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Genomic selection (GS) is transforming plant and animal breeding, but its practical
implementation for complex traits and multi-environmental trials remains
challenging. To address this issue, this study investigates the integration of
environmental information with genotypic information in GS. The study
proposes the use of two feature selection methods (Pearson’s correlation and
Boruta) for the integration of environmental information. Results indicate that the
simple incorporation of environmental covariates may increase or decrease
prediction accuracy depending on the case. However, optimal incorporation of
environmental covariates using feature selection significantly improves prediction
accuracy in four out of six datasets between 14.25% and 218.71% under a leave one
environment out cross validation scenario in terms of Normalized Root Mean
Squared Error, but not relevant gain was observed in terms of Pearson´s
correlation. In two datasets where environmental covariates are unrelated to
the response variable, feature selection is unable to enhance prediction accuracy.
Therefore, the study provides empirical evidence supporting the use of feature
selection to improve the prediction power of GS.
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Introduction

Tomeet the demands of the growing populationworldwide, it is of paramount importance to
increase food production. However, it is a complex task to reach a significant increase because of
the deterioration of natural resources, lack of land for agriculture use, significant fluctuations in
the climatic conditions, etc. For this reason, novel alternatives, such as genomic selection (GS)
methodology proposed by Meuwissen et al. (2001) are required for genetic improvement to
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increase yield stability, yield productivity, disease resistance, and
nutrition and the subsequent end-use quality of key crops like
wheat, rice, maize, and others (Crespo-Herrera, et al., 2021).

GS is a transformative approach that employs high-densitymarkers
across the entire genome and operates under the assumption that at
least one genetic marker is in linkage disequilibrium with a causative
QTL for the desired trait (Meuwissen et al., 2001). This methodology is
reshaping the field of plant and animal breeding through variousmeans:
(a) preemptively identifying promising genotypes prior to planting, (b)
enhancing the accuracy of selecting superior individuals, (c) yielding
significant resource savings primarily by reducing the need for extensive
phenotyping, (d) accelerating the variety development process by
reducing cycle length, (e) intensifying selection efforts, (f) facilitating
the selection of traits that are challenging tomeasure, and (g) enhancing
the accuracy of the selection process.

Most of the referenced advantages of the GS are because the
genomic selection methodology is predictive (Meuwissen et al.,
2001). For this reason, the GS methodology trains statistical
machine learning models with a reference population that
contains phenotypic and genotypic records, and after the training
process, produces predictions for candidates individuals that only
contain genotypic records (Desta and Ortiz, 2014). The term
“statistical machine learning methods” refers to the
methodologies that originate from the domains of statistics and
machine learning, as defined by Montesinos-López et al. (2022).

GS methodology is being applied in breeding programs of many
crops like groundnut, maize, cassava, wheat, rice, chickpea, etc.
(Roorkiwal et al., 2016; Crossa et al., 2017; Wolfe et al., 2017; Huang
et al., 2019). However, the practical implementation of GS is still
challenging because GS depends on many factors that should be
optimized to guarantee high prediction accuracies. However, the
simultaneous optimization of all these factors is very complex and so
unexpected results are often found.

Several factors influence the application of the GS methodology,
including: (a) the specific prediction objectives pertaining to tested
lines in untested environments, untested lines in untested
environments, tested lines in tested environments, or untested
lines in tested environments, (b) the selection of an appropriate
statistical machine learning method for accurate predictions
(Montesinos-López et al., 2022), (c) the extent of coverage and
marker density employed, (d) the influence of population structure
(Frouin et al., 2019), (e) the heritability of the trait being considered,
(f) the degree of mismatch between individuals in the testing and
training sets (Habier et al., 2007), and (g) the sample size of the
testing and training sets.

The calibration process necessary for the effective implementation
of the GS methodology is not a simple task. However, accumulating
empirical evidence from both small- and large-scale breeding programs
indicates the feasibility of utilizing this methodology successfully.
Nevertheless, it is crucial to acknowledge that achieving success
requires careful consideration of various factors influencing its
accuracy. Failing to account for these factors may result in
unexpected outcomes following implementation. Specifically,
important details such as the computation method for best linear
unbiased estimates (BLUEs) used as response variables and the trait
heritability play a pivotal role in avoiding low prediction accuracies.

Ongoing research aims to enhance the accuracy of GS by
optimizing various factors. One area of focus is training and

testing optimization, which aims to improve the precision of this
methodology (Rincent et al., 2012; Akdemir et al., 2015).
Additionally, extensive evaluations of different statistical machine
learning methods are underway to achieve better prediction
performance and develop robust models that require minimal
tuning while maintaining high accuracy (Montesinos-López et al.,
2022). Furthermore, researchers are investigating the integration of
other omics data (such as phenomics, transcriptomics,
metabolomics, and Environics) to enhance the accuracy of GS
and identify powerful predictors for the traits of interest
(Montesinos-López et al., 2017; Krause et al., 2019; Monteverde
et al., 2019; Costa-Neto et al., 2021a; Costa-Neto et al., 2021b; Hu
et al., 2021; Wu et al., 2022). These efforts aim to leverage additional
information sources to improve the predictive capabilities of the GS
methodology.

Incorporating environmental information, also known as enviromic
data, in genomic prediction models has yielded varying results. Some
studies have reported significant improvements by including this
information (Costa-Neto et al., 2021a; Costa-Neto et al., 2021b),
while others have observed modest or no improvements (Monteverde
et al., 2019; Jarquin et al., 2020; Rogers and Holland, 2022). These mixed
findings highlight the absence of a robust and precise method for
effectively integrating environmental information into genomic
prediction models. To address this gap, our present study focuses on
evaluating the use of feature selection to identify the optimal
environmental predictors. The goal is to enhance the accuracy of the
GS methodology when incorporating environmental covariates.

Feature selection involves choosing a subset of relevant features
from a larger available dataset. It plays a vital role in statistical
machine learning as selecting the appropriate features can
significantly improve model accuracy and efficiency. By selecting
only the most pertinent features, feature selection reduces model
complexity, leading to faster training times, better generalization to
new data, and more interpretable outcomes. Additionally, feature
selection helps mitigate overfitting, which occurs when a model
becomes excessively complex and memorizes the training data
rather than learning general patterns applicable to new data.
Overall, feature selection is a critical step in the statistical machine
learning pipeline, with the potential to greatly impact the performance
and interpretability of a model (Chandrashekar and Sahin, 2014).

In this research, two feature selection methods (Pearson´s
correlation and Boruta) were evaluated, and their performance
was compared without incorporating the environmental
covariates to evaluate the increase of prediction accuracy that is
reached by adding the selected environmental covariates with the
two methods of feature selection.

Materials and methods

A summary of the 6 datasets utilized in this study is in Table 1.

Data

Datasets 1. USP
The University of São Paulo (USP) dataset is derived from

germplasm developed by the Luiz de Queiroz College of
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Agriculture at the University of São Paulo, Brazil. Between
2016 and 2017, an experiment was conducted using
49 inbred lines, resulting in 906 F1 hybrids, of which
570 were evaluated across eight different environments. The
environments were created using a combination of two
locations, 2 years, and two nitrogen levels. However, in this
research, we used the information of 4 environments and
100 hybrids in each environment. The environments used in
the study were distinct, with different soil types and climates.
Environmental data was collected and used to create
248 covariables. The parent lines were genotyped using the
Affymetrix Axiom Maize Genotyping Array, resulting in
54,113 high-quality SNPs after quality control procedures
were applied. For more details about this data, see Costa-
Neto, et al. (2021a).

Datasets 2. Indica
Indica (Monteverde et al., 2019) is a rice dataset comprising

phenotypic information for four traits: Percentage of Head Rice
Recovery (PHR measured in grams, as the weight of whole milled
kernels, using a 100 g sample of rough rice), Grain Yield (GY of
paddy rice in kilograms per hectare), Plant Height (PH measured
in cm from the soil surface to the tip of the flag leaf) and
percentage of Chalky Grain (GC measured as % of chalky
kernels in a subsample of 50 g of total milled rice). These
traits were measured in three developmental stages
(maturation, reproductive, and vegetative) across three
environments (2010, 2011, and 2012). In each environment
were evaluated 327 genotypes and 18 environmental covariates
were measured. These covariates include MaxTemp (maximum
temperature in °C), MinTemp (minimum temperature in °C),
TankEv (tank water evaporation in mm), Wind (wind speed in
2 m/km/24 h), PicheEv (pichi evaporation in mm), MinRelH
(minimum relative humidity in %), AccumPpit (accumulated
precipitation in mm), Sunhs (sunshine duration in hours),
MinT15 (minimum temperature below 15°C in days),
ThermAmp (thermal amplitude in °C), RelSun (relative
sunshine duration in %), SolRad (solar radiation in cal/cm2/
day), EfPpit (effective precipitation in mm), DegDay (degrees day

in rice in °C), RelH (relative humidity in hours), PpitDay
(precipitation day in days), MeanTemp (mean temperature in
°C, Average of temperature over 24 h (0–24 h)), and AvTemp
(average temperature in °C calculated as daily (Max + Min)/2).
The dataset contains 981 assessments, with each line assessed
once in each environment. For each line, 16,383 SNP markers
were evaluated after quality control, with each marker coded as 0,
1, or 2.

Datasets 3. Japonica
Japonica is a dataset of 320 genotypes from the tropical rice

Japonica population. It was evaluated for the same four traits
(PH, PHR, GY, GC) as the indica population in five environments
(2009–2013), with covariates measured three times in each year
for the three developmental stages (maturation, reproductive,
and vegetative). A total of 1,051 assessments were made in the
five environments, and the dataset is not balanced. Additionally,
each genotype was evaluated for 16,383 SNP markers that
remained after quality control, with each marker coded as 0,
1, or 2. For more details about this data, see Monteverde, et al.
(2019).

Datasets 4–6
The three datasets included in this study correspond to the

years 2014 (data set 4), 2015 (data set 5), and 2016 (data set 6) of
the Genomes to Fields maize project, as described by Rogers
et al. (2021). These datasets comprise phenotypic, genotypic,
and environmental information. Specifically, the phenotypic
data utilized in this study focused on four specific traits,
namely, Grain_Moisture_BLUE (GM_BLUE), Grain_
Moisture_weight (GM_ Weight), Yield_Mg_ha_BLUE (YM_
BLUE), and Yield_Mg_ha_weight (YM_Weight), selected
from a larger set of traits reported by Rogers et al. (2021).

For years 2014 (data set 4), 2015 (data set 5) and 2016 (data
set 6) there were 18, 12 and 18 available environments
respectively (See Table 1). In terms of the number of
genotypes evaluated for each year, there were 781, 1,011, and
456 genotypes for the years 2014 (data set 4), 2015 (data set 5),
and 2016 (data set 6), respectively. The analysis utilized a set of

TABLE 1 Summary of the six datasets. Num. Lines denotes the number of lines evaluated in each data set. Num. Denotes number. USP denotes the University of São
Pablo data set.

Dataset Environments Traits Num.
Lines

Description Num Description Num

USP Env1, Env2, Env3, Env4 4 GY 1 100

Indica 2010, 2011, 2012 3 GC, GY, PH, PHR 4 327

Japonica 2009, 2010, 2011, 2012, 2013 5 GC, GY, PH, PHR 4 320

G2F_2014 DEH1, IAH1ab, IAH1c, IAH2, IAH3, IAH4, ILH1, INH1, MNH1,
MOH1, MOH2, NCH1, NEH1, NEH2, NEH3, NYH1, TXH2,
WIH1

18 Grain_Moisture_BLUE, Grain_Moisture_weight,
Yield_Mg_ha_BLUE, Yield_Mg_ha_weight

4 781

G2F_2015 DEH1, GAH1, INH1, MNH1, NCH1, NEH1_NEH4, NEH2,
NEH3, NYH2, NYH3, OHH1, SDH1

12 Grain_Moisture_BLUE, Grain_Moisture_weight,
Yield_Mg_ha_BLUE, Yield_Mg_ha_weight

4 1,011

G2F_2016 ARH1, DEH1, GAH1, IAH1, IAH2, IAH3, IAH4, ILH1, INH1,
MIH1, MNH1, MOH1, NCH1, NEH1, NYH2, OHH1, WIH1, WI

18 Grain_Moisture_BLUE, Grain_Moisture_weight,
Yield_Mg_ha_BLUE, Yield_Mg_ha_weight

4 456
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20,373 SNP markers that had already been imputed and filtered,
as described by Rogers et al. (2021). The additive allele calls
were recorded as counts of the minor allele (0, 1, 2). For further
details regarding these datasets, please refer to Rogers et al.
(2021).

There are unique values of environments for each dataset,
while for traits, the G2F_2014, G2F_2015, and G2F_
2016 datasets share the same traits, and the same happens
with Indica and Japonica.

Models

Bayesian model
The Bayesian model used with all predictors given in Table 2 is

Yij � μ + Ei + gj + gEij +∑r

k�1Xikβk + ϵij (1)

Where Yij is the response variable for the genotype j in
environment i, μ is a general mean, Ei are the random effects of
locations (environments) distributed as
E � (E1, . . . , EI)T ~ N(0, σ2EH.e), where H.e is the environmental
relationship matrix as computed by Cuevas et al. (2016), but in place
of using genomic information, it was computed using
environmental variables; that is, H.e � XeXT

e
r , where Xe �

(X1, . . . , Xr) is the standardize (centered and scaled) matrix of
dimension I × r containing the environmental information of I
environments and for each environment were measured r
environmental covariates; Xik denotes the environmental
covariate k measured in environment i, βk is the beta coefficient
corresponding to covariate Xik; gj, j � 1, . . . , J, are the random

effects of genotypes (lines), gEij are the random effects of genotype
× environment interaction (GE) and ϵij are the random error
components in the model assumed to be independent normal
random variables with mean 0 and variance σ2. Furthermore, it
is assumed that g � (g1, . . . , gJ)T ~ N(0, σ2gK .g), where K .g is the
genomic relationship matrix as computed by (Cuevas et al., 2016;
slightly different as proposed by VanRaden (2008), using the marker
data (K .g � MeMT

e
p ) whereMe is the standardize (centered and scaled)

matrix of dimension J × p containing the marker information of J
genotypes for which were measured p markers.
gE � (gE11, . . . , gE1J, . . . , gEIJ)T ~ N(0,K .gecσ2gE), where
K .gec � K .ec ⊙ ZgK .g ZT

g , where K .ec � ZeH.e ZT
e, Ze is the design

matrix of environments, ⊙ denotes the Hadamard product and Zg is
the design matrix of genotypes. It is important to point out that the
dimension of Xe is reduced after variable selection and in place of
being I × r is I × rs with rs ≤ r.

Predictors implemented
To understand better the content of Table 2, next we describe

how were computed some components of the predictors given in
Table 2. For example, K .e was computed as K .e � ZeZT

e
I ,

K .ge � K .e ⊙ ZgK .g ZT
g , Xe.avg denotes an average covariate that

was computed with the environmental covariates (Xe),Xe use all the
available environmental covariates when not was applied feature
selection and only those selected with the feature selection methods
when feature selection was applied. This average covariate (Xe.avg)
was computed from Xe of order I × rs after variable selection as:

Step 1. First, we identify the direction (positive and negative) of
the correlation of each column of Xe computed only with the
response variable of the training set.

TABLE 2 Description of the 15 predictors implemented. Environmental covariates (0 denotes no used, while 1 denotes used), selection method of environmental
covariates (C= Pearson´s correlation and B=Boruta). TC denotes threshold correlation and this takes values of 0.3, 0.4, 0.5, 0.6, and 0.7. The largest TC value was
evaluated first and in case that any covariate satisfied this TC value was used the second largest and so on.

Model Predictor Environmental covariates Selection method Average of covariates Correlation

M0 K.e + K.g + K.ge 0 - 0 -

M1 K.e + K.g + K.ge+ Xe 1 - 0 >0

M2 K.ec + K.g + K.gec 1 C 0 TC

M3 K.e + K.g + K.ge+ Xe 1 C 0 TC

M4 K.ec + K.g + K.gec+ Xe 1 C 0 TC

M5 K.e + K.g + K.ge+ Xe2 1 C 0 TC

M6 K.e + K.g + K.ge+ Xe.avg 1 C 1 TC

M7 K.ec + K.g + K.gec+ Xe.avg 1 C 1 TC

M8 K.ec + K.g + K.gec+ Xe.avg 1 C and B 1 TC

M9 K.e + K.ge + X.g.ec 1 B 0 -

M10 K.e + K.g + K.ge+ Xe (Tenative true) 1 B 0 -

M11 K.ec + K.g + K.gec+ Xe.avg (Tentative false) 1 B 1 -

M12 K.ec + K.g + K.ge+ Xe.avg (Tenative true) 1 B 1 -

M13 K.ec + K.g + K.gec+ Xe.avg (Tenative true) 1 B 1 -

M14 K.ec + K.g + K.gec+ Xe.avg (Tenative False) 1 B 1 -
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Step 2. Those columns of Xe, with negative correlation are
multiply by −1 to guarantee a positive correlation with the
response variable and call these new matrix as X*

e.
Step 3. Then we compute Xe.avg for the whole data set as the

average of each row of X*
e and for this reason Xe.avg has order I × 1.

But because the covariates are measured at environment (Location)
level to be in agreement with all design matrices given in model 1),
Xe.avg is expanded to order IJ × 1, since each covariate is the same
for all lines in the same environment.

Using only one covariate as Xe.avg, implies that only one beta
coefficient needs to be estimated in place of rs beta coefficients
required when is used as input the Xe matrix. In predictor M9 it is
important to point out that X.g.ec denotes the covariates selected,
but in place of selecting only from the environmental covariates we
performed the Boruta selection from the markers and
environmental covariates together. For feature selection the
Pearson´s correlation and Boruta method were used, which are
explained in the next section. All predictors given in Table 2 were
implemented in the BGLR package of Pérez and de los Campos
(2014) in the R statistical software (R Core Team, 2023).

Feature selection methods and algorithms
for selecting environmental covariates

The training of each model differs in the use of the
environmental covariates that make up each dataset. Therefore,
model M0 differs from the other models by making predictions
without including any information given by the environmental
covariates. For this reason, in model M0 the linear kernels
K .e � ZeZT

e
I , K .ge � K .e ⊙ ZgK .g ZT

g , were computed only with the
design matrices of environments (Ze). On the other hand, model
M1 is equal to model M0 plus adding all available environmental
information as covariates (Xe) without variable selection. Model
M2 is equal to model M0, but with the difference that the
computation of the linear kernels (K .ec � ZeH.e ZT

e and
K .gec � K .ec ⊙ ZgK .g ZT

g) take into account the environmental
covariates after variable selection with Pearson correlation. Model
M3 is equal to model M1 but using the covariates, Xe, after variable
selection with Pearson´s correlation. Model M4 is equal to model
M2 but also including the environmental information as covariates
(Xe) after variable selection with Pearson´s correlation. Model M5 is
equal to model M3 but in place of using only Xe, as covariates, after
variable selection with Pearson´s correlation, also were used the
square of each column of Xe, as covariates, that is as covariates used
were Xe2 � Xe + Xe*Xe. Model M6 is equal to model M3 but in place
of using Xe, after variable selection with Perason´s correlation as
covariate used only the average covariate (Xe.avg). Model M7 is equal
to model M4 but in place of using Xe, after variable selection with
Perason´s correlation as covariate used also the average covariate
(Xe.avg). Model M8 is equal to model M7 but the variable selection
process was done with both Pearson´s correlation and Boruta
simultaneously. Model M9 performed variable selection of
markers and environmental covariates simultaneously using the
Boruta algorithm and the resulting selected covariates are called
X.g.ec, while K.e and K.ge were computed only with the design
matrix of environment (Ze). Model M10 is equal to model M3 but
the selection of the environmental covariates was done with the

Boruta algorithm selecting tentative and confirmative covariates. It
is important to point out than in model M10 also the Boruta
algorithm was applied to select the markers and then with the
selected markers were computed the linear kernels of lines (K.g) and
genotype by environment (K.ge) interaction. Model M11 is equal to
model M8 but now the environmental and markers covariates were
selected with the Boruta algorithm selecting only confirmative
covariates. Model M12 is equal to model M11 but with the
difference that with the Boruta algorithm were selected tentative
and confirmative covariates. Model M13 is equal to model M12 but
with the difference that the selected environmental covariates were
also used to compute the linear kernels of environments (K.ec) and
genotype by environment (K.gec) interaction. Finally model M14 is
equal to model M13 but with the difference that with the Boruta
algorithm were selected only confirmed features. More details of
each predictor are given in Table 2.

It is important to point out that only model M1, used all
environmental covariates, while the remaining models use a
selected subset of all available environmental covariates. The
choice of feature selection method to be used depends on the
specific problem and the characteristics of the data. It is often
necessary to try different methods and evaluate their
performance to find the most suitable one for a particular task.

The first feature selection method corresponds to the correlation
present between the environmental covariates and the response
variable, where the selection is made according to the largest
correlation present in each training set of each trait. However, it is
important to note that the selection of these covariates is done
discarding the response variables in the testing set (a complete
environment in this case since we will implement only a leave one
environment out cross-validation), that is, the environment that will be
predicted. The threshold correlations to select environmental covariates
were: 0.3, 0.4, 0.5, 0.6, and 0.7.When the correlations are lower than the
0.3 value, it implies the training process was done without any
environmental covariates, however it is important to realize if only
few covariates satisfied the threshold correlation of 0.7 only these
covariates were used in the training process, but if any satisfied this
threshold were used those that satisfied lower threshold (0.5), and so on.

The second feature selection method consists of implementing the
Boruta algorithm, which seeks to capture covariates that are strongly or
weakly relevant to the response variable. Also, the selection of the
covariates to include in the training process of themodels were obtained
using the response variables corresponding only to the training set; the
observations that will be part of the testing are not used for selecting the
important environmental covariates.

Boruta is a feature selection algorithm that was designed to
handle high-dimensional datasets with noisy features (Kursa and
Rudnicki, 2010) The algorithm works by creating a shadow feature
set, which is a copy of the original feature set with random
permutations added. The shadow features are used as a control
to determine whether a feature is statistically significant or not. The
original features are considered relevant if their importance scores
are significantly higher than the importance scores of their shadow
features. Boruta is useful for datasets with a large number of noisy
features, where traditional feature selection methods may struggle.
However, it can be computationally expensive and may require
careful parameter tuning to achieve optimal results (Kursa and
Rudnicki, 2010).
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The Boruta algorithm works in the following steps.

1. Create a shadow feature set by randomly permuting the values of
each feature.

2. Train a random forest model on the original and shadow
feature sets.

3. Calculate the feature importance scores for each original feature
by comparing them to the importance scores of their shadow
features.

4. Determine the maximum importance score for each feature.
5. Check whether the maximum importance score is statistically

significant using the Binomial test. If it is significant, mark the

feature as important. Otherwise, mark the feature as
unimportant. The Binomial test is a statistical test used in
Boruta to evaluate the significance of feature importance
scores. It compares the observed number of successes (e.g., the
number of times a feature’s importance score exceeds a
threshold) with the expected number of successes under a null
hypothesis. The test assesses whether the observed results are
statistically significant or can be attributed to chance. In Boruta,
the Binomial test is applied to determine if the feature importance
scores are significantly higher than the importance scores of
shadow features, indicating the importance of the original
features (Kursa and Rudnicki, 2010).

FIGURE 1
USP data. (A) Count of the number of times a model is better than another, by environment. (B) Count of the number of times a model is better than
another, by trait. (C) Performance of the models’ prediction measured by Normalized Root Mean Squared Error (NRMSE). (D) Relative efficiency (RE) of
each predictor compared to model M0, the model without environmental information.
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6. Repeat steps 1–5 for a predetermined number of iterations.)
7. Rank the features by their importance scores and select the top n

features for the final feature set. The Boruta algorithm selects the
important features based on their labels. “Confirmed” features
are considered important, while “Rejected” features are deemed
unimportant. “Tentative” features can be considered less
important or require further investigation.

Evaluation of prediction accuracy

To assess the prediction accuracy, a leave one environment
out (LOEO) cross-validation approach was employed for each
dataset. This involved iteratively constructing the training set by
excluding one environment (I-1 environments) while utilizing
the remaining environment as the testing set. The evaluation
methodology follows the approach described by Montesinos-
López et al. (2022). However, as pointed out before since
some of the predictors provided in Table 2 selected
environmental covariates, the selection of these covariates was
done after splitting the training and testing the data, and only the
training was used for selection of the important covariates,
because when using the whole data before splitting the data in
training and testing the results are too optimistic due to a leakage
of information. Data leakage, a significant issue in machine
learning, happens when the data used to train an ML

algorithm includes information the model is attempting to
predict. The leakage of information is a primary error in
machine learning, which can significantly impact the
production performance and validation accuracy of the model
since we obtain very optimistic results that are not translated for
real applications.

The prediction accuracy was reported in terms of the
Normalized Root Mean Squared Error (NRMSE) and Pearson´s
correlation (Cor). Also, we computed the absolute value of the
intercept (b0) and the absolute value of b = 1-slope by regressing the
observed values versus the predicted values to inform about the
quality of the Pearson´s correlation. In terms of Pearson´s
correlation the closet to 1 the value the better the predictions,
while in terms of NRMSE, b0 and b, the closest to zero the
better the predictions. Furthermore, we conducted a computation
to determine the count of instances where model m outperformed
model m´ in terms of NRMSE (Normalized Root Mean Squared
Error), consideringm = 0, . . . , 14 andm´ = 0, . . . ,14, butm different
of m´. This count was performed for each dataset, taking into
consideration the specific traits and environments under
evaluation. Also, we computed the Relative Efficiency (RE), in
terms of NRMSE of each model regarding the worst model with
the following expression:

RE � NRMSE M0( )
NRMSE Mk( ) − 1( ) × 100 (2)

TABLE 3 University of São Paulo (USP) dataset. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error
(NRMSE), both by environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute
value of 1-slope. Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or eachmodel in percentage was computed regarding model
M0 without environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative
there is a loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b b

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 24 40.00 9 64.29 1.420 0.00 0.427 0.00 1.527 0.00 0.326 0.00

M1 20 33.33 6 42.86 1.438 −1.25 0.424 −0.73 2.198 −30.54 0.273 19.23

M2 25 41.67 7 50.00 1.427 −0.50 0.448 4.97 0.318 380.31 0.079 310.98

M3 22 36.67 5 35.71 1.439 −1.34 0.434 1.69 2.788 −45.24 0.336 −3.18

M4 26 43.33 10 71.43 1.418 0.11 0.452 6.05 0.155 884.46 0.054 500.55

M5 24 40.00 4 28.57 1.468 −3.27 0.424 −0.66 1.841 −17.07 0.259 25.92

M6 11 18.33 0 0.00 1.501 −5.41 0.430 0.89 2.868 −46.75 0.365 −10.85

M7 24 40.00 2 14.29 1.468 −3.28 0.451 5.63 0.194 686.66 0.059 454.51

M8 26 43.33 3 21.43 1.470 −3.42 0.429 0.52 1.283 19.05 0.242 34.28

M9 47 78.33 14 100.00 1.192 19.13 0.206 −51.80 32.520 −95.30 5.559 −94.14

M10 23 38.33 1 7.14 1.494 −4.99 0.401 −6.09 2.670 −42.81 0.376 −13.52

M11 28 46.67 8 57.14 1.433 −0.92 0.429 0.49 1.237 23.42 0.243 34.12

M12 42 70.00 12 85.71 1.347 5.42 0.411 −3.77 0.180 747.34 0.035 838.04

M13 46 76.67 13 92.86 1.260 12.67 0.419 −1.90 1.008 51.42 0.237 37.57

M14 29 48.33 11 78.57 1.417 0.20 0.438 2.58 1.904 −19.81 0.421 −22.74
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Where M0 denotes model M0 without environmental
covariates, with k � 1, . . . , 14 in each data set. While the relative
efficiencies for Cor were computed using the values of Cor, with the
following equation (Eq. 3):

RE � Cor Mk( )
Cor M0( ) − 1( ) × 100 (3)

Also, RE were computed for b0 and b, using Eq. 2, but in place of
using NRMSE we used the values of b0 and b.

Results

The results are provided in sections for each data set.

USP data

The results of this dataset are presented in Figure 1 with
details in Table 3. In the count by environments, the model M9
(47/60) turns out to be the best, with a count of 47 times it is

FIGURE 2
Indica data. (A) Count of the number of times a model is better than another, by environments. (B) Count of the number of times a model is better
than another, by trait. (C) Prediction performance of each predictor in terms of Normalized Root Mean Squared Error (NRMSE). (D) Relative efficiency (RE)
of each model compared to model M0, the model without environmental information.
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better than the different models of a total combination of 60. The
second-best model is M13 (46/60), while the worst models are
M6 and M1 with counts of 11/60 and 20/60, respectively.
Therefore, it is possible to observe a marked difference
between the best and worst models, while the M0 model turns
out to be the seventh-worst model. The M9 model (14/15) is
observed as the best model with the maximum count (14 out of
14 possible combinations). The M13 model (13/14) is positioned
as the second-best model. Meanwhile, the worst model turns out
to be M6 (0/14), and the second-worst model is M10 (1/14).
Thus, the results by environments and traits consistently point to
the M9 model as the best and M6 as the model with the most
deficient prediction. Furthermore, the M0 model appears as the
fourth-worst model by environments and the fifth-worst model
through the trait.

According to NRMSE, the M9 model is the best of all with a
NRMSE = 1.19, the second-best model is M13 (NRMSE = 1.26).
Meanwhile, the worst model is M6 (NRMSE = 1.50), followed
by the second-worst model, M10 (NRMSE = 1.49). In terms of
NRMSE the RE, compared to model (M0), the gains obtained
are up to 19.13% for the best model, M9, but in terms of Cor,
model M9 was worst than model M0 by 51.80%. However, in
terms of Cor the best model was M4 and outperformed M0 by
6.05%. But it is interesting that model M4 improved regarding

M0 in terms of the intercept (b0) and b by 884.46% and
500.55% respectively. See further details in Table 3.

Indica data

The results of this dataset are presented in Figure 2 with
details in Table 4. In the count by environments, model
M12 turns out to be the best, winning in 124 out of
180 possible combinations (124/180). The second-best model
is M11 (112/180), while the worst models are M9, M10, and M3
(with counts of 24/180, 32/180, and 75/180, respectively).
Meanwhile, by trait, model M12 (48/60) is observed as the
best model, model M11 (44/60) is positioned as the second-
best model. In the opposite direction, the worst model is M9 (2/
60) and the second-worst model is M10 (15/60). Thus, the results
by environments and traits consistently point to model M12 as
the best and M9 as the model with the most deficient prediction,
highlighting model M0 among the top 5.

By NRMSE, model M12 is the best with a NRMSE = 0.98 and the
second-best model is M11 (NRMSE = 1.02). Meanwhile, the worst
model is M9 (NRMSE = 1.17) and the second best is model M3
(RE = 1.13). In terms of NRMSE the RE of M12 compared to model
(M0), showed a gain of only 5.15%, but in terms of Cor, model

TABLE 4 Indica data. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error (NRMSE), both by
environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute value of 1-slope.
Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or each model in percentage was computed regarding model M0 without
environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative there is a
loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b b

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 100 55.56 38 63.33 1.027 0.00 0.511 0.00 3,023.024 0.00 0.364 0.00

M1 83 46.11 24 40.00 1.041 −1.40 0.513 0.22 2,993.455 0.99 0.375 −2.99

M2 75 41.67 26 43.33 1.040 −1.25 0.510 −0.25 3,012.109 0.36 0.432 −15.89

M3 75 41.67 27 45.00 1.082 −5.16 0.514 0.41 2,754.294 9.76 0.333 9.29

M4 76 42.22 27 45.00 1.084 −5.26 0.512 0.19 2,731.500 10.67 0.372 −2.25

M5 81 45.00 20 33.33 1.121 −8.46 0.512 0.13 2,661.258 13.59 0.327 11.19

M6 83 46.11 29 48.33 1.041 −1.37 0.514 0.44 2,548.352 18.63 0.293 24.07

M7 86 47.78 29 48.33 1.043 −1.56 0.512 0.18 2,634.676 14.74 0.339 7.30

M8 108 60.00 37 61.67 1.029 −0.27 0.513 0.22 2,794.690 8.17 0.299 21.45

M9 24 13.33 2 3.33 1.173 −12.46 0.072 −85.98 12,217.216 −75.26 2.047 −82.24

M10 32 17.78 9 15.00 1.122 −8.52 0.462 −9.61 7,927.607 −61.87 1.039 −65.01

M11 112 62.22 44 73.33 1.021 0.59 0.512 0.10 3,045.173 −0.73 0.330 10.13

M12 124 68.89 48 80.00 0.976 5.15 0.513 0.27 2,464.826 22.65 0.253 43.84

M13 93 51.67 21 35.00 1.13 −9.38 0.513 0.29 3,252.671 −7.06 0.306 18.62

M14 92 51.11 33 55.00 1.03 −0.44 0.512 0.02 2,780.146 8.74 0.348 4.48
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M12 only gain by 0.27%. However, in terms of Cor the best model
was M6 and outperformedM0 by only 0.44%. Model M12 improved
regarding M0 in terms of the intercept (b0) and b by 22.65% and
43.85% respectively (see Table 4 for more details).

Model M12 uses the Boruta method as the variable selection
method. In this data set it is very interesting that model M0 without
environmental covariates appears as one of the best, indicating for
this dataset, that not necessary adding the environmental covariates
is helpful to increase the prediction accuracy. One of the main
reasons for this result is the low correlations of the environmental

covariates with the response variable, causing them to add noise to
the predictions when included.

Japonica data

The results of this dataset are presented in Figure 3 (with details
in Table 5). In the count by environments, model M14 turns out to
be the best, winning in 189 out of 300 (189/300) possible
combinations. The second-best model is M13 (185/300), while

FIGURE 3
Japonica data. (A) Count of the number of times a model is found to be better than another, by environment. (B) Count of the number of times a
model is found to be better than another, by trait. (C) Prediction accuracy of each predictor (M0 toM14) in terms of Normalized Root Mean Squared Error
(NRMSE). (D) Relative efficiency (RE) of each model compared to model M0, the model without environmental information.

Frontiers in Genetics frontiersin.org10

Montesinos-López et al. 10.3389/fgene.2023.1209275

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1209275


the worst models are M2 and M9, and M5 (with a count of 92/
300 and 107/300, respectively). Meanwhile, by trait, model M13 (42/
60) is observed as the best model, while models M14 (41/60) and
M12 (41/60) are positioned as the second-best models. In the
opposite direction, the worst model turns out to be M2 (7/60)
and the second-worst model is M0 (18/60). Thus, the results by
environments and traits are consistent in indicating model M13 as
the best andM2 as the model with the poorest prediction, and model
M0 is among the worst five models.

In terms of NRMSE, model M10 is ranked the best with a
NRMSE = 1.70, followed by the second-best model, M13 (NRMSE =
1.77). Meanwhile, the worst model is M2 (NRMSE = 3.75), and the
second-worst model is M6 (NRMSE = 2.11). The gain of model
M10 regarding model M0 in terms of NRMSE was of 14.25%, but
this model reduced its accuracy in terms of Cor by 33.19%. While in
terms of Cor the best model was M5 and outperformed M0 by only
0.51%. Model M5 improved regarding M0 in terms of the intercept
(b0) by 299.51%, but was worst in terms of and b by 26.04%
(Table 5).

G2F_2014 data

The results of this dataset are presented in Figure 4 (see
Table 6). In the count by environments, model M13 (608/1440)

turns out to be the best, with a count of 608 times better than the
different models of a total combination of 1440. The second-best
model is M1 (590/1440), while the worst models are M9, M8, and
M7 (with a count of 422/1440, 424/1440, and 438/1440,
respectively). Thus, a marked difference between the best and
worst models can be observed, with model M0 being the fifth-
worst model.

By trait, models M14 and M6 (45/80) are observed as the best
models with a count of 45 models won out of 80 possible
combinations. Models M13 and M1 (41/80) are positioned as the
second-best models. Meanwhile, the worst model turns out to beM7
(13/80), and the second-worst model is M8 (14/80). Thus, the results
by environments and traits consistently point to models M13 and
M14 as the best and models M7 and M8 as the models with the
poorest prediction.

In terms of NRMSE, model M0 is placed as the best of all
with a NRMSE = 4.30. The second-best model is M1 (NRMSE =
4.67). Meanwhile, the worst model is M4 (NRMSE = 12.26), and
the second and third-worst models are M7 (NRMSE = 9.66) and
M11 (NRMSE = 8.66). Regarding Cor only model M1 was
slightly better than model M0 by 0.66%, but this model was
not better than model M0 in terms of intercept and slope. In this
data set we observed that the environmental covariates were not
significantly related to the response variable and for this reason
we can observe that adding as input the environmental

TABLE 5 Japonica data. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error (NRMSE), both by
environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute value of 1-slope.
Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or each model in percentage was computed regarding model M0 without
environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative there is a
loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b B

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 122 40.67 18 30.00 1.946 0.00 0.584 0.00 102.216 0.00 0.062 0.00

M1 153 51.00 36 60.00 2.029 −4.05 0.585 0.16 183.728 −44.37 0.069 −9.13

M2 92 30.67 7 11.67 3.752 −48.13 0.553 −5.27 151.100 −32.35 0.061 2.09

M3 141 47.00 26 43.33 1.843 5.62 0.584 −0.03 117.624 −13.10 0.067 −6.51

M4 123 41.00 25 41.67 1.858 4.78 0.523 −10.42 90.644 12.77 0.173 −63.86

M5 115 38.33 20 33.33 2.049 −5.00 0.587 0.51 25.585 299.51 0.084 −26.04

M6 131 43.67 21 35.00 2.111 −7.80 0.583 −0.19 46.789 118.46 0.069 −9.66

M7 127 42.33 26 43.33 1.940 0.35 0.526 −9.96 141.541 −27.78 0.147 −57.40

M8 141 47.00 33 55.00 1.786 8.97 0.536 −8.27 344.518 −70.33 0.100 −37.85

M9 107 35.67 20 33.33 1.818 7.04 0.020 −96.49 1793.721 −94.30 1.185 −94.73

M10 138 46.00 34 56.67 1.704 14.25 0.390 −33.19 970.116 −89.46 0.944 −93.39

M11 150 50.00 29 48.33 1.997 −2.51 0.567 −3.02 192.060 −46.78 0.001 4,205.17

M12 178 59.33 41 68.33 1.877 3.70 0.561 −3.91 24.735 313.24 0.061 2.97

M13 185 61.67 42 70.00 1.772 9.84 0.583 −0.14 130.979 −21.96 0.067 −6.44

M14 189 63.00 41 68.33 1.837 5.98 0.584 −0.03 126.899 −19.45 0.067 −7.52
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covariates under these circumstances is not beneficial. See
details in Table 6.

G2F_2015 data

The results of this dataset are presented in Figure 5 with
details Table 7. In the counting by environments, model M12
(445/720) is the best, with a count of 445 times better than the

different models in a total combination of 720, the second-best
model is M13 (442/720), while the worst models are M9 and M4
(with a count of 246/720 and 264/720 respectively). Therefore, it
is possible to observe a marked difference between the best and
worst models. By trait, model M13 (50/80) is observed as the
best model with a count of 50 out of 80 possible combinations.
Model M12 (46/80) is positioned as the second-best model,
followed by M14 (39/80). Meanwhile, the worst model is M9 (6/
80), and the second-worst model was M4. Thus, the results by

FIGURE 4
G2F_2014 data. (A) Count of the number of times onemodel is better than another, by environment. (B)Count of the number of times onemodel is
better than another, by trait. (C) Prediction accuracy of each predictor (M0 toM14) in terms of Normalized Root Mean Squared Error (NRMSE). (D) Relative
efficiency (RE) of each model compared to model M0, the model without environmental information.
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environments and traits are consistent in pointing to models
M12 and M13 as the best and M9 as the model with the poorest
prediction.

Regarding NRMSE, model M10 is ranked as the best of all with a
NRMSE = 2.95, the second-best model is M13 (NRMSE = 3.14).
Meanwhile, the worst model is M0 (NRMSE = 9.41), and the second-
worst model was M2 (NRMSE = 9.01). In terms of RE, compared to
the worst model (M0), the gains obtained are up to 218.71% for the
best model M10 and 199.81% for model M13. Also, it is noteworthy
the best model, M10, was better by 23.38% compared to model M1,
which is the model that takes into account all the environmental
covariates without variable selection. In terms of Cor model M1 was
the best with a gain of only 0.21% regarding M0, however this model
was worst than model M0 in terms of b0 and b, by 76.97% and
8.39%, respectively. While model M10 that was the best in terms of
NRMSE was worst thanmodel M0 in terms of Cor and b0 by 16.46%
and 65.11% respectively, however this model was better than M0 in
terms of b by 72.63% (Table 7).

G2F_2016 data

The results of this dataset are presented in Figure 6
(Table 8). In the count by environments, model M13 (618/
1440) is the best, with a count of 618 times in which it is better

than the different models of a total combination of 1440. The
second-best model is M14 (604/1440), while the worst models
are M9 and M2 (with a count of 297/1440 and 440/1440,
respectively). By trait, model M9 is observed as the best
model with a count of 43 wins out of 80 possible
combinations. Model M14 (42/80) is positioned as the
second-best model. Meanwhile, the worst model turns out to
be M9 (3/80), and the second-worst model is M2 (17/80). The
results by environments and traits are consistent in pointing out
model M13 as the best model and M9 as the model with the
poorest prediction.

Regarding NRMSE, model M3 is situated as the best of all
with a NRMSE = 3.40. The second-best model is M14 (NRMSE =
3.44). Meanwhile, the worst model is M11 (NRMSE = 6.06), and
the second-worst model was M1 (NRMSE = 6.01). In terms of
gain measured through RE, of model M3 with respect to M0, this
was of 26.85%. While the best model, M3, outperformed model
M1, which uses all the environmental covariates without
variable selection, by 76.76%, meaning M1 decreases
prediction accuracy by including all the environmental
covariates in place of improving since model M0, with no
environmental covariates, performed significantly better. It is
important to point out that model M3 in terms of Cor and b0
was worse than model M0 by 0.22% and 11.68% respectively, but
model M3 was better than M0 by 205.09% in terms of b. Also, it

TABLE 6 G2F_2014 data. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error (NRMSE), both by
environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute value of 1-slope.
Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or each model in percentage was computed regarding model M0 without
environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative there is a
loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b b

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 454 31.53 25 31.25 4.297 0.00 0.379 0.00 0.053 0.00 0.048 0.00

M1 590 40.97 41 51.25 4.675 −8.08 0.381 0.66 0.746 −92.83 0.014 247.99

M2 466 32.36 15 18.75 5.587 −23.08 0.374 −1.26 1.524 −96.50 0.307 −84.47

M3 515 35.76 32 40.00 7.632 −43.70 0.379 0.00 0.371 −85.61 0.039 23.51

M4 447 31.04 16 20.00 12.259 −64.95 0.332 −12.27 2.588 −97.94 0.392 −87.83

M5 467 32.43 24 30.00 6.569 −34.58 0.377 −0.46 0.392 −86.37 0.045 6.18

M6 576 40.00 45 56.25 5.088 −15.54 0.376 −0.73 0.002 2,126.04 0.042 14.19

M7 438 30.42 13 16.25 9.663 −55.53 0.332 −12.32 2.212 −97.58 0.393 −87.86

M8 424 29.44 14 17.50 7.543 −43.03 0.337 −10.91 2.329 −97.71 0.391 −87.80

M9 422 29.31 21 26.25 4.699 −8.56 0.293 −22.53 0.627 −91.48 0.334 −85.74

M10 504 35.00 34 42.50 5.464 −21.35 0.265 −29.91 8.143 −99.34 0.945 −94.96

M11 509 35.35 23 28.75 8.663 −50.39 0.358 −5.36 2.182 −97.55 0.306 −84.44

M12 553 38.40 31 38.75 7.035 −38.92 0.368 −2.92 1.416 −96.23 0.267 −82.11

M13 608 42.22 41 51.25 6.274 −31.51 0.378 −0.08 0.230 −76.78 0.038 25.46

M14 586 40.69 45 56.25 5.510 −22.02 0.378 −0.11 0.052 1.76 0.042 13.92
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is important to point out that any of the models M1 to
M14 outperformed, in terms of Cor, the model without
environmental covariates (M0). See details in Table 8.

Discussions

Many statistical machine learning algorithms struggle to
produce accurate predictions in many datasets in the context

of genomic prediction because the relationship between
phenotype and genotypic information and other inputs is
considerably intricate and complex. But even with these
difficulties, statistical machine learning methods have been
adopted for genomic prediction and are helping to solve
challenging problems within genetics and genomics (Ramon
et al., 2020; Montesinos-López et al., 2022).

However, care needs to be taken in the application of
statistical machine learning methods since if the inputs are

FIGURE 5
G2F_2015 data. (A) Count of the number of times one model performs better than another, by environment. (B) Count of the number of times one
model performs better than another, by trait. (C) Prediction accuracy of each predictor (M0 to M14) in terms of Normalized Root Mean Squared Error
(NRMSE). (D) Relative efficiency (RE) of each model compared to model M0, the model without environmental information.
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not related to the response variable, and we use these inputs in
training our prediction models we are adding noise in the
modeling process. For this reason, feature selection is of
paramount importance because it helps identify the most
relevant and informative features from a given dataset. The
goal of feature selection is to reduce the dimensionality of the
data by selecting a subset of features that can provide the most
accurate predictions while minimizing the risk of overfitting.
Empirical evidence supports feature selection is important
because it: 1) improves model performance by selecting the
most relevant features, so the model can be trained more
efficiently, leading to improved accuracy, and reduced error
rates; 2) reduces the risk of overfitting by selecting only the
most important features; 3) improves interpretability since by
selecting the most important features, the model becomes more
interpretable and understandable, which helps to better illustrate
the underlying relationships between features and the outcome;
4) reduces data collection and storage costs since collecting and
storing large amounts of data can be costly. Overall, feature
selection is a crucial step in the statistical machine learning
pipeline that can help to improve model performance, reduce
the risk of overfitting, improve interpretability, and reduce data
collection and storage costs.

In our application within the context of GS with six real datasets,
we found in four out of six datasets performing variable selection

significantly improve the prediction accuracy which corroborates
the empirical evidence that feature selection improves prediction
accuracy. In these cases, the improvement in prediction accuracy
when ignoring the environmental covariates was between 14.25%
and 218.71% in terms of NRMSE, however not relevant
improvement was observed in terms of Pearson´s correlation.
However, in the other two datasets, instead of improving the
prediction accuracy with environmental covariates, we got worse
results in some scenarios. These scenarios were when all the
environmental covariates were included without any variable
selection. For this reason, the process of selecting the important
features should be done with much care and include moderate or
highly correlated inputs to guarantee an improvement in prediction
accuracy.

Also, we observed the resulting models with a higher predictive
capacity, differ between datasets, due to the difference in the
structural composition of each dataset. But, in general we
observed models with selected covariates have a higher predictive
capacity in terms of NRMSE. According to Buntaran et al., 2021, the
prior selection of features is advantageous for model fitting when
there are many features.

Regarding the predictors (M6, M7, M8, M11, M12, M13, and
M14) that exclusively incorporated a single covariate, which was
computed as the mean of all the selected environmental
covariates, we observed competitive predictive outcomes in

TABLE 7 G2F_2015 data. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error (NRMSE), both by
environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute value of 1-slope.
Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or each model in percentage was computed regarding model M0 without
environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative there is a
loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b b

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 340 35.42 30 37.50 9.411 0.00 0.523 0.00 0.336 0.00 0.090 0.00

M1 408 42.50 33 41.25 3.641 158.46 0.524 0.21 1.461 −76.97 0.098 −8.39

M2 307 31.98 26 32.50 9.015 4.39 0.480 −8.19 1.172 −71.30 0.050 79.46

M3 326 33.96 32 40.00 3.199 194.19 0.523 0.06 0.974 −65.47 0.092 −2.16

M4 264 27.50 17 21.25 4.643 102.67 0.443 −15.28 0.914 −63.18 0.166 −46.04

M5 309 32.19 26 32.50 3.794 148.04 0.523 0.10 0.788 −57.32 0.098 −8.76

M6 317 33.02 23 28.75 4.051 132.33 0.523 0.10 0.679 −50.48 0.092 −2.24

M7 287 29.90 17 21.25 4.492 109.48 0.442 −15.41 1.038 −67.59 0.167 −46.26

M8 293 30.52 26 32.50 5.929 58.73 0.439 −16.00 0.974 −65.47 0.166 −46.09

M9 246 25.63 6 7.50 5.145 82.90 0.473 −9.48 2.157 −84.40 0.070 28.20

M10 313 32.60 23 28.75 2.953 218.71 0.437 −16.46 0.964 −65.11 0.052 72.63

M11 309 32.19 26 32.50 4.114 128.75 0.475 −9.08 0.815 −58.72 0.164 −45.25

M12 445 46.35 46 57.50 3.213 192.86 0.486 −6.97 0.395 −14.86 0.134 −33.06

M13 442 46.04 50 62.50 3.139 199.82 0.522 −0.12 1.915 −82.43 0.094 −4.53

M14 424 44.17 39 48.75 3.793 148.10 0.522 −0.21 1.001 −66.37 0.084 6.35
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five of the six datasets in terms of NRMSE. This approach offers
the advantage of estimating only one parameter (beta coefficient).
However, it should be noted that while computing the average
covariate, we altered the direction (sign) of the covariate in
relation to the response variable for those covariates that
exhibited a negative correlation. This adjustment ensures a
positive association for each covariate. Consequently,
accurately determining the direction of the association
becomes crucial in order to ensure optimal performance when
utilizing this average covariate.

Also, from our research, we deduce it is very challenging to
incorporate some of the environmental covariates, since those that
will be included during the training process only should be
computed with the training set to avoid a data leakage problem.
In the context of GS, with environmental covariates we have
problems of data leakage when we select inadvertently the
environmental covariates using the whole data set (training and
testing) in place of using only the training set and for this reason we
end up with overoptimistic predictions (high prediction accuracies),
but when we want to use this model for real predictions, the

FIGURE 6
G2F_2016 data. (A)Count of the number of times amodel is better than another, by environment. (B)Count of the number of times amodel is better
than another, by trait. (C) Prediction accuracy of each predictor (M0 to M14) in terms of Normalized Root Mean Squared Error (NRMSE). (D) Relative
efficiency (RE) of each model compared to model M0, the model without environmental information.
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predictions fail because data leakage lead to overfitting, The model
can accurately predict the training data but performs poorly on new
data. This can cause a false sense of confidence in the model’s
performance and can lead to costly errors when the model is
deployed in the real world.

To avoid data leakage, it is important to carefully separate the
training and test data and ensure the test data represents real-world
scenarios. To guarantee reasonable predictions in the testing set, we
are assuming the training and testing distributions belong to the
same distribution, and in this way those covariates selected with the
training information will be useful for obtaining good predictions in
the testing set. However, in the two out of the six data sets we can see
this assumption of the same distribution between the training and
testing set is not always fulfilled, so even with the variable selection
process, it is not possible to improve the prediction accuracy.

When deciding which metric to use for assessing the genomic
prediction performance of different machine learning models, it is
important to study and investigate the advantages and disadvantages
of metrics such as NRMSE and Pearson correlation between
observed and predictive values. Both metrics have their
advantages and disadvantages. NRMSE is beneficial when the
magnitude of model errors is important. If accurately predicting
absolute values is crucial for the application, NRMSE provides a
measure that considers the magnitude of errors. It penalizes larger
errors more heavily and can help identify models with smaller
overall deviations from the actual values. On the other hand,

Pearson correlation is useful when capturing the strength and
direction of the relationship between variables is critical. If the
focus is on assessing the linear relationship between predicted and
actual values, correlation provides a measure that quantifies the
strength and direction of the association.

Correlation can also be sensitive to outliers, helping identify
extreme values that deviate from the overall pattern. However,
correlation may not capture complex non-linear relationships well. It
should be noted, however, that this study performed genomic
prediction in entire environment (or years) then larger prediction
errors are expected when using NRMSE, correlations, or any other
metric are expected and difficult to avoid. Further research is needed to
thoroughly assess the advantages and disadvantages of metrics such as
NRMSE or correlation (or any other) as the basis for assessing the
prediction ability of models.

In conclusion, it is important to bear in mind that the primary
objective of this studywas to present a proficient and pragmatic approach
for integrating environmental data into the modeling process, aiming to
improve prediction accuracy through the implementation of genomic
selection methodology. While our results are promising in terms of
NRMSE, further empirical assessments are necessary to validate our
discoveries and refine the proposed methodology since the improvement
is not reflected in terms of Pearson´s correlation. This involves not only
incorporating feature (variable) selection techniques but also integrating
feature engineering methods to enhance the predictive capabilities of
genomic prediction models.

TABLE 8 G2F_2016 data. Count of the number of times a model was better than another in terms of Normalized Root Mean Squared Error (NRMSE), both by
environments and by traits. Prediction accuracy in terms of NRMSE. b0 denotes the absolute values of the intercept and b denotes the absolute value of 1-slope.
Under an ideal model both b0 and b should be equal to zero. Relative efficiency (RE) or each model in percentage was computed regarding model M0 without
environmental covariates. When the percentage is positive there is a gain in prediction accuracy regarding M0, while when the percentage is negative there is a
loss in terms of prediction accuracy of any model regarding M0.

Model Env Trait NRMSE NRMSE Cor Cor b0 b0 b b

Won % Won % RE (%) RE (%) RE (%) RE (%)

Models Models

M0 447 31.04 23 28.75 4.312 0.00 0.493 0.00 0.479 0.00 0.089 0.00

M1 502 34.86 30 37.50 6.009 −28.24 0.491 −0.34 0.088 444.83 0.098 −9.21

M2 440 30.56 17 21.25 3.522 22.44 0.471 −4.45 1.278 −62.48 0.011 725.99

M3 558 38.75 32 40.00 3.399 26.85 0.492 −0.22 0.157 205.09 0.101 −11.68

M4 470 32.64 17 21.25 3.799 13.51 0.400 −18.78 0.880 −45.50 0.119 −25.45

M5 560 38.89 35 43.75 3.573 20.70 0.492 −0.26 0.381 25.98 0.093 −4.61

M6 593 41.18 38 47.50 4.154 3.81 0.492 −0.13 0.084 467.90 0.104 −14.20

M7 477 33.13 27 33.75 4.211 2.39 0.401 −18.73 0.889 −46.07 0.118 −24.74

M8 472 32.78 28 35.00 3.552 21.38 0.401 −18.69 0.796 −39.78 0.113 −21.29

M9 297 20.63 3 3.75 5.933 −27.32 0.430 −12.69 0.667 −28.09 0.003 2,916.95

M10 492 34.17 22 27.50 4.925 −12.45 0.406 −17.54 0.624 −23.17 0.151 −40.99

M11 479 33.26 30 37.50 6.058 −28.82 0.444 −9.87 1.014 −52.72 0.041 116.41

M12 542 37.64 33 41.25 4.589 −6.03 0.457 −7.39 1.381 −65.29 0.005 1,645.10

M13 618 42.92 43 53.75 3.474 24.13 0.492 −0.18 0.604 −20.59 0.093 −4.79

M14 604 41.94 42 52.50 3.436 25.50 0.492 −0.20 0.565 −15.12 0.092 −3.58
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Conclusion

In this research using six real datasets, we proposed the use of feature
selection for optimally incorporating the environmental covariates in the
modelling process for training genomic prediction models. We found
feature selection significantly increases the prediction accuracy in terms of
normalized rootmean square error regarding ignoring the environmental
covariates or adding all these environmental covariates without feature
selection (naïve incorporation). However, the gain in prediction accuracy
is data dependent, since the value can be from 0% to 218.71% in terms of
Normalized Root Mean Squared Error. The key to improving prediction
accuracy is to select environmental covariates that are highly correlated
with the response variable. Also, we point out that the selection of the
environmental covariates should be done using only the training set to
avoid leakage of information problems. Finally, we encourage other
researchers to apply feature selection in genomic prediction because it is
an extremely powerful tool in the context of large inputs and small
observations. We are convinced feature selection can be helpful to
efficiently incorporate other omics data in the genomic prediction
models.
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