application of
this methodology in personalized medicine (Galindez et al., 2023).
Recently, several authors have developed new strategies to infer
networks at the individual level, which can facilitate the discovery of
differentiated disease modules or different candidate mechanisms.
Although the traditional aggregated or averaged networks have
allowed us to gain important insights across a wide range of
biological systems and diseases, they only capture processes
shared across a population of samples (Figure 1). Therefore,
individualized network approaches have the potential to advance
precision medicine by enabling the identification of molecular
pathways that underlie complex disease phenotypes (Van Der
Wijst et al., 2018; Galindez et al., 2023).

Each of the individualized networks is representative of the
wiring of a specific individual and can characterize the specific
disease state of an individual, as opposed to more traditional
methods in which the network represents a population or cohort
(Sonawane et al., 2019). Moreover, several approaches have been

TABLE 1 Summary of study design in biological networks.

Networks in a whole
population

Case versus control network
comparison

Personalized networks

Experimental
design

Generation of one network from a
population

Generation of two or more networks representing
cases and controls

Generation of one network per sample/individual

Analytical
protocol

To obtain network modules and
associate each of them with disease
status

To find condition-specific clusters of individuals
based on the comparison of networks

Network comparison to identify modules for each sample

To identify structural network differences
associated with modules in disease status

Association of network structure and the presence/absence
of modules to disease status

Pros Allow study correlation relation among
genes in samples

Allow finding in general sense differences and
making comparisons among control and case
samples.

Network for each individual allows representing of what
happens in each subject

cons The resultant network does not
represent the variation in the
population

Network of cases and control allows represent a
consensus of the group studied

Coexpression network methods have minimal samples to
consider in analysis (30 samples) to reach optimal
performance

Frontiers in Genetics frontiersin.org03

Latapiat et al. 10.3389/fgene.2023.1209416

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1209416


suggested for exploring sample-level network information (Zanin
et al., 2018; Liu et al., 2016; Kuijjer et al., 2019; Dai et al., 2019;
Campos-Laborie et al., 2019; X. et al., 2021) (summarized in
Table 2). Furthermore, several authors focus on single-cell
analysis due to the sparsity and heterogeneity of transcript
counts. Authors such as (Liu et al., 2016; Liu et al., 2016; Dai
et al., 2019; Dai et al., 2019) used individualized network strategies to
study scRNA-seq heterogeneity in different cell types present in the
same sample (R.-S. et al., 2023). These methods can also be applied
similarly to construct individual networks of each bulk RNA-seq
patient data sample. However, there are potential challenges and
limitations in multi-omics network medicine approaches, and the
clinical application of precisionmedicine will likely require a fusion of
approaches tailored to each clinical problem (Duffy, 2016; Sonawane
et al., 2019). To use knowledge of individualized biological co-
expression networks in clinical settings its necessary collect
individual-level data, construct and analyze co-expression networks
to detect disease-relevant gene clusters and identify personalized
biomarkers and therapeutic targets (Harikumar et al., 2021). This
analysis can guide the selection of personalized therapies, leading to
improved treatment outcomes and reduced side effects. Therefore, it is

important to carefully validate and interpret the results of
individualized network approaches to ensure that they are
biologically meaningful and clinically relevant (Galindez et al., 2023).

1.3 The potential of individualized gene
networks in personalized medicine

Individualized gene networks have emerged as valuable tools for
personalized medicine, allowing for identifying disease-associated
biomarkers with diagnostic and prognostic value (Emmert-Streib
et al., 2014). By unraveling molecular interactions, these networks
enhance the accuracy and timeliness of disease diagnosis and
facilitate the selection of more effective treatment options.
Furthermore, specific network-building strategies enable the
prediction of individual drug responses, minimizing exposure to
ineffective drugs and reducing side effects (Van Der Wijst et al.,
2018). Individualized networks also reveal novel therapeutic targets
specific to each patient’s genetic and molecular profile, paving the
way for precise and effective therapies (Yan et al., 2022). Integrating
genetic, environmental, and lifestyle factors into personalized gene

FIGURE 1
Strategies to generate a coexpression network using a conventional approach that implies a population network, a traditional (control/diseases)
network, and the new individualized coexpression approach. The network generation process to generate networks with different approaches consists of
a series of steps: obtention of data from patients, clinics, and/or databases, normalizing data, and filtering features for ameliorating inconsistencies.
Strategies commonly employed in studies of diseases through networks, population, and traditional (case and control) networks consider mean
values of populations that limit known processes that can occur in unique patients; for this reason, individualized networks between genes in samples
could trigger give knowledge about changes at the level of pathways associated with diseases, with the potential to discover new drug targets and
biomarkers.
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regulatory networks empowers healthcare providers to predict
disease risk in susceptible individuals and implement early,
personalized preventive measures (Van Der Wijst et al., 2018).
Moreover, studying gene networks in individual cells enables the
identification of molecular markers that predict disease progression
and treatment response, enabling personalized treatment and real-
time therapy monitoring (Emmert-Streib et al., 2014). These
advancements in personalized medicine are crucial for
understanding the genetic basis of common diseases and
discovering new treatments and therapies (Ahmed et al., 2020).

Network individualization significantly impacts clinical
applications, treatments, medications, and omics exams,
contributing to more accurate and effective medical care in
personalized medicine (Infante et al., 2020). Here are some ways
individualization can improve patient care:

1.3.1 Personalized treatments
Understanding a patient’s genetic and molecular characteristics

enables doctors to design tailored treatments, including selecting
specific medications, dosage adjustments, and identifying the most
effective combination therapies (Suwinski et al., 2019).

1.3.2 Safer medications and therapies
Individualization helps identify patients more likely to

experience side effects or adverse reactions to certain
medications. By better understanding the molecular interaction
networks within individual patients, personalized therapeutic
targets can be identified, leading to more effective and safer
treatments (Goetz and Schork, 2018).

1.3.3 Personalized omics exams
Performing omics exams, such as whole genome sequencing,

gene expression profiling, and protein analysis, individually provides
accurate and relevant data for guiding diagnosis, prognosis, and
treatment (Mathur and Sutton, 2017; Ahmed et al., 2020; Williams
et al., 2022).

1.3.4 Early diagnosis of genetic diseases
Individualized medicine enables omics tests, such as genome

sequencing, to identify specific genetic mutations associated with
diseases, allowing for accurate and early diagnosis of genetic
disorders and a better understanding of genetic predisposition
(Aspinall and Hamermesh, 2007).

1.3.5 Facilitating drug approval
By considering patients’ genetic and molecular characteristics,

individualization can identify specific subgroups that may benefit
more from certain drugs, expediting the drug approval process and
providing access to more effective treatments for selected patients
(FDA, 2022).

2 Challenges and perspectives of using
individualized networks in precision
medicine

The challenges of using individualized networks in precision
medicine include the requirement for molecular data, which is
usually unavailable in clinical practice, and the need to develop

TABLE 2 Summary of sample-specific methods.

Method Type of network (nodes/edges) Context

Convergence/divergence network creation Zanin, Tuñas,
and Menasalvas. (2018)

Nodes correspond to the study subjects. Weight is
further associated with the link between two nodes
representing the distance between their features

Works assume that each disease is characterized by a
high internal coherence (or homogeneity), but they
explore the opposite possibility in this work

Sample specific network Zanin, Tuñas, and Menasalvas.
(2018); Liu et al. (2016); Kuijjer et al. (2019); Dai et al.
(2019); Campos-Laborie et al. (2019); Wang, Choi, and
Roeder. (2021)

Nodes correspond to genes. Edge represents the
distance between their genes

They developed a statistical method that allows
constructing of individual-specific networks based on
molecular expressions of a single sample to characterize
various human diseases at a network level

LIONESS (Linear Interpolation to Obtain Network
Estimates for Single Samples) Zanin, Tuñas, and
Menasalvas. (2018); Liu et al. (2016); Kuijjer et al. (2019);
Dai et al. (2019); Campos-Laborie et al. (2019); Wang,
Choi, and Roeder. (2021)

Model regulatory network in individual samples.
Network in which “nodes” represent genes and “edges”
represent a single estimate for the likelihood of
interaction between those genes

Aggregate or traditional network models fail to capture
population heterogeneity. They propose a method to
reverse engineer sample-specific networks from
aggregate networks. They used these networks to study
changes in network topology across time and to
characterize shifts in gene regulation using linear
interpolation to the predictions made by existing
aggregate network inference approaches

Cell-specific network Zanin, Tuñas, and Menasalvas.
(2018); Liu et al. (2016); Kuijjer et al. (2019); Dai et al.
(2019); Campos-Laborie et al. (2019); Wang, Choi, and
Roeder. (2021)

Nodes are genes and edges are gene–gene associations,
based on statistical dependency

This method transforms the data from ‘unstable’ gene
expression form to ‘stable’ gene association form on a
single-cell basis to obtain a network for one cell from
scRNA-seq data. This method can find differential gene
associations for every single cell. Traditional differential
gene expression analyses ignore even ‘dark’ genes that
play important roles at the network level. And can be
applied to construct an individual network of each
sample bulk RNA-seq data

locCSN Zanin, Tuñas, and Menasalvas. (2018); Liu et al.
(2016); Kuijjer et al. (2019); Dai et al. (2019);
Campos-Laborie et al. (2019); Wang, Choi, and Roeder.
(2021)

Nodes are genes, and edges are gene–gene associations They develop an approach that estimates cell-specific
networks for each cell, preserving information about
cellular heterogeneity that is lost with other approaches
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new strategies to infer networks at the individual level (Van DerWijst
et al., 2018; R.-S. et al., 2023). The clinical application of precision
medicine will likely require a fusion of approaches tailored to each
clinical problem, which can be complex and require significant
computational resources (Duffy, 2016). Furthermore, the statistical
rigor of network predictions comes from the study design and the size
of the datasets, which can be a limitation (Galindez et al., 2023).
Current approaches may need more samples to infer coexpression
networks that accurately capture the complexity of individualized
networks. The search space of possible coexpression networks is vast
and decreased uncertainty and reduced statistical power due to the
small sample size may limit the generalizability of the constructed
networks (Liesecke et al., 2019).

Obtaining many samples with comprehensive genomic data can
be challenging, especially for rare diseases or specific patient
populations. With limited sample sizes, the statistical power to
detect meaningful coexpression relationships may be reduced,
leading to false positives or missing important connections. One
approach to address these limitations is leveraging existing
knowledge from larger datasets or databases, incorporating prior
knowledge about gene-gene interactions, regulatory relationships, or
functional annotations. Integrating multi-omics data from different
modalities (e.g., genomics, transcriptomics, proteomics) could
provide a more comprehensive view of individual-specific
networks. Collaboration among researchers and data sharing can
help increase sample sizes and improve the statistical power of
coexpression network inference (Escorcia-Rodríguez et al., 2023).
The development of novel statistical methods specifically designed
for analyzing individualized coexpression networks can improve the
accuracy and reliability of the inferred networks (Yu et al., 2018).

Finally, developing more sophisticated algorithms and
computational methods can help extract meaningful information
from smaller sample sizes and incorporate prior knowledge,
improving the accuracy and robustness of individualized
coexpression networks (Colby et al., 2018). For example, Liesecke
et al. proposed the idea of conserved coexpression links between two
genes over several datasets, reinforcing the coexpression relationship
(Liesecke et al., 2019). However, there are still challenges to
overcome. When merging expression data, the size increase
should outweigh the noise inclusion, and graph structure should
be considered when integrating the inferences (Escorcia-Rodríguez
et al., 2023). The potential bias introduced by relying on external
datasets should also be considered, as they may only partially
represent the specific biological context of the individual sample.
Moreover, methods inferring coexpression networks should no
longer be assessed solely based on standard performance metrics
and graph structural properties.

Overall, while individualized networks have the potential to
advance precision medicine, they require careful validation and
interpretation of results to ensure they are biologically
meaningful and clinically relevant. For other hand, the cost of
using transcriptomic data has decreased over time, making it
more accessible for researchers and clinicians, and it is important
to consider the potential benefits of, and funding opportunities for
research in personalized medicine; for this reason, it is addressing
these challenges and limitations is crucial for their success and from
a perspective. Stratification makes possible the design of new clinical
trials to reevaluate previously tested drugs without such

stratification and determine possible new therapies or treatments
for each molecular subtype of patients (Rajewsky et al., 2020).

3 Conclusion

Personalized medicine, with its focus on individualized medical
treatment based on patient characteristics, has the potential to
revolutionize healthcare by improving patient outcomes and
enhancing the quality of care. Developing individualized therapy
protocols considering patient heterogeneity can minimize patient
suffering while maximizing treatment effectiveness; this necessitates
the refinement of disease categorization to understand the biological
differences among subtypes better and guide personalized treatment
strategies.

Novel individualized gene coexpression networks offer a
paradigm shift in studying complex diseases by revealing patient-
specific gene expression patterns and modules. By integrating
multimodal information and considering patient-specific
characteristics, these networks enhance our understanding of
disease pathogenesis, treatment response, and diagnostic
accuracy. They provide a more comprehensive understanding of
complex diseases, refine disease subtyping, and guide the selection of
personalized treatment strategies to improve patient outcomes.

Network medicine, which integrates diverse biological networks, is
emerging as a powerful approach to offer a systems-level understanding
of disease mechanisms and underlying causes. By analyzing gene-gene
interactions in individual samples and systematically comparing them,
we can identify pathways, subtypes of disease states, and key
components in the networks that can be targeted in clinical practice.
Multiscale mathematical and computational tools and integrating
genomic and clinical data enable the construction of individualized
networks with single-individual resolution.

While the potential impact of individualized coexpression networks
on clinical practice is significant, further research and interdisciplinary
collaboration are needed to realize their transformative powerfully.
Standardization and robustness of data-gathering approaches, including
imaging, multi-omic approaches, and clinical information, are critical
for scalability to larger patient cohorts. Deep-learning-based data
integration models hold promise in accurately predicting disease
progression and identifying disease subtypes by leveraging
multimodal data from various sources.

Addressing the limitations of current approaches to infer
coexpression networks requires leveraging existing knowledge,
integrating multi-omics data, collaborative efforts among
researchers, and developing novel statistical methods and
improved algorithms. These potential solutions represent
promising directions for overcoming current limitations and
advancing the inference of individualized coexpression networks.

In conclusion, individualized coexpression networks have the
potential to significantly advance our knowledge of complex
diseases, refine disease subtyping, and guide the selection of
personalized treatment strategies. By integrating diverse biological
networks and considering patient-specific characteristics, these
networks enhance our understanding of disease mechanisms and
improve patient outcomes in the era of precision medicine. As we
continue to explore the transformative potential of network medicine,
interdisciplinary collaboration, further research, and methodological
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advancements are vital to fully harness the power of individualized
coexpression networks and improve healthcare outcomes for patients.
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