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Objective: Using bioinformatics analyses, this study aimed to identify lncRNAs
related to the immune status of acute myeloid leukemia (AML) patients and
ascertain the potential impact in immunity-related competing endogenous
RNA (ceRNA) networks on AML prognosis.

Methods: AML-related RNA-seq FPKM data, AML-related miRNA expression
microarray data, and gene sets associated with immunity-related pathways
were, respectively, obtained from the TCGA, GEO, and ImmReg databases. An
immunity-related ceRNA network was then constructed according to the
predicted interactions between AML-related mRNAs, lncRNAs, and miRNAs.
After performing LASSO and multivariate Cox regression analyses, lncRNAs in
the ceRNA network were used to establish an AML prognostic model. According
to mutual regulatory relationships and consistent trends of expression among
candidate ceRNAs, two ceRNA subnetworks related to the AML prognostic model
were determined. Finally, the correlation between the expression levels ofmRNAs,
lncRNAs, and miRNAs in each ceRNA subnetwork and immune cell infiltration
(assessed by combining the ESTIMATE and CIBERSORTmethods and ssGSEA) was
analyzed.

Results: A total of 424 immunity-related differentially expressed (IR-DE) mRNAs
(IR-DEmRNAs), 191 IR-DElncRNAs, and 69 IR-DEmiRNAs were obtained, and a
ceRNA network of 20 IR-DElncRNAs, 6 IR-DEmRNAs, and 3 IR-DEmiRNAs was
established. Univariate Cox regression analysis was conducted on 20 IR-
DElncRNAs, and 7 of these were identified to be significantly correlated with
the overall survival (OS) time in AML patients. Then, two IR-DElncRNAs (MEG3 and
HCP5) were screened as independent OS-related factors by LASSO and
multivariable Cox regression analyses, and a prognostic model was
constructed to evaluate the survival risk in AML patients. Survival analyses
indicated that the OS of patients was often poor in the high-risk
group. Additionally, from this model, two ceRNA regulatory pathways, namely,
MEG3/miR-125a-5p/SEMA4C and HCP5/miR-125b-5p/IL6R, which were
potentially involved in the immune regulation of AML prognosis were identified.

OPEN ACCESS

EDITED BY

Liping Dou,
People’s Liberation Army General
Hospital, China

REVIEWED BY

Yonghui Li,
Shenzhen University, China
Meng Li,
Chinese PLA General Hospital, China

*CORRESPONDENCE

Peifeng He,
hepeifeng2006@126.com

Xuechun Lu,
luxuechun@126.com

RECEIVED 10 April 2023
ACCEPTED 30 May 2023
PUBLISHED 14 June 2023

CITATION

Xue J, Chen H, Lu J, Zhang H, Geng J,
He P and Lu X (2023), Identification of
immunity-related lncRNAs and
construction of a ceRNA network of
potential prognostic biomarkers in acute
myeloid leukemia.
Front. Genet. 14:1203345.
doi: 10.3389/fgene.2023.1203345

COPYRIGHT

© 2023 Xue, Chen, Lu, Zhang, Geng, He
and Lu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 14 June 2023
DOI 10.3389/fgene.2023.1203345

https://www.frontiersin.org/articles/10.3389/fgene.2023.1203345/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1203345/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1203345/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1203345/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1203345/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1203345&domain=pdf&date_stamp=2023-06-14
mailto:hepeifeng2006@126.com
mailto:hepeifeng2006@126.com
mailto:luxuechun@126.com
mailto:luxuechun@126.com
https://doi.org/10.3389/fgene.2023.1203345
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1203345


Conclusion: lncRNAs HCP5 and MEG3 may act as key ceRNAs in the pathogenesis
in AML by regulating immune cell representation as part of the regulatory lncRNA-
miRNA-mRNA axes. The candidate mRNAs, lncRNAs, and miRNAs included in the
ceRNA network identified here may serve as useful prognostic biomarkers and
immunotherapeutic targets for AML.
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1 Introduction

Acute myeloid leukemia (AML) is a blood disease that is
malignant and genetically heterogeneous. In 2020, it accounted
for 3.1% of new deaths and 2.5% of new cancer cases around the
whole world, with a median age of 68 years at diagnosis (Yamamoto
and Goodman, 2008; Sung et al., 2021). In younger adults with de
novo AML, the 5-year overall survival rate range was 40%–50%
(Appelbaum et al., 2006; Korn and Méndez-Ferrer, 2017; Stein et al.,
2017). With continuous advances in drug research and development
and improved treatment choices for AML, the prognosis of young
patients has improved further in recent decades. However, the
prognosis of adult and especially elderly patients is poor as
before, with a 5-year expected survival rate of only 20%–25%
(Shah et al., 2013; Shallis et al., 2019). Therefore, new diagnostic
and prognostic biomarkers are urgently required to further enhance
AML patients’ prognosis.

Long-strand non-coding RNAs (lncRNAs) and microRNAs
(miRNAs) are both non-coding RNAs, the former with over
200 nucleotides in length that plays a crucial role in chromatin
and genome remodeling, RNA stability, and transcriptional
regulation, and the latter with about 22 nucleotides are single-
stranded RNAs. They inhibit protein translation by binding to
the 3′-untranslated region of mRNAs, thus silencing the targeted
mRNAs at the post-transcriptional or translational levels (Gebert
and MacRae, 2019; Treiber et al., 2019). Abnormal expression of
lncRNAs and miRNAs prove to be pivotal in the occurrence,
progression, metastasis, and prognosis of cancer. Mounting
evidence shows that lncRNAs and miRNAs can act as new
biomarkers for treating AML patients (Chen et al., 2016; Wallace
and O’Connell, 2017; Chen et al., 2019). Both lncRNAs andmiRNAs
can be used as competing endogenous RNAs (ceRNAs), conforming
complex post-transcriptional regulatory networks through mutual
interactions with each other and with mRNA species. Through
competitive binding, lncRNAs can regulate and control the
expression levels of miRNA target genes by acting as miRNA
sponges, thus establishing ceRNA networks defined by specific
lncRNA-miRNA-mRNA interactions (Sun et al., 2018; Wang
et al., 2019). Several research studies have shown that
dysregulated lncRNA expression affects immune cell activation
correlative gene expression, which significantly influences tumor
microenvironment through regulating immune cell infiltration
(Atianand et al., 2017; Chen et al., 2017).

In the last few years, the analysis of infiltrating immune cells
has pushed forward the development of immune checkpoint
inhibitors, which has proved highly valuable in the treatment
of solid tumor types (Tawbi et al., 2018). However, limited

research devoted to systematic analysis of the tumor
microenvironment in AML has precluded the development of
robust prognostic models based on immune-related genes.
Therefore, the aims of this study are 1) to identify key
regulatory ceRNA networks involved in immune cell activity
influencing the pathogenesis of AML; 2) to examine the role of
lncRNAs in AML-related immune cell infiltration; and 3) to build
a model that can reliably predict the prognosis of AML based on
immunity-related lncRNAs. To this end, we applied
bioinformatics methods to identify immunity-related
differentially expressed (IR-DE) lncRNAs (IR-DElncRNAs),
IR-DEmiRNAs, and IR-DEmRNAs in AML patient samples.
The prognostic model presented here provides novel insights
in the study of AML and may be a valuable aid in clinical
decision-making.

2 Materials and methods

2.1 Data acquisition

Clinical and RNA-seq (FPKM format) data from 150 AML
patients were downloaded from the TCGA database (TCGA-LAML;
https://portal.gdc.cancel.gov/). Samples without survival
information were filtered out, and 131 samples with
corresponding prognosis information were finally obtained. The
samples were randomized into training sets (n = 67) and validation
sets (n = 64) for further analyses. In order to compare, we
downloaded the RNA-seq data from GTEx (https://gtexportal.
org/home/), which included 70 healthy controls. The
GSE142699 data set, containing microarray-based whole-blood
miRNA gene expression data (platform ID: GPL26945) from
24 AML patients and 24 healthy donors, was retrieved from
GEO (https://www.ncbi.nlm.nih.gov/geo/).

2.2 Analysis of differentially expressed genes

We downloaded the reference human genome annotation file set
(the GTF) from Ensembl (https://asia.ensembl.org) and ran Perl
scripts to perform ID conversion on the GTEx gene expression data
and convert Ensembl transcript IDs into gene names for subsequent
analyses. In RStudio (R version 4.1.1), we screened for differentially
expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and
miRNAs (DEmiRNAs) by using the “limma” package in R,
defined by |log2-fold change (FC)|> 1 and p < 0.05, in AML
samples relative to healthy controls.

Frontiers in Genetics frontiersin.org02

Xue et al. 10.3389/fgene.2023.1203345

https://portal.gdc.cancel.gov/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/geo/
https://asia.ensembl.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1203345


2.3 Identification of immunity-related
differentially expressed RNAs

The list of immunity-related lncRNAs (IRlncRNAs) and
miRNAs (IRmiRNAs) in TCGA-LAML was extracted from
ImmReg (the regulon atlas of immune-related pathways
across cancer types, http://bio-bigdata.hrbmu.edu.cn/ImmReg/
index.Jsp) (Jiang et al., 2021). Then, we further downloaded a list
of recognized IRmRNAs from ImmPort (Immunology Database
and Analysis Portal, https://www.immport.org/shared/
genelists) to retrieve a set of AML-related IR-DElncRNAs, IR-
DEmiRNAs, and IR-DEmRNAs via intersection analysis with
the previously identified DElncRNAs, DEmiRNAs, and
DEmRNAs.

2.4 Construction of AML-related ceRNA
network

According to the identified lncRNA-miRNA-mRNA
interactions, we constructed an AML-related ceRNA network.
We first predicted the miRNAs interacting with IR-DElncRNAs
in the miRcode (http://www.mircode.org) and intersected
miRNAs with IR-DEmiRNAs to retrieve candidate IR-
DEmiRNAs. Three databases, namely, TargetScan (https://
www.targetscan.org), miRDB (https://mirdb.org) and
miRTarBase (https://miRTarBase.cuhk.edu.cn), were accessed
to predict miRNA interactions with target mRNAs, and we
finally intersected the identified IR-DEmRNAs to obtain the
shared mRNAs. Then, the AML-related ceRNA network was
constructed by Cytoscape (version 3.8.2).

2.5 Construction of IR-DElncRNA–based
prognostic model for AML

The IR-DElncRNAs included in the ceRNA network were
first analyzed by univariate Cox regression analysis on the TCGA
training data set to select those related to the overall survival (OS)
of AML patients. Then, the least absolute shrinkage and selection
operator (LASSO) and multivariate Cox regression analyses were
applied to identify the factors that were independently related to
the OS and build a clinical predictive model to evaluate the
prognostic risk of AML patients. Subsequently, we assigned a risk
score to each AML patient based on the formula that we created
for OS. The AML patients were grouped on the basis of the
median risk score, and then they were classified into low- and
high-risk groups. The survival status and total survival period of
patients in each group were compared using the “survival” and
“timeROC” packages to generate the receiver operating
characteristic (ROC) curves for 1-, 3-, and 5-year OS. The
principal component analysis (PCA) was applied to test OS
differences between the groups. Finally, based on mutual
regulatory relationships and consistent trends of the change in
the expression levels among ceRNAs, a ceRNA subnetwork
related to the AML prognostic model was determined.

2.6 Analysis of the correlation between AML
prognostic model and AML
microenvironment

Stromal cells and immune cells constitute two main classes of
non-tumor cells with diagnostic and prognostic values that coexist
in the tumor microenvironment. The Estimation of STromal and
Immune cells in MAlignant Tumors using Expression data
(ESTIMATE) algorithm allows predicting the abundance of
infiltrating immune cells (Yoshihara et al., 2013). According to
the gene expression of 11,057 samples in 33 tumors and based
on the ratio of stromal to immune cells in each tumor sample, tumor
purity was calculated by using the “limma” and “ESTIMATE”
packages after deleting normal samples. Then, we used the
Spearman’s test to analyze the correlation between the risk score
of the prognostic model and tumor microenvironment scores and
draw the correlation distribution by using the “ggplot2,” “ggExtra,”
and “ggpubr” packages in R.

2.7 Analysis of correlation between AML
prognostic model and immune cell
characteristics

Immune cell infiltration analysis was performed on the MSigDB
database (http://www.gsea-msigdb.org/gsea/msigdb/) using the
single-sample gene set enrichment analysis (ssGSEA), which
allows calculating the scores of 29 immune signatures
corresponding to 16 immune cell types and 13 immune
functions. After retrieving the relevant gene sets, we performed
ssGSEA on the transformed expression matrix through the “GSVA”
package. According to the results of the ssGSEA, we calculated the
correlation between the immune cells and functions by using the
“corrplot” package, with results visualized as a heatmap. In addition,
to assess score differences of immune cells and functions between
the two patient groups, the sample group and ssGSEA expression
matrix results were integrated, and the rank-sum test was performed
for data visualization by using the “ggpubr” package.

To analyze the presence of 22 human immune cell types in
tumor samples, we used the Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts (CIBERSORT, http://cibersort.
stanford.edu). Then, we analyzed RNA-seq FPKM data from
TCGA-LAML using the “CIBERSORT” package.

2.8 Enrichment analysis of lncRNAs
associated with AML prognostic model

To determine relevant functions and assess signaling pathway
involvement for the lncRNAs, which includes the AML prognostic
model, the TCGA-LAML data set was separated into high- and low-
risk groups based on the model’s risk score. We used the
“org.Hs.eg.db,” “clusterProfiler,” and “enrichplot” packages for
enrichment analysis and selected the top five GO (Gene
Ontology) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms and pathways to draw enrichment curves.
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2.9 Statistical analyses

We performed statistical analyses in RStudio (R version 4.1.1).
The lncRNA expression data set and OS were analyzed using
univariate and multivariate Cox regression analysis methods, and
prognosis was estimated by generating Kaplan–Meier survival
curves. Correlations between the risk score of the prognostic
model and tumor microenvironment scores were assessed using
the Spearman’s correlation analysis. All statistical tests were two-
sided, and p < 0.05 was considered significant.

3 Results

3.1 Obtaining immunity-related differentially
expressed RNAs in AML

By combining the TCGA-LAML and GTEx data sets, we
identified differentially expressed (DE) transcripts between AML
patients (n = 150) and healthy controls (n = 70). A total of
5,055 DEmRNAs (2,496 upregulated and 2,559 downregulated)
and 1,755 DElncRNAs (966 upregulated and 789 downregulated)
were detected. In turn, analysis of differential miRNA expression
between 24 AML and 24 normal tissue samples was performed in the
GSE142699 data set. In this analysis, 84 DEmiRNAs (65 upregulated
and 19 downregulated) were found altogether. In addition, a total of

1,873 IR-lncRNAs and 650 IR-miRNAs were obtained from the
ImmReg database, 1,793 IRmRNAs were obtained from the
ImmPort database, and 424 IR-DEmRNAs, 191 IR-DElncRNAs,
and 69 IR-DEmiRNAs were obtained from the corresponding
intersection analysis. The study workflow is shown in Figure 1.

3.2 Construction of immunity-related
ceRNA network

The previously extracted 191 IR-DElncRNAs were predicted by
miRcode to interact with 85 miRNAs. Among these miRNAs, three
transcripts, namely, hsa-mir-22-3p, hsa-mir-125b-5p, and hsa-mir-
125a-5p had been categorized as IR-DEmiRNAs in our preceding
analysis. Upon examining the three databases mentioned in Section
2.4, 103 target mRNAs were predicted to interact with the three
aforementioned miRNAs. Among these mRNAs, six were identified
as IR-DEmRNAs based on our previous analysis. Then, we obtained the
immunity-related ceRNA networks, which included 20 IR-DElncRNAs
(HCP5, PCCA-AS1, AC016586.1, PRKX-AS1, CSNK1G2-AS1,
AC092117.1, ARHGAP5-AS1, AC125494.1 AC108134.2, DNAJC27-
AS1, POLR2J4, MEG3, OXCT1-AS1, AC002470.1, HLA-F-AS1,
AL391807.1, FAM27C, MIR210HG, H19, and LINC00534), 6 IR-
DEmRNAs (SP1, TNFRSF10D, IL6R, CSF1R, SEMA4C, and
NR3C1), and 3 IR-DEmiRNAs (hsa-mir-22-3p, hsa-mir-125a-5p,
and hsa-mir-125b-5p) (Figure 2).

FIGURE 1
The workflow displays the process leading to identification of two IR-DElncRNAs with prognostic predictive value in AML.
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3.3 Construction of IR-DElncRNA–based
prognostic model for AML

The effect of IR-DElncRNAs, which includes those in the ceRNA
network, on the prognosis of AML patients was assessed with
univariate Cox regression analysis (Supplementary Table S1).
Based on these results, seven IR-DElncRNAs were selected for
further analyses (Supplementary Table S2). According to the
clinical characteristics of the patients, the TCGA-LAML data set
was divided randomly (1:1 ratio) into training sets (n = 67) and
validation sets (n = 64), with detailed information included such as
the TCGA ID, age, and gender of the patients of the training and
validation sets that is shown in Supplementary Tables S3, S4.
Subsequently, two IR-DElncRNAs were screened by LASSO
(Figures 3A, B) and multivariate Cox regression analyses
(Supplementary Table S5). According to the findings, the high
expression of human histocompatibility leukocyte antigen (HLA)
complex P5 (HCP5) lncRNA in AML patients is a risk factor of
adverse prognosis [HR = 5.090, 95% CI (1.993, 12.996), and p <
0.001], whereas the low expression of maternally expressed gene 3
(MEG3) lncRNA is a protective prognostic factor [HR = 0.487, 95%
CI (0.284 and 0.836), and p = 0.009] (Figure 3C).

To estimate the ability of the lncRNA-based prognostic model
to predict survival in patients, we assigned a risk score to each AML
patient based on the formula risk score = (1.62 × HCP5 expression
value) + (−0.72 × MEG3 expression value). Then, we found that

when compared with the low-risk group, the mortality rate of the
high-risk group was higher based on the median risk score in the
training set. Accordingly, individual survival status curves
indicated that the risk of death increased with increased risk
score. Risk scores, survival time plots, and a heatmap depicting
gene expression values for the prognostic model’s lncRNAs in the
two patient cohorts are shown in Figure 4A. It can be seen that in
the low-risk group, the lncRNA MEG3 is highly expressed, while
the lncRNA HCP5 is highly expressed in the high-risk
group. Supporting the model’s strength, consistent findings
were obtained in the validation set (Supplementary Figure S1A).
Survival analysis indicated that in the training set, the OS of
patients in the high-risk group was lower than in the low-risk
group (p < 0.001) (Figure 4B); meanwhile, similar results were
obtained in the validation set (p < 0.05) (Supplementary Figure
S1B).We then plotted the ROC curves and the area under the curve
(AUC) of the prognostic model to predict 1-, 3-, and 5-year OS that
was 0.736, 0.820, and 0.897 in the training set (Figure 4C) and
0.708, 0.710, and 0.750 in the validation set (Supplementary Figure
S1C). The PCA was further used to verify the differences in the OS
between the low- and high-risk groups in the training and
validation sets (Supplementary Figures S1D, E). Based on the
predictive model, two ceRNA regulatory subnetworks, namely,
MEG3/miR-125a-5p/SEMA4C and HCP5/miR-125b-5p/IL6R,
involved in the immune regulation of AML prognosis were
identified (Figure 4D).

FIGURE 2
ceRNA network of immune-related lncRNA-miRNA-mRNA transcripts in AML. Triangles represent IR-DEmRNAs, ovals represent IR-DEmiRNAs, and
rhombuses represent IR-DElncRNAs. Red represents upregulated expression, and green represents downregulated expression.
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FIGURE 3
Construction of an IR-DElncRNA–based prognostic model for AML. (A) Validation of parameter selection was conducted by the LASSO regression
model for OS. (B) LASSO coefficient profiles of prognostic IR-DElncRNAs. (C) Forest plot depicting HR with 95% CI of prognostic IR-DElncRNAs in AML,
according to multivariate Cox regression. HR, hazard ratios; CI, confidence intervals.

FIGURE 4
Construction of two IRlncRNAs–based prognostic models in AML. (A) AML patients were classified by the increasing risk score (left) and living status
(right). The heatmap depicts the two IRlncRNAs–based expression profiles contained in themodel for the low- and high-risk groups in the training set. (B)
Kaplan–Meier analysis of OS for AML patients on the basis of risk stratification in the training set. (C) ROC for 1-, 3-, and 5-year OS prediction for AML
patients in the training set. (D) ceRNA subnetworks based on each IRlncRNA included in the prognostic model. Triangles represent IR-DEmRNAs,
ovals represent IR-DEmiRNAs; and rhombuses represent IR-DElncRNAs. Red represents upregulated expression, and green represents downregulated
expression.
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3.4 Correlations between AML prognostic
model and tumor microenvironment
components

The correlations between the AML prognostic model and
immunity-related cells and pathways were explored by assessing
the differences in immune cell infiltration between the two AML
patient groups. Using ESTIMATE, the stromal and immune scores
of each AML sample were first calculated. Patients having higher
stromal scores (−724.9 vs. −952.6, respectively, and p < 0.001) and
higher immune scores (2,663.7 vs. 3,103.6, respectively, and p <
0.001) in the high-risk group were compared to that of the low-risk
group (Figures 5A, B), showing more extensive immune cell
infiltrations in the high-risk group. The analysis of the
correlation between the expression level (log2 transformation) of
members of the two ceRNA subnetworks and the immune and
stromal scores revealed a positive correlation between the lncRNA
HCP5 expression level and the immune score (R = 0.44 and p =
2.5e−08) and the stromal score (R = 0.27 and p = 0.001) (Figures 5C,
D). Similarly, the mRNA IL-6 receptor (IL6R) expression level, the
immune score (R = 0.45 and p = 1.5e−08), and the stromal score (R =
0.38, p = 2.3e−06) presented a positive correlation (Figures 5E, F). By
contrast, no significant correlations with the immune and stromal
scores were detected for SEMA4C mRNA and MEG3 lncRNA
(Supplementary Figures S2A–D). These results suggest that in

AML, the HCP5/miR-125b-5p/IL6R axis influences the
composition of stromal and immune cells.

3.5 Correlation between AML prognostic
model and tumor immune infiltration

The CIBERSORT was applied to analyze the relationship between
the prognostic model and 22 tumor-infiltrating immune cell types.
The finding showed that the plasma cell, follicular helper T cell,
resting mast cell, and eosinophil levels were significantly decreased,
whereas the CD4 memory-activated T cell, regulatory T cell (Treg),
and monocyte levels were significantly increased, in the high-risk
group (Figure 6A). In turn, the finding showed a positive correlation
betweenmonocytes andTreg levels and risk scores, whereas a negative
correlation was found among the eosinophil, activated mast cell,
resting mast cell, plasma cell, and follicular helper T cell levels and
risk scores (p< 0.05) (Figure 6B). Interestingly, significant correlations
with lower OSwere detected for high eosinophil infiltration levels (p =
0.022) and low resting mast cell infiltration levels (p = 0.023) (Figures
6C, D). Meanwhile, we found a negative correlation between the
expression level of IL-6R and naive B cell infiltrations (p < 0.05), but a
negative correlation between the expression levels of SEMA4C and
MEG3 and memory B cell infiltrations (p < 0.05) (Figures 6E–G)
analyzed by using the Spearman’s test.

FIGURE 5
Correlation analysis of the two IRlncRNAs–based prognostic model and tumor microenvironment scores in AML. (A) Distribution of stromal scores
in different risk groups. (B) Distribution of immune scores between the two risk groups. (C, D) Regression plots depicting the relationship between
expression levels of HCP5 and immune scores (C), and the stromal scores (D). (E, F) Regression plots depicting the relationship between expression levels
of IL6R and immune (E) and stromal scores (F).
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FIGURE 6
Association between the two IRlncRNAs–based prognostic model and immune signatures. (A) Immune score enrichment analysis for 22 tumor-
infiltrating immune cell types for different risk groups. (B) Relationships between themodel’s risk score and infiltrating immune cell levels (p < 0.05). (C,D)
Survival analysis based on eosinophil levels (C) and resting mast cell levels (D). (E) Correlation between IL-6R expression and infiltration levels of naive
B cells. (F) Relationship between the expression level of SEMA4C and memory B cell infiltration. (G) Relationship between the expression level of
lncRNA MEG3 and abundance of memory B cells. (H) Score distributions for 18 tumor-infiltrating immune cell types for different risk groups. (I) Score
distributions for 13 immune functions between the two risk groups.
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The correlations between the risk score of the prognostic model
and infiltrating immune cells (Figure 6H) and immune functions
(Figure 6I) for the two risk groups in the TCGA-LAML data set were
compared using the ssGSEA. When compared with the low-risk
group, the high-risk group had higher representations of B cells,
CD8+ T cells, DCs, helper T cells, iDCs, neutrophils, pDCs, Th1 cells,
Th2 cells, Tregs, NK cells, and TILs. In turn, the high-risk group had
higher scores for several immune functions, such as APC co-
inhibition, APC co-stimulation, CCR, check-point, cytological
activity, HLA, inflammation-promoting activity, MHC class I,
para-inflammation, T-cell co-inhibition, T-cell co-stimulation,
type I IFN response, and type II IFN response when compared
with the low-risk group. Further analysis of the identified ceRNA
subnetworks indicated that the SEMA4C expression was positively
correlated with aDCs, and IL6R and lncRNA HCP5 were both
positively correlated with APC co-inhibition, whereas SEMA4C and
lncRNA MEG3 were both negatively correlated with APC co-
inhibition. These findings, therefore, suggest that our prognostic
model will be useful to infer immune cell distribution and relevant
immune pathways influencing the prognostic of AML patients.

3.6 Enrichment analysis based on prognostic
model

To determine the relevant signaling pathways associated with
our two lncRNAs signature model, the gene set enrichment analysis
(GSEA) was carried out on the transcriptional profiles of the low-
and high-risk groups identified in the TCGA-LAML cohort. The GO
analysis showed that the high-risk group was mainly enriched in
inhibitory MHC class I receptor activity, MHC class II protein
complex, MHC class II protein complex assembly, peptide antigen
assembly with MHC class II protein complex, and synapse pruning
(Figure 7A). The KEGG enrichment analysis showed in turn that the
high-risk group was predominantly enriched in pathways related to
graft-versus-host disease, internal immune network for IgA

production, viral myocarditis, allograft rejection, and antigen
processing and presentation (Figure 7B).

4 Discussion

AML is an aggressive hematological malignant tumor with high
incidence and mortality rates that is featured by myeloid progenitor
cells’ abnormal proliferation and differentiation (Shallis et al., 2019).
The accurate prediction of AML patients’ OS is of great significance
for selecting treatment and improving prognosis. There are so far no
reliable and effective biomarkers and prognostic models to
accurately predict the survival rate of AML patients. All kinds of
non-coding RNAs that impact the pathogenesis in AML has
previously been reported (Estey, 2020). Salmena et al. (2011) had
put forward the ceRNA hypothesis in 2011, which hypothesized that
different RNA species (lncRNAs, mRNAs, circRNAs, and
transcribed pseudogenes) can competitively combine with
miRNAs to induce miRNA-mediated gene expression silencing.
Subsequently, several studies have addressed the potential
influence of ceRNA networks in the development and treatment
of AML (Sanchez-Mejias and Tay, 2015; Thomson and Dinger,
2016). For example, lncRNAs CCAT1, SBF2-AS1, and UCA1 were
shown to upregulate the expressions of c-Myc, ZFP91, and HK2 by
binding to miR-155, miR-188-5p, and miR-125a, respectively, and
thus promoting AML cell proliferation (Chen et al., 2016; Zhang
et al., 2018; Tian et al., 2019). However, studies on the regulatory
effects of lncRNA-miRNA-mRNA interactions in AML, especially
those involving immunity-related ceRNA networks, are still limited.
Recent research has focused on building prediction models
according to non-coding RNA expression data to evaluate the
prognosis of AML patients. These include miRNA-based models
(Tian et al., 2018; Zhu et al., 2019), clinical feature–based models
(Wang et al., 2020), lncRNA-based prognostic models (Garzon et al.,
2014; Li and Sun, 2018), and ceRNA network–based prognostic
models (Wang et al., 2019). However, the potential of immunity-

FIGURE 7
GSEA based on the AML prognostic model. (A) GSEA enrichment plot displaying the top five GO terms. (B) GSEA enrichment plot showing the top
five KEGG pathways.
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related lncRNAs and ceRNA networks in predicting AML prognosis
remains uncertain.

This study examined the TCGA, GEO, ImmReg databases to
collect, respectively, AML-related gene expression data, AML-
related miRNA expression data, and gene sets associated with
immunity-related pathways. As a result, 424 IR-DEmRNAs,
191 IR-DElncRNAs, and 69 IR-DEmiRNAs were screened, and a
ceRNA network which included 20 IR-DElncRNAs, 6 IR-
DEmRNAs, and 3 IR-DEmiRNAs was finally established. After
evaluating the impact of each of these 20 IR-DElncRNAs on
AML survival, a prognostic model containing two IR-
DElncRNAs (MEG3 and HCP5) was performed according to
LASSO and multivariate Cox regression analyses. Interaction
analyses on lncRNAs included in the prognostic model revealed
two regulatory ceRNA axes potentially involved in the immune
regulation of AML prognosis, namely, lncRNA MEG3/miR-125a-
5p/SEMA4C and lncRNA HCP5/miR-125b-5p/IL6R.

The study of tumor-regulating lncRNAs has aroused wide
concern and increased the use of high-throughput sequencing
techniques. Numerous non-coding RNAs, such as the three
lncRNA transcripts, TUG1 (Wang X. et al., 2018a; Luo et al.,
2018), LINC00899 (Wang Y. et al., 2018b), and PANDAR (Yang
et al., 2018), have been found to be closely related to cell cycle
dynamics and apoptosis in AML. These studies, along with the
present one, suggest that lncRNAs may be useful biomarkers for
diagnosis, prognosis, and therapy of AML. lncRNA HCP5, included
in our AML prognostic model, is mainly expressed in immune cells
and participates in innate and adaptive immune reactions. By acting
as a ceRNA, its potential contribution to the onset, development,
and/or drug resistance of thyroid carcinoma, colorectal cancer, and
pancreatic cancer has been reported (Liu et al., 2019). In addition,
several research studies have revealed abnormal HCP5 expression
that correlates with the prognosis of many cancers, making it a
potential prognostic biomarker (Liu et al., 2019; Yang et al., 2019;
Gao et al., 2021). Hu et al. (2021) used GEPIA2 to evaluate
HCP5 expression levels and survival associations in different
cancers, and the findings showed that HCP5 was upregulated in
cholangiocarcinoma, esophageal carcinoma, AML, and pancreatic
adenocarcinoma, and both OS and disease-free survival were lower
in patients with high HCP5 expression. In line with the present
findings, this evidence supports a deleterious influence of
HCP5 overexpression on OS in various types of cancer.

The second biomarker included in our AML prognostic model,
namely, MEG3, is a recently found lncRNA with tumor-suppressive
function that is very critical at the onset and development of several
cancers. MEG3 is significantly downregulated in several human
tumors and tumor cells. In different solid tumors and in diverse
tumor cell lines, MEG3 overexpression inhibits proliferation, hence
it is used as a tumor suppressor gene (Zhou et al., 2007; Zhang et al.,
2010; Balik et al., 2013). Several mechanisms, such as P53-mediated
transcriptional regulation (Benetatos et al., 2011) and promoter
region CpG island hypermethylation (Braconi et al., 2011; Lu et al.,
2013), have been reported to repress MEG3 expression in different
tumor types and tumor cell lines. In a series of 42 AML cases, a
MEG3 promoter hypermethylation rate of 47.6% was reported in
association with significantly reduced OS (Benetatos et al., 2010).
Although the aforementioned studies have suggested promoter
hypermethylation as the main cause of MEG3 downregulation in

tumor cells, it remains unclear whether MEG3 suppression affects
the growth of AML cells.

Abnormal miRNA expression was shown to disrupt important
cellular processes, contributing to the initiation and progression of
various diseases (Mehta and Baltimore, 2016). Studies have
proposed distinct roles of miR-125 family members (miR-125a
and miR-125b) in the inhibition and promotion of AML
(Emamdoost et al., 2017; Hu et al., 2017; Liu et al., 2017). Our
present study thus expands our understanding of the contribution of
miR-125a and miR-125b to AML by demonstrating their prognostic
significance as part of immunity-related ceRNA networks that
include HCP5 and MEG3 as direct upstream regulators and IL6R
and SEMA4C as target genes.

We also evaluated the association between our lncRNA-based
prognostic model and the tumor microenvironment, which is very
important in AML development and treatment (van Galen et al.,
2019). The analysis of tumor-infiltrating immune cells in the TCGA-
LAML patient cohort showed higher tumor infiltration levels of
memory-activated CD4 T cells, Tregs, and monocytes in the high-
risk group. However, monocyte and Treg levels were positively
correlated with the risk score of the prognostic model. Our study
further showed that the degree of infiltration of several immune cell
types and the activity of various immune pathways were different
among the high- and low-risk AML groups and that
HCP5 expression level, but not that of MEG3, had a positive
correlation between both immune and stromal scores. These data
indicate that our two lncRNAs signature may be used as a predictor
of differential immune cell infiltration in AML and highlight a
probable role of lncRNAs HCP5 as an important determinant of the
immune status in AML. Nevertheless, the molecular mechanisms
linking dysregulated lncRNA expression and immune status, as well
as the therapeutic impact of immunotherapies targeting the ceRNA
networks identified herein, have to be explored.

5 Conclusion

Through the analysis of the gene expression data from AML
patients, this study identified two OS-related IRlncRNAs and
constructed a prognostic model on this basis that efficiently
discriminates high-risk from low-risk AML cases. Based on
this two IRlncRNAs prognostic signature, we also defined two
corresponding immunity-related ceRNA networks with the
potential impact on the stromal and immune composition of
the AML microenvironment. Specifically, our analyses suggest
that the lncRNAs HCP5 and MEG3 may act as key ceRNAs to
modulate immune responses by regulating miR-125 species and
their target genes. Our findings thus help to address the research
gap on the role of IRlncRNAs in AML and provide a novel tool to
predict prognosis and plan immunotherapy interventions. There
are some limitations in this study. First, our analyses were based
on a limited number of AML cases recorded on a public database.
Hence, the current results have to be subjected to large-scale,
multi-center external verification. Second, the biological
functions of the two prognostic IRlncRNAs, i.e., their
interactions with specific miRNAs and their post-
transcriptional regulatory functions, have to be validated
through molecular assays.
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