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Early diagnosis and treatment of glaucoma are challenging. The discovery of
glaucoma biomarkers based on gene expression data could potentially provide
new insights for early diagnosis, monitoring, and treatment options of glaucoma.
Non-negative Matrix Factorization (NMF) has been widely used in numerous
transcriptome data analyses in order to identify subtypes and biomarkers of
different diseases; however, its application in glaucoma biomarker discovery
has not been previously reported. Our study applied NMF to extract latent
representations of RNA-seq data from BXD mouse strains and sorted the
genes based on a novel gene scoring method. The enrichment ratio of the
glaucoma-reference genes, extracted from multiple relevant resources, was
compared using both the classical differentially expressed gene (DEG) analysis
and NMF methods. The complete pipeline was validated using an independent
RNA-seq dataset. Findings showed our NMF method significantly improved the
enrichment detection of glaucoma genes. The application of NMFwith the scoring
method showed great promise in the identification of marker genes for glaucoma.
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1 Introduction

Glaucoma is a heterogeneous group of disorders that represents the second leading cause
of blindness, affecting up to 91 million individuals worldwide (Quigley, 1996; Goldberg et al.,
2000). Glaucoma is characterized by the progressive degeneration of the optic nerve, death of
retinal ganglion cells (RGCs), and preferential loss in peripheral visual fields (Jonas et al.,
2017). Currently, glaucoma-related expenses are estimated to be $1 billion to $2.5 billion
annually. Because glaucoma is an age-related disease, its prevalence is predicted to increase in
the coming decades due to the aging population.

Glaucoma diagnosis and treatment response evaluation require a combination of
clinical examinations, intraocular pressure (IOP) measurements, and interpretation of
visual field and structural imaging parameters. During the early stages of glaucoma,
screening techniques based on IOP measurements alone provide low sensitivity,

OPEN ACCESS

EDITED BY

Saurav Mallik,
Harvard University, United States

REVIEWED BY

Nancy Manchanda,
Orna Therapeutics Inc., United States
Jianwei Li,
Hebei University of Technology, China

*CORRESPONDENCE

Lu Lu,
llu@uthsc.edu

Siamak Yousefi,
siamak.yousefi@uthsc.edu

†These authors have contributed equally
to this work and share first authorship

‡These authors have contributed equally
to this work

RECEIVED 13 April 2023
ACCEPTED 30 May 2023
PUBLISHED 12 June 2023

CITATION

Huang X, Bajpai AK, Sun J, Xu F, Lu L and
Yousefi S (2023), A new gene-scoring
method for uncovering novel glaucoma-
related genes using non-negative matrix
factorization based on RNA-seq data.
Front. Genet. 14:1204909.
doi: 10.3389/fgene.2023.1204909

COPYRIGHT

© 2023 Huang, Bajpai, Sun, Xu, Lu and
Yousefi. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 June 2023
DOI 10.3389/fgene.2023.1204909

https://www.frontiersin.org/articles/10.3389/fgene.2023.1204909/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1204909/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1204909/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1204909/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1204909/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1204909&domain=pdf&date_stamp=2023-06-12
mailto:llu@uthsc.edu
mailto:llu@uthsc.edu
mailto:siamak.yousefi@uthsc.edu
mailto:siamak.yousefi@uthsc.edu
https://doi.org/10.3389/fgene.2023.1204909
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1204909


especially in so-called normotensive glaucoma patients whose
IOPs are within the normal range (Fernandez-Vega Cueto et al.,
2021). Structural signatures such as cup-to-disc ratio likewise
provide imperfect sensitivity and specificity for detecting
glaucoma (Harper and Reeves, 1999). It is often clinically
observed that by the time a glaucoma patient is diagnosed,
about 35%–40% of their RGCs (Kerrigan-Baumrind et al.,
2000) are lost. Therefore, more sensitive, and specific methods
for early diagnosis of glaucoma would be beneficial in order to
manage and slow progression, improve treatment response, and
ultimately preserve vision (Fernandez-Vega Cueto et al., 2021).

As glaucoma is highly heritable, genetic factors may provide
biomarkers for its diagnosis and management and could lead to a
better understanding of its pathophysiology (Jonas et al., 2017).
Differential gene expression analysis is a commonly used
computational approach for identifying marker genes
corresponding to a specified phenotype. A typical differential
gene expression analysis often identifies a hundred or more
differentially expressed genes (DEGs), where a considerable
number of them might be highly correlated with one or more
other DEGs (Dai et al., 2022).

With the advancement of artificial intelligence, machine
learning has provided more accurate glaucoma diagnosis based
on imaging, visual field testing, clinical and transcriptomic data
using supervised learning; results also have provided biological
insight by revealing expression patterns from data using
unsupervised learning (Zheng et al., 2019; Alipanahi et al., 2021).
Dai et al. (2022) used Logistic Regression (LR), Random Forest (RF),
and lasso regression (LASSO) for glaucoma diagnosis based on the
DEGs and found diagnosis marker ENO2 by evaluating the
efficiency of the classification model and the included features/
genes. However, in this study, the classification model was based
on a dataset with a very small number of samples (32 samples in
total), thus the generalizability of the result is questionable, and
needs further validation. Several unsupervised learning methods,
such as principal component analysis (PCA) and clustering have
been used for discovering patterns from gene expression data for
early diagnosis and precise treatment of other diseases (Taguchi and
Murakami, 2013; Kallberg et al., 2021; Zhang et al., 2022), but these
approaches have several limitations. For example, the value of the
PCs cannot represent the gene expression level as it has both positive
and negative values. Unsupervised clustering can also be highly
sensitive to themetric used to assess similarity, and typically requires
subjective evaluation to define clusters.

Non-negative matrix factorization (NMF) is a method based on
matrix decomposition, which aims to find two non-negative
matrices whose product closely approximates the original matrix.
It learns the representation of observations with high
dimensionality. As the outcome is non-negative, the algorithm
has been applied to a wide variety of problem domains (Lee and
Seung, 1999). In recent years, NMF-basedmethods have been widely
applied in genomic data analysis, in particular for identification of
cancer-related genes. For example, Brunet et al. (2004)
demonstrated NMF is an efficient method for the identification
of distinct molecular patterns and provides a powerful method for
class discovery based on cancer-related microarray data. They also
noted that NMFmethods have advantages over other methods, such
as hierarchical clustering or self-organizing maps and this was

validated based on three different datasets. Kim and Park (2007)
applied sparse NMF algorithms to cancer-class discovery and gene
expression data analysis. Their results illustrated that the proposed
sparse NMF algorithm often achieved a better clustering
performance in shorter computing times compared to other
existing NMF algorithms. Wang et al. (2013) proposed an NMF
based on the maximum correntropy criterion (NMF-MCC) for
cancer clustering. They tested the algorithm on six cancer-related
gene expression datasets and found the NMF-MCC method was
more accurate than other clustering methods. Boccarelli et al. (2018)
used NMF to extract biologically relevant genes from gene
expression profiles of bone marrow fibroblasts of patients with
monoclonal gammopathy of undetermined significance and
multiple myeloma. They found those genes may be representative
of the considered clinical conditions and may contribute to a deeper
understanding of tumor behavior. Zhao et al. (2018) employed the
NMF bi-clustering technique to identify subtypes of pancreatic
ductal adenocarcinoma, the most widespread form of pancreatic
cancer. These studies collectively show that NMF is a powerful tool
for pattern and biomarker discovery based on genomic data. Our
study is the first to use NMF for identification of glaucoma-related
genes. NMF offers distinct advantages for glaucoma-related gene
discovery, compared to other options such as the gene scoring
approach proposed by Kim and Park (2007), which focused on
the contribution of a gene to a cluster. The method used by Kim et al.
is more applicable when the goal is to identify subtypes of a disease
as all the clusters are of interest; however, it is not ideal for scoring
genes within a known, specific target group as is the case for
glaucoma genes.

In this study, we used NMF to extract different patterns of gene
expression based on eye RNA-seq data of BXD recombinant inbred
mouse strains with mutations in Gpnmb and Tyrp1 that are well-
known glaucoma-causal genes in mice. Based on our results, we
propose a novel gene scoring method which includes the probability
of the target group in the corresponding cluster based on the basis
matrix of the NMF result. In this case, a higher score represents
more importance. As a further test, we applied classical DEG
analysis methods and compared results with those obtained using
our proposed NMFmethods. The enrichment ratios were compared
between multiple NMF and DEG outputs using a reliable set of
glaucoma-reference genes that were identified from the literature
and relevant resources.

2 Materials and methods

2.1 Dataset

For this study, we generated two sets of RNA-seq data using the
Illumina HiSeq 2000 platform (Mus musculus). The first dataset
consisted of the eye transcriptome from 91 BXD strains aged
12–18 months. Among these, 29 strains had mutations in both
Gpnmb and Tyrp1 genes and were treated as the glaucoma
group, while 46 strains without mutations in both Gpnmb and
Tyrp1 genes were treated as the normal control group. These
75 strains were used as the development and internal test dataset.
The remaining 16 strains only have one gene mutation, which could
have or have not glaucoma symptoms and they were not included in

Frontiers in Genetics frontiersin.org02

Huang et al. 10.3389/fgene.2023.1204909

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1204909


the analysis. The second dataset consisted of the eye transcriptome
from 75 BXD strains aged 2–6 months. Among these, 22 strains had
mutations in both Gpnmb and Tyrp1 genes and were treated as the
glaucoma group, while 36 strains without mutations were treated as
the normal control group. These 58 strains were used as the
independent validation dataset. Similarly, the remaining
17 strains only have one gene mutation, and they were not
included in the analysis. We considered two different datasets,
because we wanted to test our method in two different age
groups of mice with the different stage of the same disease
carrying mutations in both Gpnmb and Tyrp1 genes and showing
glaucoma related phenotypes.

The animals were sacrificed under saturated isoflurane. Eyeballs
from the animals were dissected and stored at −80°C until RNA
extraction. Total RNA was extracted using Trizol® reagent
(Invitrogen, Grand Island, NY, United States) according to the
manufacturer’s instructions. Approximately 30 mg of PFC tissue was
added into a 2 mL tube containing 700 µL QIAzol Lysis Reagent and
one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue
was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden,
Germany) with a speed frequency of 30 r followed by incubation for
5 min. Then, 140 µL chloroform was added into the homogenate,
shaken vigorously for 15 s, and centrifuged for 15 min at 12,000 x g
at 4°C. Then, 280 µL upper aqueous solution was transferred into a new
collection tube containing 500 µL 100% ethanol. The mixture was
loaded into a RNeasy mini spin column (Qiagen, Valencia, CA,
United States), once with Buffer RWT and twice with Buffer RPE
purification. All RNA had been treated with DNase to avoid DNA
contamination, and verified by Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, United States). RNA with OD260/
280 > 1.8 and RIN >8.0 were used for library preparation. One
microgram of RNA was used for cDNA library construction at
Novogene using an NEBNext® Ultra RNA Library Prep Kit for
Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA,
United States) according to the manufacturer’s protocol. Briefly,
mRNA was enriched using oligo (dT) beads followed by two rounds
of purification and fragmented randomly by adding fragmentation
buffer. The first strand cDNA was synthesized using random hexamers
primer, after which a custom second-strand synthesis buffer (Illumina,
San Diego, CA, United States), dNTPs, RNase H and DNA polymerase
I were added to generate the second strand (ds cDNA). After a series of
terminal repair, poly-adenylation, and sequencing adaptor ligation, the
double-stranded cDNA library was completed following size selection
and PCR enrichment. The resulting 250–350 bp insert libraries were
quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, United States) and quantitative PCR. Size distribution
was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, United States). Qualified libraries were sequenced on
an Illumina Novaseq Platform (Illumina, San Diego, CA, United States)
using a paired-end 150 run (2 × 150 bases). An average of 40 million
raw reads were generated from each library.

The raw reads obtained in fastq format were quality checked
using FastQC (https://github.com/s-andrews/FastQC) and then
filtered using fastp software to remove reads with adapter
contamination, with uncertain nucleotides constituting >10% of
either read (N >10%), and with low-quality nucleotides (Base
Quality <5) constituting >50% of the read. Mus musculus
(mouse) reference genome (GRCm38) and gene model

annotation files were downloaded from the Ensembl genome
browser (https://useast.ensembl.org/). Indices of the reference
genome were built using STAR v2.5.0a (Dobin et al., 2013) and
paired-end reads were aligned to the reference genome. STAR used
the method of Maximal Mappable Prefix which can generate a
precise mapping result for junction reads. FeatureCount v0.6.1 (Liao
et al., 2014) was used to count the number of reads mapped to each
gene.We calculated the Transcripts PerMillion (TPM) for each gene
in both datasets based on the gene length and the mapped reads. We
then rescaled the TPM to log2 (TPM+1). Both datasets are available
on our GeneNetwork website (www.genenetwork.org) under the
names “UTHSC BXD Aged Eye RNA-Seq (Nov20) TPM Log2” and
“UTHSC BXD Young Adult Eye RNA-Seq (Nov20) TPM Log2,”
respectively.

2.2 Non-negative matrix factorization (NMF)
analysis

Given the gene expression matrix A (N×M, N-the number of
gene, M-the number of samples), A was factorized into two matrices
with positive entries, A ~ WH. MatrixW had size N×k, with each of
the k columns defining a metagene; entry Wij is the coefficient of
gene i in metagene j. Matrix H had size k×M, with each of the M
columns representing the metagene expression pattern of the
corresponding sample; entry Hij represents the expression level of
metagene i in sample j. Given a factorization A ~ WH, we can use
matrix H to group the M samples into k clusters. Each sample was
placed into a cluster corresponding to the most highly expressed
metagene in the sample; that is, sample j was placed in cluster i if the
Hij was the largest entry in column j.

We used the “brunet” method for the NMF with the objective
function of KL divergence distance. The method starts by randomly
initializing matrices W and H, which are iteratively updated to
minimize a divergence functional.

D � ∑
i,j
Ai,jlog

Ai,j

WH( )i,j − Ai,j + WH( )i,j

The NMF rank was selected based on cophenetic correlation,
dispersion, and silhouette score. The cophenetic coefficient is a
metric for robustness of the NMF model and the silhouette score
represents the level of separation between clusters, with a value close
to 1 indicating dense and well-separated clusters. The stability of the
NMF model was evaluated based on consensus matrix. Consensus
matrix is an important metric to assess the stability of the clusters
obtained for a given rank in NMF modelling. It was computed over
multiple independent NMF runs, which is the average of the
connectivity matrices of each independent run. Consensus matrix
reflects the probability of the sample in the same cluster during the
iterations; a value close to 1 representing the model is stable. The
NMFmodel was run 100 iterations at each rank. We used TPM gene
expression matrix for NMF modelling.

We constructed the gene score based on the following formula:

Gene scorei � ppW i, g+( ) + 1 − p( )pW i, g−( ) (1)
In this formula, i stands for the ith gene, g+ is the cluster

corresponding to glaucoma, g- is the cluster corresponding to the
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normal group. P is the precision (the probability of glaucoma
samples in cluster g+), W (i, g+) is the ith value of the
corresponding cluster of matrix W. The genes were sorted in
descending order, based on the gene score calculated using the
above formula, with the higher score indicating more importance.

2.3 Differentially expressed gene (DEG)
analysis

In this study, we used limma-voom from the R package limma
(Ritchie et al., 2015) to compare the differences in gene expression levels
between glaucoma and normal sample groups. We selected
differentially expressed genes with different significance thresholds as
follows: 1) adjusted p-value < 0.05; 2) adjusted p-value < 0.05 and |
log2FC| > 1; 3) adjusted p-value < 0.01; 4) adjusted p-value < 0.01 and |
log2FC| > 1; 5) adjusted p-value < 0.05 and |log2FC| > 0.5; 6) adjusted
p-value < 0.05 and |log2FC| > 1.5; 7) adjusted p-value < 0.01 and |
log2FC| > 0.5; 8) adjusted p-value < 0.01 and |log2FC| > 1.5.

We used the EnhancedVolcano package (https://github.com/
kevinblighe/EnhancedVolcano) to create the volcano plot for DEG
results.

2.4 Generating a list of known glaucoma-
reference genes

The glaucoma-related genes were obtained from multiple publicly
available resources using keywords, such as “glaucoma,” “pigmentary
dispersion syndrome,” “pigmentary glaucoma,” “ocular hypertension,”
“intraocular pressure,” “iris pigment dispersion,” and “corneal
calcification.” These keywords were searched in the following
databases/repositories: DISEASES database (Pletscher-Frankild et al.,
2015) (https://diseases.jensenlab.org/), UniProtKB (UniProt, 2023)
(https://www.uniprot.org/uniprotkb), GeneCards (Stelzer et al., 2016)
(https://www.genecards.org/), and Alliance database (Alliance of
Genome Resources, 2022) (https://www.alliancegenome.org/).
Glaucoma-related genes based on manually curated data as well as
automatic text-mining were retrieved from the DISEASES database

(Pletscher-Frankild et al., 2015). Furthermore, genes with a relevance
score≥3were also considered from theGeneCards database (Stelzer et al.,
2016). The relevance score is calculated by the GeneCards database and
is based on term frequency/inverse document frequency (additional
details on the scoring can be found here: https://www.genecards.org/
Guide/Search#relevance). In brief, the higher the relevance score is,
stronger is the association between a gene and term. Finally, a
comprehensive list of glaucoma-related genes was derived by
combining the above sets and then removing duplicates. This final
set obtained is henceforth referred to as the “glaucoma-reference set.”

2.5 Functional enrichment analysis of the
reference genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed to
further validate the glaucoma-reference set using WebGestalt (Liao
et al., 2019).

2.6 Comparing NMF and DEG identified
genes based on the glaucoma-reference set

The gene lists identified based on NMF and DEG analyses (using
limma) were compared with the glaucoma-reference genes and the
number of overlapping genes was determined. To compare the
results across multiple lists and between both methods, we
calculated the enrichment ratio based on the following formula:

Enrichment ratio � g/n( )
G/N( )

(2)

g - the number of overlapping genes between glaucoma-
reference set and NMF/DEGs set.

G - the total number of genes in glaucoma-reference set
n - the number of genes selected from the NMF/DEG

approaches.
N - the total number of genes in the mouse genome used in the

analysis.

3 Results

We used two datasets in this study. We only included the genes
whichwere expressed in at least five samples, resulting in a development
and internal testing dataset that included 75 samples (29 glaucoma and
46 normal) and 20,459 genes in the final analysis, and an independent
validation dataset that included 58 samples (22 glaucoma and
36 normal) and 19,834 genes for final analysis.

3.1 Identifying the optimal NMF rank

We evaluated numerous objective metrics, including cophenetic
coefficient, dispersion, explained variance, residuals, and silhouette
score. These values were used to identify the optimal rank of the
NMF and different ranks were then evaluated, as shown in
Supplementary Figure S1. The dispersion and residuals decreased

FIGURE 1
Heatmap of the consensus matrix of the NMF model at ranks
ranging from 2 to 5.
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with the increasing rank number, whereas the explained variance
increased with increasing rank. The explained variance was
consistently higher than 0.90 for all the ranks. Cophenetic
correlation coefficient and silhouette scores also indicated that rank
for the NMF analysis is 2 (number of clusters).

Figure 1 shows the consensus matrix of the NMFmodel at ranks
ranging from 2 to 5. As can be seen, the model is stable and
consistent when the rank is 2. Collectively, based on the objective
metrics, we selected the rank of 2 for further downstream analysis of
the gene expression matrix.

3.2 Basis and coefficient map

Figure 2 shows the consensus matrix, basis, and mixture
coefficients of the NMF model at rank 2, with the label of basis
and true label of the strains. Basis coefficient matrix is the matrix W,
where rows are the genes, and columns are the metagenes. The
mixture coefficient matrix is the matrix H, where rows are
metagenes and columns are samples.

In this study, the samples were clustered into two groups with basis
1 and 2. Based on Figure 2A, when comparing the true label with the
clustering label, we can label cluster 1 as glaucoma and cluster 2 as
normal since all the samples in cluster 1 belong to the glaucoma group,
whereas a small fraction of the samples in cluster 2 belong to the
glaucoma group. We further characterized clusters and corresponding
samples. Cluster 2 included 64 samples (46 normal and 18 glaucoma
samples), whereas cluster 1 includes 11 samples (all glaucoma). The
precision was calculated as the ratio of true glaucoma samples in cluster
1 to the total number of samples in cluster 1. The gene score was
obtained based on formula 1 in the method part. For example, W
matrix of gene “Lyz2” is: W1 = 20.64, W2 = 21.20, as cluster 1 was
labeled as glaucoma, therefore W (i, g+)=20.64, W (i, g-) = 21.20 (i =
“Lyz2″), p = 11/11 = 1, gene_score(lyz2) = 1*20.64+(1–1)*21.20 = 20.64.

3.3 Differentially expressed genes

We selected multiple sets of DEGs based on different
significance thresholds. As expected, a threshold of

FDR <0.05 resulted in the highest number of DEGs (n = 4,088),
whereas a threshold of FDR <0.01 & |logFC| >1.5 resulted in the least
number of DEGs (n = 146), between glaucoma and normal groups.
Additionally, we identified 438, 1920, 319, 999, 161, and
700 significant genes at thresholds of FDR <0.05 & |logFC|>1,
FDR <0.01, FDR <0.01 & |logFC|>1, FDR <0.05 & |logFC|>0.5,
FDR <0.05 & |logFC|>1.5, and FDR <0.01 & |logFC|>0.5,
respectively. The representative heatmap and volcano plots of
319 significant DEGs with 286 upregulated and
33 downregulated genes (obtained with a threshold of adjusted
p-value < 0.01 and |log2FC|>1) is shown in Figure 3. Further, the
DEG lists obtained with different thresholds were compared with
glaucoma-reference set.

3.4 Identification of reference list of
glaucoma genes and pathway analysis

We searched published literature and other resources and identified
749 genes associated with glaucoma. These reference genes were
validated based on KEGG pathway and GO enrichment analyses.
The enrichment analysis results clearly indicated the representation
of significant pathways and GO annotations of the reference genes.
Table 1 shows the top 20 enriched KEGG pathways. Among these,
some of the pathways, such as “MAPK signaling”, “PI3K-Akt
signaling”, “Ras signaling” have been reported to be associated with
glaucoma genes in the literature (Gauthier and Liu, 2017).
Supplementary File S1 includes the GO annotations significantly
enriched by the glaucoma-reference genes.

3.5 Comparison of genes identified based on
NMF and DEG with glaucoma reference
genes

The 749 glaucoma reference genes were compared with the
DEG-derived genes based on different significance thresholds
(Table 2). An equal number of top-ranked NMF-derived genes
were considered in order to provide a fair comparison with the
glaucoma reference genes. As expected, the DEG- and NMF-derived

FIGURE 2
Heatmap of the (A) consensus, (B) basis, and (C) coefficient matrices based on the NMF model with rank 2.
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FIGURE 3
The heatmap (A) and volcano plot (B) showing differentially expressed genes with adjusted p-value < 0.01 and |log2FC| >1.

TABLE 1 Top 20 KEGG pathways significantly enriched by 749 glaucoma reference genes.

KEGG pathway ID KEGG pathway name Reference for literature association with
glaucoma

FDR corrected
p-value

mmu05200 Pathways in cancer Iglesias et al. (2015) 0

mmu04933 AGE-RAGE signaling pathway in diabetic
complications

-- 0

mmu05418 Fluid shear stress and atherosclerosis -- 1.19E-13

mmu00910 Nitrogen metabolism -- 2.67E-13

mmu05142 Chagas disease -- 5.13E-13

mmu04066 HIF-1 signaling pathway -- 6.56E-11

mmu05205 Proteoglycans in cancer Iglesias et al. (2015) 7.52E-11

mmu04010 MAPK signaling pathway Gauthier and Liu, 2017 8.5E-11

mmu05323 Rheumatoid arthritis -- 1.95E-10

mmu04151 PI3K-Akt signaling pathway Gauthier and Liu, 2017 1.16E-09

mmu05321 Inflammatory bowel disease -- 1.99E-09

mmu04926 Relaxin signaling pathway -- 4.6E-08

mmu04014 Ras signaling pathway Gauthier and Liu, 2017 6.13E-08

mmu05161 Hepatitis B -- 8.82E-08

mmu05212 Pancreatic cancer -- 1.71E-07

mmu05144 Malaria -- 2.11E-07

mmu00515 Mannose type O-glycan biosynthesis -- 3.98E-07

mmu05210 Colorectal cancer -- 5.16E-07

mmu05225 Hepatocellular carcinoma -- 1.01E-06

mmu04350 TGF-beta signaling pathway Iglesias et al. (2015); Gauthier and Liu, 2017 1.04E-06

Pathways with known glaucoma associations in literature are highlighted in bold font.
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genes consisting of a higher number of genes, showed better overlap
with the glaucoma reference set (Table 2). However, to compare the
gene lists within the same method and across different methods, we
calculated the enrichment ratio (formula 2) for overlap between the
glaucoma-reference set and the NMF- and DEG-derived genes. For
example, when using 4,088 number of top genes, there were
198 glaucoma associated genes in DEG result, here g = 198, G =
749, n = 4,088, N = 20,459, the enrichment ratio= (198/4,088)/(749/
20,459) = 1.32. Our results demonstrated the best enrichment score
for DEGs with a threshold of FDR <0.01 & |logFC| >1, whereas the
enrichment score was highest when 146 top-ranked genes were
considered based on the NMFmethod. Overall, the enrichment ratio
for NMF-derived genes was higher than DEG-derived genes.
Interestingly, the enrichment ratio was lowest when maximum
number of genes was considered based on both DEG and NMF
methods (Table 2). The average enrichment ratio for the overlap was
1.83 and 3.41 across DEG- and NMF-derived genes, respectively (p <
0.01, t-test). To be noted, the other genes identified in DEG analysis
are not necessarily false positives as these genes could not be
validated due to the limited size of the reference gene set.

3.6 Validation of NMF method using an
independent dataset

We validated the NMF method using an independent dataset
of glaucoma genes from the BXD mice population. The dataset
consisted of 58 BXD mouse strains with 22 glaucoma and
36 normal strains (aged 2–6 months). The results were in
agreement with our development and internal test dataset. As
shown in Supplementary Figure S2, an NMF rank of 2 resulted in
the most robust and stable clusters for this dataset, which is

consistent with the original groups with two classes of glaucoma
and normal samples; Supplementary Figure S3 shows the
consensus, basis, and coefficient maps of the model with rank
2. When looking at the distribution of the true label of strains in
the clusters, we found glaucoma samples to be distributed in both
clusters 1 and 2. This could be because 2 to 6-month-old mice did
not exhibit obvious symptoms of glaucoma. Furthermore, 11 of
the glaucoma samples were in cluster 2 (total 26 samples) and
11 were in cluster 1 (total 32 samples). We labeled cluster 2 as
glaucoma because a higher percentage of the total samples
belonged to the glaucoma group. A representative heatmap
and volcano plot for the genes significant with FDR<0.01 & |
logFC|>1 is shown in Supplementary Figure S4. Of the 54 DEGs,
50 were upregulated and 4 genes were downregulated in the
glaucoma group compared to the normal group. The comparison
of the enrichment ratios for the glaucoma reference genes that
were in the genes based on the NMF and DEG approaches agreed
with the results obtained based on our development and internal
testing dataset. The genes identified using the NMF method
showed higher enrichment compared to those that were
identified using the DEG method (based on the glaucoma-
reference genes). In addition, the mean enrichment ratio for
the NMF-derived genes was higher and significant (p < 0.01)
compared to the DEG-derived genes (Table 3).

4 Discussion

In this study, we used NMF to mine RNA-seq data of normal
and glaucomatous BXD mice populations in order to identify
glaucoma marker genes. Blinded results using the NMF model
identified two robust and stable clusters, which were

TABLE 2 Comparison of enrichment ratios for glaucoma-reference set between DEG and NMF genes in development and internal testing dataset.

Significance
threshold

No. of
genesa

(DEG)

No. of genes
associated with
glaucoma (DEG)

Enrichment
ratio (DEG)

No. of genes
associated with
glaucoma (NMF)

Enrichment
ratio (NMF)

p-value

FDR <0.05 4,088 198 1.32 239 1.60 -

FDR <0.05 & |
logFC| >1

438 31 1.93 64 3.99 -

FDR <0.01 1920 111 1.58 151 2.15 -

FDR <0.01 & |
logFC| >1

319 27 2.31 51 4.37 -

FDR <0.05 & |
logFC| >0.5

999 63 1.72 102 2.79 -

FDR <0.05 & |
logFC| >1.5

161 11 1.87 26 4.41 -

FDR <0.01 & |
logFC| >0.5

700 53 2.07 84 3.28 -

FDR <0.01 & |
logFC| >1.5

146 10 1.87 25 4.68 -

Average enrichment
ratio

- - 1.83 - 3.41 0.006

aEqual number of top-ranked NMF-derived genes were considered for comparison with glaucoma-reference set.
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subsequently verified to be consistent with the authenticated
labels of the two sample groups. We then developed a novel
approach for scoring genes based on the basis matrix of the NMF
model and the probability of the glaucoma samples in the
corresponding clusters. Our results identified a relatively small
number of glaucoma-related genes, based on high enrichment
ratio analyses. The NMF method demonstrated significantly
improved enrichment ratios for glaucoma-reference genes
compared to the traditional DEG analysis. To assure
generalizability, we validated the NMF method using an
independent dataset and observed similar results.
Furthermore, the top 30 genes based on the NMF method
applied to the development and internal testing dataset
included mt-Co1, mt-Cytb, mt-Nd1, Atp2a1, mt-Nd2, Tnnt3,
Lyz2, Myh4, mt-Nd4, mt-Nd6, mt-Nd5, Apoe, Mylpf, Crybb2,
Tcap, Cfd, mt-Tp, Eef1a1, Krt5, Krt15, Pvalb, Mb, Aldoa, Tnni2,
Ckm, Cryab, Tpm2, Mmp3, Ckmt2, Eno3. Among those, six
genes (Lyz2, Apoe, Crybb2, Pvalb, Cryab, Mmp3) were found to
be associated with glaucoma when compared with the reference
glaucoma genes.

We hypothesize some of these genes are candidate markers for
glaucoma. For example, a study reported that mitochondrial
lineages that harbor missense mutations in mt-Co1 may be
associated with higher risk of glaucoma in African-American
(Collins et al., 2016). Lo Faro et al. (2021) identified an
association between POAG and polymorphisms in the
mitochondrial genes mt-Nd4 (rs2853496) and mt-Cyb
(rs35788393). Atp2a1 encodes one of the Serca Ca (2+)-
ATPases, which are intracellular pumps located in the
sarcoplasmic or endoplasmic reticula of muscle cells (Odermatt
et al., 1996), and Serca1 is also expressed in some non-muscle
tissues, including the trabecular meshwork, which is a tissue in the
eye that plays a role in regulating intraocular pressure (van Zyl
et al., 2020). Thus, Atp2a1 potentially affects the regulation of
intraocular pressure and contributes to the development of
glaucoma. It has been reported that Tnnt3 plays important

roles in the progression of eye disorders, such as glaucoma
(Yang et al., 2016). Ckm has been identified as a Myocilin
(Myoc) binding partner; binding of mutant Myoc to Ckm
changes sarcomere ultrastructure, which may adversely impact
muscle function (Lynch et al., 2018). Myoc is the most commonly
mutated gene in glaucoma (O’Gorman et al., 2019). Therefore,
Ckm may play an important role in glaucoma development. Thus,
our results strongly support our hypothesis that NMF can be a
promising tool to identify novel genetic markers.

Asmentioned earlier, DEG analysis might result in some significant
genes which are highly correlated.We investigated this by extracting the
top 30 genes from DEG result with the threshold of FDR<0.01 & |
logFC|>1 in both datasets and compared with NMF method. About
13% and 32% of the absolute correlation values were higher than 0.75 in
the first dataset and second dataset, respectively using DEG, while the
ratio was 31% and 14% using NMF using same number of top genes.
For the first dataset, the average absolute correlation was not significant
between DEG and NMF (meanDEG = 0.52, meanNMF = 0.53, p > 0.01,
t-test), but it was significant in the second dataset (meanDEG = 0.64,
meanNMF = 0.37, p < 0.01). Therefore, NMF could also get highly
correlated genes as it learned representations from all genes, and it could
be the case that a group of highly correlated gene jointly contributed to
the latent pattern.

The NMF method contains more glaucoma biomarkers than
the DEG method might be due to the following: DEG works as a
univariate linear model, and it uses hard threshold of both false
discovery rate and fold change to decide the significance of the
gene. Therefore, DEG method will result in missing some
important genes with low fold change. For example, gene
“Prph2” (FDR = 0.98, logFC = 0.01), “Rho” (FDR = 0.90,
logFC = 0.08), “Cryba2” (FDR = 0.81, logFC = −0.05).
However, NMF works as a multivariate model, and it
summarizes the contribution from all genes. Since each gene
will be weighted by a positive coefficient, NMF is more
powerful to capture the important genes with subtle expression
changes.

TABLE 3 Validation of the NMF method using an independent dataset.

Significance
threshold

No. of
genesa (DEG)

No. of glaucoma
genes (DEG)

Enrichment
ratio (DEG)

No. of glaucoma
genes (NMF)

Enrichment
ratio (NMF)

p-value

FDR<0.05 321 29 2.39 49 4.04 -

FDR<0.05 &|logFC|>1 87 8 2.44 28 8.52 -

FDR<0.01 155 14 2.39 34 5.81 -

FDR<0.01 &|logFC|>1 54 6 2.94 23 11.28 -

FDR0.05 &|logFC|>0.5 166 14 2.23 37 5.90 -

FDR0.05 &|logFC|
>FC1.5

32 3 2.48 14 11.59 -

FDR0.01 &|logFC|>0.5 100 10 2.65 29 7.68 -

FDR0.01 &|logFC|>1.5 20 2 2.65 8 10.59 -

Average enrichment
ratio

- - 2.52 - 8.18 0.001

aEqual number of top-ranked NMF-derived genes were considered for comparison with glaucoma-reference set.
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The methods and approach of our novel NMF scoring system
are different from the gene scoring approach proposed by others
such as Kim and Park (2007) that has been used frequently
(Esposito et al., 2020; Wu et al., 2020). When we compared
our results obtained using the NMF system with that obtained
using methods of Kim and Park (2007), a major difference was
seen in the much smaller number of glaucoma-related genes
identified by the NMF system. In fact, out of 2,717 significant
genes identified from the development and internal testing
dataset based on the Kim and Park (2007) approach, only
42 genes were associated with glaucoma (compared against the
glaucoma reference genes), with a relatively low enrichment ratio
of 0.42. Similarly, when we included 4,305 significant genes
identified from the validation dataset, only 79 were associated
with glaucoma with a low enrichment ratio of 0.49. One possible
reason for this difference might be that the scoring method used
by Kim and Park (2007) failed to take into account how well the
clusters matched the actual labels and the likelihood of the target
group (glaucoma in this particular study) being present in the
relevant cluster (i.e., cluster 1 in the development and internal
testing set). In Kim’s method, they assigned more weights to the
cluster with higher basis value of a gene, which was indicated as p
(i, q)*log2 (p (i, q). This strategy is more applicable when the
purpose is to identify subgroups from the input disease samples
and extract potential marker genes for each subtype, which is
exactly the intent in those studies (Esposito et al., 2020). In
contrast, our study included disease and normal groups, and we
were only interested in disease-related genes, so we calculated the
gene score based on the precision of the disease group and the
basis value and assigned more weights to the cluster
corresponding to the disease group. Even with consideration
given to differences in overall strategies in our current study and
that of Kim and Park (2007), it appears that our NMF approach is
more effective (identification of fewer gene candidates with
higher enrichment ratios) than the approach of Kim and Park
(2007).

Overall, as an unsupervised machine learning model, NMF is
good at learning latent pattern from unlabeled data, and it has
great potential to discover new target biomarker when reference
phenotype is provided, while it needs to be tuned to select the best
model. DEG also has its strength as a commonly used method, it is
easy to implement, and it can be used for roughly filtering marker
genes with hard threshold although it has less power as a univariate
model compared to multivariate analysis. Our study also has some
limitations. First, the novel gene scoring approach that we
developed is more applicable when the dataset includes normal
and disease groups instead of subgroups of disease samples.
Second, new datasets are warranted to further validate the
NMF-derived genes computationally. Finally, the top-rated
NMF-derived glaucoma gene candidates will require
experimental validation in future studies.

In summary, the current study applied NMF to extract the
pattern of gene expression from RNA-seq data collected from
normal and glaucomatous BXD strains. The genes were scored
based on the basis matrix and the probability of the selected
group being present in the corresponding cluster. A list of
glaucoma reference genes was derived from literature
publications and other sources then validated using KEGG

pathway analysis. The enrichment ratio of potential glaucoma
markers (based on glaucoma reference genes) were compared
between classical DEG and NMF methods. Results showed that
NMF identified highly promising candidates and improved the
enrichment ratio of the putative glaucoma genes. To evaluate
generalizability, the entire study was validated using an
independent glaucoma dataset. Our study suggests that NMF is a
promising tool for discovering novel marker genes, particularly in
glaucoma studies.
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SUPPLEMENTARY TABLE S1
Gene Ontology biological processes enriched by glaucoma reference
genes.

SUPPLEMENTARY FIGURE S1
Objective metrics to identify the optical rank (number of clusters) for the
NMF analysis. Seven different metrics including Cophenetic—cophenetic
coefficient, dispersion—dispersion coefficient, evar—explained variance,

rss—Residual Sum of Squares were used to identify the optimal number of
clusters.

SUPPLEMENTARY FIGURE S2
Heatmap of the consensus matrix of the NMF model at ranks ranging from
2 to 5 for validation dataset.

SUPPLEMENTARY FIGURE S3
Consensus map (A), basis (B) and coefficient map (C) of the NMF model at
rank 2 for the validation dataset.

SUPPLEMENTARY FIGURE S4
Heatmap (A) and volcano plot (B) of differentially expressed genes (50 up
regulated and 4 down regulated) at adjusted p-value <0.01 and |log2FC|>1 in
the validation dataset.
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