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Termite mushrooms are edible fungi that provide significant economic,
nutritional, and medicinal value. However, identifying these mushroom species
based on morphology and traditional knowledge is ineffective due to their short
development time and seasonal nature. This study proposes a novel method for
classifying termite mushroom species. The method utilizes Gradient Boosting
machine learning techniques and sequence encoding on the Internal Transcribed
Spacer (ITS) gene dataset to construct a machine learning model for identifying
termite mushroom species. The model is trained using ITS sequences obtained
from the National Center for Biotechnology Information (NCBI) and the Barcode
of Life Data Systems (BOLD). Ensemble learning techniques are applied to classify
termitemushroom species. The proposedmodel achieves good results on the test
dataset, with an accuracy of 0.91 and an average AUCROC value of 0.99. To
validate the model, eight ITS sequences collected from termite mushroom
samples in An Linh commune, Phu Giao district, Binh Duong province, Vietnam
were used as the test data. The results show consistent species identification with
predictions from the NCBI BLAST software. The results of species identification
were consistent with the NCBI BLAST prediction software. This machine-learning
model shows promise as an automatic solution for classifying termite mushroom
species. It can help researchers better understand the local growth of these
termite mushrooms and develop conservation plans for this rare and valuable
plant resource.
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1 Introduction

Termitomyces mushrooms are a type of mushroom that nature has gifted us, known for
their high nutritional value and delicious taste (Pegler, 1994). In addition to its high nutritional
value, this termite mushroom is also known for its medicinal properties in many countries
around the world. Termitomyces mushrooms have antibacterial properties, such as
Termitomyces clypeatus against Pseudomonas aeruginosa, Termitomyces eurhizus against
Proteus vulgaris and Scherichia coli, and Termitomyces microcarpus against Bacillus cereus
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and Proteus vulgaris (Giri, 2012).Termitomyces clypeatus also supports
the treatment of chickenpox (Dutta and Acharya, 2014). The valuable
compounds of these rare and valuable mushroom species are obtained
through biomass cultivation (Lu et al., 2008) cultivated Termitomyces
albuminosus to test its efficacy in pain reduction and anti-
inflammation while Termitomyces striatus was used for other
extracted compounds. Termitomyces heimii and Termitomyces
microcarpus are used in the treatment of fever, colds, and fungal
infections and in promoting cancer therapy (Venkatachalapathi and
Paulsamy, 2016). There are about 30 species of Termitomyces
mushrooms worldwide, and 10 species in Vietnam, with
Termitomyces clypeatus and Termitomyces microcarpus being
common in Binh Duong. Although very effective economically, the
natural yield of these mushrooms is declining significantly, and they
have not yet been cultivated sustainably, as they only grow seasonally.

Correctly identifying the name of a termite fungus species is an
important task in biological research. Experts use traditionalmethods to
classify and identify termite fungi based on their morphology. The
overall structure of a termite fungus includes a cap, flesh, membrane,
and stem, which may have rings and boxes (Mossebo et al., 2009).
However, fungal structures vary from species to species, especially when
mutations occur. Moreover, identifying samples lacking morphological
characteristics can be difficult (Roe et al., 2010). A method for
identifying new species of organisms that are often used to identify
edible and medicinal mushrooms is based on molecular techniques. In
this approach, molecular techniques such as DNA barcoding have been
successfully used in recent years to identify species (Hebert et al., 2003;
Somervuo et al., 2016). These molecular methods are based on
analyzing genetic markers and have proven to be highly effective in
identifying species, especially when combined with traditional
morphological methods. Overall, incorporating molecular techniques
into the identification process of termite fungi can provide more
accurate and efficient identification, especially in cases where
traditional morphological methods fall short.

One commonly utilized gene group in molecular identification is
the group that encodes rRNA. This group is highly effective for finding
similarities and differences when comparing different organisms due to
the relatively conserved nature of most rRNAmolecules (De Peer et al.,
1996). For fungi, the rDNA ITS (Internal Transcribed Spacer) region,
which includes two sequences, ITS1 and ITS2, flanking the 5.8S
sequence, is widely accepted as the molecular region for species
identification by most mycologists (Kõljalg et al., 2013), as shown in
Figure 1. The ITS region is also used for predicting fungal species using
machine-learning. This approach involves using the ITS sequence data
to train amachine-learningmodel, which can then be used to accurately
classify and identify different fungal species automatically. By
combining molecular techniques such as machine-learning with
traditional morphological identification methods, researchers can
achieve more accurate and efficient identification of fungal species,
aiding in both research and conservation efforts.

The ITS sequence data for fungi can be accessed from two major
datasets, BOLD (Barcode of Life Data) and the National Center for
Biotechnology Information (NCBI). Both contain a vast collection of
ITS sequences for all fungal species. Machine learning-based
classification of fungal species using ITS sequences has been
proposed by several researchers, including (Schloss et al., 2009;
Schoch et al., 2012; Delgado-Serrano et al., 2016; Deshpande et al.,
2016; Edgar, 2016; Meher et al., 2019; Das et al., 2023). A
comprehensive list of the techniques and data used in fungal
classification studies is provided in Table 1.

The mentioned studies have successfully utilized supervised
machine-learning techniques such as Naive Bayes classification, kNN,
and Bayesian regression models for classifying fungal species. However,
only (Delgado-Serrano et al., 2016) identified the fungal species at the
genus level, while other studies only determined the species names. As
ITS sequence data from the NCBI GeneBank were used, this data is not
sufficient for identifying the labels of termite fungi found in these
GenBank. For example, the ITS sequence of the termite fungus genus
Termitomyces euripus in the NCBI GeneBank has only one sequence,
while there are six labels for this fungal genus in BOLD. Additionally, the
lengths of ITS sequences vary widely, ranging from 200 bases to
2000 bases, and the number of sequences between fungal genera
varies greatly, from one to 500 sequences. Due to these limitations
with ITS data for termite fungi, classical machine-learning algorithms
struggle to accurately classify the labels of termite fungi. Our study
focuses on identifying the labels of termite fungal genera using ITS
sequence data collected from both the NCBI GeneBank and BOLD
GenBank. The K-mer technique and natural language processing (NLP)
were combined to extract features, and modern classification methods
such as XGBoost (Extreme Gradient Boosting), Random Forest, and
CatBoost are experimented with to build an automatic termite fungal
species classifier. The proposed research is structured as follows: the
method presents the concepts related to ITS sequence data, feature
extraction techniques, the overall proposed model, experimental results,
and finally, the study’s conclusion.

2 Methods

2.1 ITS sequence data

Termite fungi are valuable but endangered, and urgent research
and conservation efforts are needed. However, data on ITS
sequences for termite fungi in GenBank are incomplete, making
it crucial to synthesize data from different sources. In this article, ITS
sequence data from two GenBank, BOLD and NCBI, was compiled
by us. Specifically, 101 ITS sequences were obtained from BOLD,
with the number of sequences for each genus ranging from 1 to 12.
At NCBI, 1740 ITS sequences were obtained, with the number of
sequences for each species ranging from 1 to 799. After synthesizing
the ITS sequence data from these two GenBank and removing
termite fungal species with fewer than 7 sequences,
1704 sequences belonging to 17 termite fungal species were
obtained. The labels of each termite fungal species are presented
in detail in Table 2. This data can be used for further research and
conservation efforts for these valuable and endangered fungi.

The ITS region of termite mushrooms collected from Binh
Duong province, Vietnam, was sequenced, and the resulting

FIGURE 1
The ITS sequences region (White et al., 1990).
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sequences have a length ranging from 669 to 1050 base pairs. These
termite mushroom samples have a morphology similar to that of
Termitomyces clypeatus, Termitomyces microcarpus and
Termitomyces striatus. The sequence data for these eight termite
mushroom samples have been published and stored in the NCBI
GeneBank. For more detailed information about these termite
mushroom samples, please refer to Table 3.

2.2 Feature generation

The extraction of features from biological sequences is a crucial
step in computational biology. Biological sequences are typically
composed of a string of letters, which must be converted into
numerical vectors before they can be utilized in machine-learning
algorithms (Kamath et al., 2014). The K-mer feature technique has

TABLE 1 Relevant works that used machine-learning based on ITS dataset.

References Tool No. of sequence
per category

The source of barcode
sequences of fungal
species

Feature technical and ML
algorithm

Accuracy of
the best model

Schloss et al. (2009) MOTHUR - The SILVA Database Project,
Bremen, March 2009

K-mer (k = 5), The k-nearest neighbor (kNN)
algorithm, and PGMA (unweighted-pair
group method using average linkages)
algorithms

0.86

Delgado-Serrano
et al. (2016)

Mycofar - NCBI GeneBank K-mer (k = 5), Naïve Bayes classifier 0.87

Deshpande et al.
(2016)

RDP 10 The Warcup dataset
(18878 sequences belonging to
8551 species)

K-mer (k = 8) Bayesian regression. 0.87

Edgar (2016) SINTAX 14 RDP Warcup ITS
(18878 sequences belonging to
8551 species)

K-mer (k = 8)Naive Bayesian Classifier 0.87

Meher et al. (2019) funbarRF 10 BOLD systems K-mer (k = 4) Random Forest. 0.89

Das et al. (2023) CNN_FunBar 20 UNITE + INSDC
(4504529 sequences belonging to
44167 species)

K-mer (k = 6), CNN 0.86

TABLE 2 Termitomyces species used for the training dataset.

No Termitomyces species label No. of sequences Lable

1 Uncultured Termitomyces 799 16

2 Termitomyces sp. 483 10

3 Termitomyces intermedius 94 8

4 Termitomyces symbiont 60 14

5 Termitomyces microcarpus 34 9

6 Termitomyces clypeatus 33 3

7 Termitomyces cylindricus 30 4

8 Termitomyces striatus 29 13

9 Termitomyces DKA-2007 24 0

10 Termitomyces heimii 24 7

11 Termitomyces bulborhizus 17 2

12 Termitomyces fuliginosus 16 6

13 Termitomyces eurrhizus 15 5

14 Termitomyces albuminosus 14 1

15 Termitomyces sp. symbiont of Macrotermes bellicosus 12 11

16 Termitomyces sp. symbiont of Macrotermes subhyalinus 10 12

17 Uncultured Ascomycota 10 15
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been employed to represent information for ITS sequences to
classify species based on barcodes, as demonstrated by previous
studies (Schloss et al., 2009; Deshpande et al., 2016). In 2016,
Delgado-Serrano utilized K-mer encodings to transform ITS
sequences into numerical vectors. The accuracy of the prediction
model was affected by the size of the K-mer utilized (Delgado-
Serrano et al., 2016). In our proposed approach, a combination of
K-mer and CountVectorizer techniques was employed to encode
ITS sequences into numerical vectors. An illustration of the
methodology utilized to digitize sequence information is
presented in Figure 2.

In Figure 2, The process of digitizing ITS sequences has been
illustrated. This process is similar to that of using Natural Language
Processing (NLP) tools from Sklearn to convert our K-mer words
into numerical vectors. These vectors, which represent the count of
each K-mer in the vocabulary, have the same length as unigrams.

2.3 Ensemble learning

Supervised machine-learning techniques are widely used in
computational biology to solve various problems. Several
traditional machine-learning algorithms such as k-nearest
neighbors, Naïve Bayes, and decision trees have been successful
in identifying mushroom species based on barcode data (Schloss
et al., 2009; Delgado-Serrano et al., 2016; Deshpande et al., 2016).
However, these models have relatively low accuracy. In our research,
two solutions were tested: i) The first set utilized well-known

classification methods like Naïve Bayes and Random forest to
predict the names of termite mushroom species; ii) In the
second, automated models for predicting termite mushroom
species with higher accuracy were built by us using Ensemble
learning algorithms such as XGBoost and CatBoost.

2.4 Gradient-boosted decision trees
(GBDTs)

Gradient Boosting Decision Trees (GBDT) (Friedman, 2001) is a
method that uses decision tree ensembles to predict target values. A
GBDT is constructed by splitting observations based on the attribute
values of the input data. The model can find the best way to divide
data and determine the most time-consuming part of the
partitioning process. To build a GBDT model with T trees from
a dataset consisting of n samples, the prediction process according to
the GBDT method is as follows:

ŷ 0( )
i � 0

ŷ 1( )
i � f1 xi( ) � ŷ 0( )

i + f1 xi( )
ŷ 2( )
i � f1 xi( ) + f2 xi( ) � ŷ 1( )

i + f2 xi( )
..

ŷ K( )
i � ∑

K

k�1
fk xi( ) � ŷ K−1( )

i + fK xi( )

(1)

where ŷ(K)
i is the predicted value of the ith sample at the kth iteration

The cost function of GBDT has two parts: a training error and
regularization, as follows:

TABLE 3 Information of Termitomyces species in Binh Duong Province, Viet Nam.

ID_sequences Binh Duong termitomyces species in NCBI Website Length of sequences

KU569480 Termitomyces clypeatus https://www.ncbi.nlm.nih.gov/search/all/?term=KU569480 980

MF163136-BD5 Termitomyces clypeatus https://www.ncbi.nlm.nih.gov/search/all/?term=MF163136 720

MF163152.1 Termitomyces clypeatus https://www.ncbi.nlm.nih.gov/search/all/?term=MF163152 938

MF163445-BD3 Termitomyces sp. https://www.ncbi.nlm.nih.gov/search/all/?term=MF163445 669

MF163446-BD6 Termitomyces sp. https://www.ncbi.nlm.nih.gov/search/all/?term=MF163446 1020

MT672480.1 Termitomyces microcarpus https://www.ncbi.nlm.nih.gov/search/all/?term=
MT672480.1

721

MT730584.1 Termitomyces clypeatus https://www.ncbi.nlm.nih.gov/search/all/?term=MT730584 608

MF163149-BD4 Termitomyces sp. https://www.ncbi.nlm.nih.gov/search/all/?term=MF163149 812

FIGURE 2
Illustrate the use of the K-mer method to encode ITS sequences into numeric vectors, in the example the size of K-mer was 7.
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Cost � ∑
n

i�1
l yi, ŷi( ) +∑

K

k�1
Ω fk( ) (2)

where Ω(fk) � γT + 1
2 λ‖w‖2,∀k � 1, K. T is the number of leaf

nodes, w is the score for a leaf node, γ is the leaf penalty coefficient,
and ensures that leaf nodes’ scores are not too large.

2.4.1 CatBoost
CatBoost is an algorithm used to boost gradients on decision

trees. It is used to process datasets with a large number of input
features of the categorical data type (Prokhorenkova et al., 2018).
In the field of computational biology, CatBoost has been applied
for various purposes such as identifying bacterial genes at the 16S
rRNA level (Meharunnisa and Sornam, 2022) or building a
feature extraction package for DNA, RNA, and protein
sequences (Robson, 2022). Our proposals have used the
CatBoost algorithm to build a model for termite mushroom
species classification.

2.4.2 XGBoost
XGBoost is a powerful machine-learning algorithm that builds

upon the initial gradient-boosting machine (Friedman, 2001; Chen
et all., 2015), is an upgraded version of gradient boosting that boasts
many superior improvements (Ren et al., 2017; Jiang et al., 2019);
(Zhong et al., 2018). These improvements, achieved through parallel
computation on different datasets, have significantly increased
processing speed, making XGBoost up to 10 times faster than
GBM. XGBoost has been successfully applied in many fields,
including computational biology.

2.5 Building the best classifier base on
ensemble learning

CatBoost is a viable option for gene sequence data analysis, as
indicated by recent research (Robson, 2022). In our experiments
with termite mushroom data, it was observed that CatBoost
performed comparably to XGBoost in terms of prediction
accuracy. However, a relatively longer training time is required
by CatBoost than that of XGBoost to achieve a similar level of
performance. Therefore, XGBoost was chosen as the primary
algorithm for our prediction model.

The XGBoost model’s performance depends on several key
parameters such as ’max_depth’, ’gamma’, ’n_estimators’, and
’learning_rate’. These parameters are known as hyperparameters
and can be adjusted manually during training or automatically.
The proposed enhanced model uses the Bayesian Optimization
technique (Klein et al., 2017) specifically Random search, to tune
the hyperparameters. Bayesian Optimization was applied to tune
the four main parameters of the XGBoost classifier: ’max_depth’,
’gamma’, ’n_estimators’, and ’learning_rate’.

To improve the predictive performance of the model, cross-
validation with k = 5 was performed to select the best classification
model, in addition to using Bayesian Optimization to tune
hyperparameters. A new dataset, which consisted of n data
samples and m features, was obtained from the results of phase
1. An optimization parameter was then used as input for Algorithm
1 to build an optimal classification model.

Input: DTer � (xi,yi) ∈ Rm × 0,1{ },∀i � 1,n{ }; hyperparameter

is Ɵ = {’max_depth’: int(max_depth), ’gamma’: Gama, ’n_

estimators’: int(n_estimators), ’learning_rate’:

learning_rate }

Output: Best_Model

Begin

1: Initialize: FeatureImportances={}

2: Model ← XGBoostClassifier (Ɵ)

3: KFold← StratifiedKFold (n_splits=5, shuffle =

True, random_state=2020)

4: For i=1 each KFold

• Divide the DTer dataset into DTrain and DTest

• Train the model based on early-ending hyperparameters

5: Calculate the roc_auc_score, accuracy_score,

precision_score, recall_score, and f1_score over

iterations

6: Select the best model based on Step 4

7: Visualize the mean value from Step 4

8: Return the Best_Model from Step 4

End

Algorithm 1. Building the best XGBoost classifier.

2.6 Building a model for predicting the
termite fungus species name

Our study has developed an automated process consisting of
four stages to predict the species name of a new termite fungus. The
first stage involves collecting termite fungus data from ITS gene
sequence repositories. In the second stage, sequence features are
extracted and encoded. The third stage involves building a classifier
by constructing and tuning parameters to find the optimal classifier.
Finally, in the fourth stage, the classifier is used to predict new
termite fungus samples. Figure 3 provides a detailed description of
this process.

2.7 Performance metrics

In our study, the terms “true” and “false” predictions can arise
from the model’s misclassification or failure to predict accurately,
such as false negatives or false positives, or other concepts applied to
the prediction targets. Specifically, the phrase “predicting the species
of Termitomyces” is referred to as a true positive (TP), while the
phrase “correctly excluding the species of Termitomyces” is referred to
as a true negative (TN). On the other hand, the phrase “predicting
the species of Termitomyces incorrectly” is designated as a false
positive (FP), and a “missed or misclassified prediction” is
considered a false negative (FN). These conditions are utilized as
stopping points during initial data training. To evaluate the
performance of our proposed model, various methods were
applied to assess its machine-learning abilities on DNA sequence
data (Gupta, P., et al., 2021). These methods include the following:

❖ Accuracy: The proportion of correctly predicted cases is
known as accuracy, and it can be calculated using the
following formula:
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Accuracy � TP + TN

TP + TN + FP + FN

❖ Sensitivity: Recall (pr) was the hit rate (hit rate), and the true
positive rate (TPR) was the ratio of correct positive
classifications to the total number of positive and recall
cases and it can be calculated using the following formula:

TPR � Sensitivity � TN

TN + FP

❖ Specificity: True negative (TN) (or specificity in clinical
medicine) was the correct exclusion rate out of the total
number of negative cases, it can be calculated using the
following formula:

Specificity � TP

TP + FP

❖ False Positive Rate/Fallout (FPR) was an expression of the rate
of mislabeling of negative to positive samples across all
negative samples, it was calculated by the following formula:

FPR � 1 − specificity � 1 − TP

TP + FP

❖ Precision: Since the dataset had a larger sample, this led to an
imbalanced input dataset for the prediction model. Therefore,
we used precision to determine the ratio of actually positive
cases to the total number of cases labeled “positive” by the
model. Precision is a term that refers to the “deterministic” or
accurate positive classification of a model:

Precision � TP

TP + FP

❖ F1 score: This was defined as the harmonic mean between
precision and recall:

F1 � 2 x
Precision xRecall
Precision + Recall

FIGURE 3
Detailed model of the proposedmethod. (A) Collected Data: The study collected a total of 1796 ITS sequences of mushroom fungus fromGenBank
NCBI and BOLD. After filtering out termite fungus species sequences with less than 10 sequences, the final count of ITS sequences was 1704. (B) Data
Preprocessing: The ITS sequenceswere split into smaller sequences, following the rules described in Figure 2, using K-merwith a size of 7. The longest ITS
sequencewas 2470 bases, corresponding to a vector length of 14425when encoded. (C). Training: The training process used an 80:20 split ratio and
employed hyperparameter optimization for the training model. The model was optimized using the k-fold Cross-Validation technique with k = 5, and
BayesianOptimization was performed to fine-tune the following parameters: ’max_depth’: (5,10), ’gamma’: (0,1), ’learning_rate’:(0,1), ’n_estimators’:
(100,400). Themodel with the highest accuracy was selected for the classification. (D) Prediction: Mushroom samples collected in Binh Duong Province,
Vietnam, and downloaded from NCBI were used as the test set. These samples were subjected to K-mer with a size of 7 and then CountVectorizer was
applied. Finally, the best model from stage c was applied to predict the species of new termite fungi.

FIGURE 4
Accuracy of machine-learning algorithms according to the
K-mer sizes. It was found that different predictive results
(accuracy) were produced by each algorithm for each K-mer size
such as: Catboost produced results ranging from 0.87–0.88,
XGBboost had results from 0.88–0.91, and RandomForest yielded
results from 0.87–0.89. However, the Naive Bayes (MultinomialNB)
model had the lowest accuracy, ranging from 0.59–0.61. Figure 5
presents detailed information on the impact of K-mer size on the ROC
Curve (AUCROC) achieved by each algorithm. Notably, the XGBoost
algorithm achieved the highest classification AUCROC when the K-mer
size was set to 7, which was also used to build the automated model for
predicting mushroom species names.
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FIGURE 5
Accuracy of machine-learning algorithms according to the K-mer sizes.

FIGURE 6
The ROC curve using the OvR macro-average for each class in the XGBoost method by size K-mer = 7.
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❖ Receiver operating characteristics (ROCs) were used to
calculate the model’s classification performance in the
condition of unbalanced data set classes. A ROC curve was
produced for each pair (TPR, FPR) for different thresholds,
with each point on the curve representing one pair (TPR,
FPR) for one threshold. This curve shows us the relationship
between the True Positive Rate (TPR) and the False Positive
Rate (FPR). The ROC Curve and the ROC AUC score are
important tools for evaluating binary classification models.
To evaluate multi-class classifiers, the OvR (One vs. Rest)
technique was used, which compares each class with all other
classes simultaneously. In this case, one class was chosen to be
the “positive” class, while all other classes (the remaining
part) were considered “negative” classes. In the experiment,
the last label class 16 was selected as the “positive” class and
the remaining classes were considered “negative”. In this way,
the multi-class classification output was reduced into binary
classification, allowing the utilization of all known binary
classification metrics to evaluate the classification model.

3 Results and discussion

3.1 Result of each stage in the proposed
process

In the experimental process, Python 3.9 and the libraries Scikit-
learn, Biopython, XGBoost, CatBoost, and Bayesian optimization
were employed to construct a mushroom classification model
following the proposed process depicted in Figure 3. The results
of each stage a, b, c, and d are attached.

❖During stage a: Data was collected through the following steps:
(a.1) retrieving data from the NCBI and BOLD GenBanks,
which yielded 1740 sequences of 28 mushroom species; (a.2)
selecting 17 species that had at least 10 sequences per species.

❖ During stage b: Data preprocessing was performed in two
steps: The ITS sequence strings were separated by applying
K-mer with a length of k = 7, and then the ITS sequences were
converted into numerical data by vectorizing them, and the
data labels were also converted into numerical values The
section provides details on the number of classes and
corresponding data.

❖During stage c: The best prediction model was built, consisting
of (c.1) a classification model and (c.2) an optimized set of
hyperparameters.

❖ Finally, during stage d: The performance of the proposed
model was displayed in step (d.1), while the predictions of
eight ITS sequences collected in Thu Dau Mot, Binh Duong
province were shown in step (d.2).

TABLE 4 Synthesize the performance of machine-learning algorithms.

Method AUROC Accuracy Precision Recall F1 score

Naive Bayes 0.93 0.60 0.84 0.60 0.62

RandomForest 0.98 0.88 0.88 0.88 0.88

XGBboost 0.99 0.91 0.90 0.91 0.90

Catboost 0.99 0.87 0.87 0.87 0.87

TABLE 5 Performance comparison of fungal classifiers using ITS sequencing.

Ref Method Accuracy

Schloss et al. (2009) K-mer (k = 5), The k-nearest neighbor (kNN) algorithm, and PGMA algorithms 0.86

Delgado-Serrano et al. (2016) K-mer (k = 5), Naïve Bayes classifier model 0.87

Deshpande et al. (2016) K-mer (k = 8) Bayesian regression. 0.87

Meher et al. (2019) K-mer (k = 4), Random Forest. 0.89

Our proposal K-mer (k = 7), XGBoost 0.91

TABLE 6 Result in comparison of the species identification of ITS sequences of termite fungi collected in Binh Duong province, Vietnam, with the identification on
NCBI.

ID_sequences Binh Duong termitomyces species in NCBI Binh Duong termitomyces species in our proposal

KU569480 Termitomyces clypeatus Termitomyces clypeatus

MF163136-BD5 Termitomyces clypeatus Termitomyces clypeatus

MF163152.1 Termitomyces clypeatus Termitomyces clypeatus

MF163445-BD3 Termitomyces sp. Termitomyces striatus

MF163446-BD6 Termitomyces sp. Termitomyces striatus

MT672480.1 Termitomyces microcarpus Termitomyces microcarpus

MT730584.1 Termitomyces clypeatus Termitomyces clypeatus

MF163149-BD4 Termitomyces sp. Termitomyces sp.

Frontiers in Genetics frontiersin.org08

Duong et al. 10.3389/fgene.2023.1208695

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1208695


3.2 Select the appropriate K-mer sizes for
the classifiers

The accuracy of predictive models based on sequence data is
significantly impacted by the size of K-mers (Delgado-Serrano et al.,
2016). To explore this impact, a study was conducted using different
K-mer lengths, which resulted in varying classification accuracies. The
sequence in Figure 3 was used to build a classifier, with machine-
learning algorithms such as Naive Bayes (MultinomialNB),
RandomForest, XGBboost, and Catboost. The classifier’s results for
each K-mer size are presented in Figure 4. We found that each
algorithm produced different predictive results (accuracy) for each
K-mer size. Specifically, Catboost produced results ranging from
0.87–0.88, XGBboost had results from 0.88–0.91, and
RandomForest yielded results from 0.87–0.89. However, the Naive
Bayes (MultinomialNB) model had the lowest accuracy, ranging from
0.59–0.61. The classifier’s results for each K-mer size are presented in
Figure 5.

Figure 6 presents detailed information on the impact of K-mer
size on the highest accuracy achieved by each algorithm. Notably,
the XGBoost algorithm achieved the highest classification accuracy
when the K-mer size was set to 7, which was also used to build the
automated model for predicting mushroom species names.

3.3 Performance analysis in other machine-
learning algorithms

Apart from using accuracy as a measure of the classification
model’s performance, other metrics such as precision, recall,
F1 score, or AUCROC are also utilized to evaluate the classifiers’
performance. A summary of the performance of the surveyed
machine-learning algorithms is presented in Table 4.

Furthermore, the AUCROC for each class was calculated using
the ROC curve method with the OvR macro-average for the multi-
class model utilized (Pedregosa et al., 2011). In this study, the last class
(class 16) was designated as the positive class, while all other classes
were considered negative classes. The visual representations of each
class’s results are presented in Figure 6.

3.4 Comparative analysis for prediction of
fungal species

Previous models for predicting fungal species accuracy have been
evaluated using theK-mermethod andmachine-learning techniques such
as k-Nearest Neighbor, Naïve Bayes, and Random Forest, with results
presented in Table 5. Our proposed approach demonstrates superior
performance when utilizing a K-mer size of 7 with the XGBoost
classification algorithm. Table 5 presents a comparison of various
classifiers’ performance for predicting fungal species using ITS sequences.

3.5 Compare the prediction results of the
proposed model with the results of BLAST

The ITS sequences of termite fungi collected from Binh Duong
province, Vietnam, were published on NCBI and are detailed in

Table 3. Our proposed classification model predicted species
identification with comparable results to those obtained from
NCBI. For instance, sequences MF163150-BD1, MF163151-BD2,
and MF163147-BD7 were identified as the same species as those on
NCBI. Moreover, the species identification of MF163149-BD4 was
consistent with the identification on NCBI. However, for
MF163445-BD3, MF163446-BD6, and MF163149-BD4, the
identification was previously unknown or unclear. Our proposed
classification model successfully identified MF163445-BD3 and
MF163446-BD6 as Termitomyces striatus, consistent with the
type strain of the collected fungi. The results for MF163149-BD4
were also consistent with the species identification on NCBI. Table 6
presents the details of the species identification results.

Accurately identifying new species is crucial for studying
biodiversity and formulating conservation policies for endangered
species (Van Velzen et al., 2012). Traditional methods of species
identification based on physical characteristics can be difficult,
prompting the use of DNA barcoding as an alternative approach
(Hibbett et al., 2011). In this study, a novel computational method is
proposed that utilizes K-mer techniques and NLP vectorization to
convert DNA barcode sequence data into digital features. The
XGBoost algorithm is then employed to build a model capable of
predicting termite mushroom species using the ITS sequence as a
DNA barcode.

The performance of the developed model was evaluated on
1704 sequences of 17 mushroom species obtained from two
ITS GenBanks. The evaluation was conducted using standard
classification metrics such as accuracy, precision, recall, F1-score,
and AUCROC.

Our proposed model was assessed by comparing its predictions
with the species identification results on NCBI, demonstrating
complete consistency with the identified species of the ITS
sequences of mushrooms, as well as predicting the species names
of two sequences that had not previously been identified. An
example of this is the Termitomyces striatus mushroom specimen
found in Binh Duong province, Vietnam, which was correctly
identified by our proposed model. Furthermore, when compared
to four other research groups’ machine-learning models for
predicting termite mushroom species names, our proposed model
achieved an accuracy of 0.91 and an average AUCROC score of 0.99,
demonstrating its efficacy in species identification. These results
suggest that our proposed model is a valuable tool for identifying
termite fungi species in Binh Duong province, Vietnam, and could
be applied to other mushroom species as well.

4 Conclusion

This study presents a computational model to predict
termite fungus species based on DNA barcodes. The paper also
introduces a new method for creating features based on K-mer
techniques, NLP vectorization to digitize sequence data, and
an optimized classifier. The results showed that the model
was evaluated based on the standard classification systems’
measures, including accuracy, precision, recall, f1-score, and
AUCROC. The model was evaluated on 17 termite mushroom
species and achieved high accuracy when compared with species
identification results on NCBI. These results suggest that the
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proposed model can be an effective tool for identifying
termite mushroom species based on DNA barcodes.
Furthermore, the proposed method can also be used to predict
other species.
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