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Background: Systemic sclerosis (scleroderma; SSc), a rare and heterogeneous
connective tissue disease, remains unclear in terms of its underlying causative
genes and effective therapeutic approaches. The purpose of the present studywas
to identify hub genes, diagnostic markers and explore potential small-molecule
drugs of SSc.

Methods: The cohorts of data used in this study were downloaded from the Gene
Expression Complex (GEO) database. Integrated bioinformatic tools were utilized
for exploration, including Weighted Gene Co-Expression Network Analysis
(WGCNA), least absolute shrinkage and selection operator (LASSO) regression,
gene set enrichment analysis (GSEA), Connectivity Map (CMap) analysis, molecular
docking, and pharmacokinetic/toxicity properties exploration.

Results: Seven hub genes (THY1, SULF1, PRSS23, COL5A2, NNMT, SLCO2B1, and
TIMP1) were obtained in the merged gene expression profiles of GSE45485 and
GSE76885. GSEA results have shown that they are associated with autoimmune
diseases, microorganism infections, inflammatory related pathways, immune
responses, and fibrosis process. Among them, THY1 and SULF1 were identified
as diagnostic markers and validated in skin samples from GSE32413, GSE95065,
GSE58095 and GSE125362. Finally, ten small-molecule drugs with potential
therapeutic effects were identified, mainly including phosphodiesterase (PDE)
inhibitors (BRL-50481, dipyridamole), TGF-β receptor inhibitor (SB-525334),
and so on.

Conclusion: This study provides new sights into a deeper understanding the
molecular mechanisms in the pathogenesis of SSc. More importantly, the results
may offer promising clues for further experimental studies and novel treatment
strategies.
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Introduction

Systemic sclerosis (scleroderma; SSc) is a heterogeneous
connective tissue disease characterized by progressive cutaneous
and visceral fibrosis (Denton and Khanna, 2017). The overall
prevalence and incidence of SSc in global were 17.6 per 100,
000 and 1.4 per 100,000 person-years, respectively (Bairkdar
et al., 2021). Though uncommon, SSc has the highest cause-
specific mortality among all the rheumatic diseases, and main
causes of death are lung and heart involvement (Tyndall et al.,
2010; Elhai et al., 2017). Also, SSc imposes high burden in terms of
life quality of the patients and social cost.

Fibroproliferative vasculopathy and pronounced immunity
abnormalities are involved in the onset and etiopathogenesis of SSc,
ultimately leading to the irreversible fibrosis development––the typical
hallmark in SSc. In the process of fibroproliferation, transforming
growth factor-β (TGF-β) plays a pivotal role while multiple cytokines
have been implicated, such as connective tissue growth factor (CTGF),
interleukin (IL), chemokines and so on (Clark, 1985; Hu et al., 2018).
However, the subtle mechanisms underpinning clinical heterogeneity
are, by far, poorly understood. Early differentiation and diagnosis, with
commencement of modifying treatment, aids to improve the outcomes
in patients with SSc (Jerjen et al., 2022). Therefore, improved
understanding of the pathophysiology of SSc is required to provide
new strategies for the diagnosis and treatment of SSc.

Public databases combined with bioinformatics tools provide
novel insights on elucidating the potential mechanisms and
promising biomarkers (The Gene Ontology Consortium, 2019).
Weighted gene co-expression network analysis (WGCNA) is an
important method to understand gene function and gene association
from the genetic level (Langfelder and Horvath, 2008). Least
absolute shrinkage and selection operator (LASSO) is a
regression-based methodology identifying regression coefficients
for genes to shrink a weighted average of mean squared
prediction error for cases (Langfelder and Horvath, 2008). Drug
database also provide us a good opportunity to discover new
therapeutic strategies to reverse disease progression.

In this investigation, we aimed to explore the hub genes and
diagnostic markers related to the disease course, and further seek for
new drugs for the treatment of SSc. Microarray datasets of SSc
retrieved from the NCBI Gene Expression Omnibus public database
(GEO) datasets were utilized for discovery and validation. Hub
genes were identified, and a diagnostic model was created based on
theWGCNA algorithm andmachine-learning technique. Moreover,
to the best of our knowledge, small-molecule compounds for the
treatment of SSc were predicted using the ConnectivityMap (CMap)
analysis for the first time. Our findings may cast novel sights into the
better understanding the pathogenesis of SSc and point to the
potential drugs for accurate therapy of SSc.

Materials and methods

Data collection and preprocessing

Gene expression profiling datasets were obtained from the NCBI
Gene Expression Omnibus public database (GEO) (https://www.
ncbi.nlm.nih.gov/geo/). Screening was performed in accordance

with the following criteria: 1) Tissues originate from skin biopsy
on Homo sapiens; 2) At least 10 samples were included; 3) Samples
have been treated with no modifying drugs. Finally, the GEO dataset
numbered GSE45485, GSE76885, GSE32413, GSE95065, GSE58095,
and GSE125362 were selected.

Individual datasets underwent stringent quality control,
background correction, log2 transformation, and normalization in
the environment of the R software (version 4.2.1). Agilent
microarrays (GSE45485, GSE76885, GSE125362, and GSE32413)
were normalized using the “limma” package; Illumina microarray
(GSE58095) was normalized using the “lumi” package; Affymetrix
microarray (GSE95065) was subjected to RMA normalization using
the “affy” package, respectively. GSE45485 andGSE76885weremerged,
and the batch effects were corrected with the ComBat function of the
“sva” package in R. A total of 135 samples (38 HCs and 97 SSc patients)
of the merged GSE45485 and GSE76885 were utilized to conduct the
WGCNA analysis. And GSE32413, GSE95065, GSE58095, and
GSE125362 were utilized for the validation, respectively.

Differential expression analysis

Differential expression analysis of HC and SSc samples was
performed using the “limma” package. With |log2 fold change
(FC)| > 0.585 and adjusted p < 0.05 as the cutoff threshold,
differentially expression genes (DEGs) were detected. To better
visualize the results, heatmap and volcano plot of DEGs were
generated using the “pheatmap” and “ggplot2” packages.

Construction of a weighted gene co-
expression network

To investigate the co-expression relationships among the genes and
the relationship between the genes and the phenotypes, weighted
correlation network analysis (WGCNA) method was applied using
the “WGCNA” package in R. After filtering the outlier samples, with an
optimum soft threshold was set, the weighted adjacency matrix was
transformed into a topological overlap matrix (TOM) to estimate the
network connectivity. Then, the co-expression modules were clustered
by a dynamic tree-cut approach on TOM-based dissimilarity. Genes
with similar patterns were grouped into a module. At last, correlation
coefficient analysis of module membership (MM) with gene
significance (GS) was implemented.

Identification of hub genes

After identifying the key module that most representing the SSc
disease trait, the intra-module connectivity (IMConn) was then
calculated to determine the top 30 genes with the highest
connectivity within the key module. Besides, the criteria (absolute
values of GS > 0.45 and MM > 0.80) was used to screen the genes
with biological importance in the key module. The intersection of
DEGs, top 30 genes with the highest IMConn, and genes with biological
importance in the key module, was taken using the tool on Evenn
website (http://www.ehbio.com/test/venn/). The common genes were
defined as the final hub genes of SSc.
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Functional enrichment analysis

The functional annotation of DEGs analyzed by Gene Ontology
(GO) was reflected in biological processes (BP), cell components
(CC), molecular function (MF). Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis was performed to analyze related
significant pathways. The GO and KEGG pathways were
retrieved with a cut-off criterion of p < 0.05 and visualized by
the “enrichplot” and “GOplot” packages in R.

The respective functions of each hub gene were revealed by Gene
Set Enrichment Analysis (GSEA). After removing HC samples, the
left SSc samples were distinguished into two groups, the low
expression group and the high expression group, based on
median values of hub gene expression levels. Differential
expression analysis between the two groups was performed and
genes were sorted by logFC from the highest to the lowest. The ridge
plots were presented using the “clusterprofiler” and “enrichplot”
package in R.

Screening and validation of diagnostic
model

To identify the diagnostic markers among hub genes, LASSO
regression was conducted using the “lars” package in R. Next, the
sensitivity and specificity of the diagnostic model were evaluated
using receiver operating characteristic curves (ROCs) using the
“pROC” package in R. The diagnostic performance of the model
was assessed by the area under the curve (AUC), and AUC >
0.75 was set as the cut-off value. In general, the gene expression
profile of the merged dataset (GSE45485 and GSE76885, n = 135)
was used as discovery cohort, and the gene expression profiles of
GSE32413 (n = 35), GSE95065 (n = 33), GSE58095 (n = 102), and
GSE125362 (n = 12) were used as validation cohorts to verify the
ability of diagnostic model. The correlations between diagnostic
markers and well-known causative genes (TGFB1, CTGF, COL1A1,
COL1A2, IL6, CCL2, VCAM1, and THBS1) in the merged dataset
were assessed by Pearson’s correlation test using the “ggplot2”
package in R.

Drug prediction

Connectivity Map (CMap) is a collection of databases that stores
a pool of gene transcription-expression profiles from cultured
mammalian cells exposed to active small molecule drugs. Top
30 genes with the highest IMConn were uploaded to the
L1000 platform (https://clue.io/) for prediction of potential drugs
towards SSc for pharmaceutical development. Compounds with the
CMap negative connectivity score of −90 or lower, indicating higher
potential anti-SSc effect, were considered to be potential effective
drugs. Meanwhile, SwissTargetPrediction online database (http://
www.swisstargetprediction.ch/) was utilized to predict the targets of
the predicted drugs.

The molecular structures of predicted compounds were
obtained from PubChem Compound (https://pubchem.ncbi.nlm.
nih.gov/). The 3D coordinates of predicted targets were downloaded
from the PDB (http://www.rcsb.org/pdb/home/home.do).

AutoDockTools (version 1.5.7), AutoDock Vina (version 1.1.2),
PyMOL (version 2.5) and ChemDraw (version 19.0) softwares
were utilized for molecular docking studies and model
visualization, respectively. The pkCSM (http://structure.bioc.cam.
ac.uk/pkcsm) server was utilized to measure ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties of
predicted compounds (Pires et al., 2015). Using the canonical
smiles strings retrieved from the PubChem database,
pharmacokinetic and toxicity properties were calculated.

Statistical analysis

All statistical analyses were performed using R software. p <
0.05 was considered statistically significant.

Results

Identification and functional enrichment
analysis of DEGs

The flow chart of the study was summarized in Figure 1. Details
of the collected datasets are presented in Table 1. The DEGs were
investigated in HC and SSc in the merged microarray dataset
(GSE45485 and GSE76885). A total of 86 genes were identified
to be differentially expressed between HC and SSc samples, of which
58 genes were upregulated and 28 genes were downregulated. The
volcano plot and heatmap of DEGs in each group were presented in
Figures 2A, B.

To gain insights into the biological roles of the DEGs, we
performed GO categories enrichment analysis. With the criterion
of p < 0.05, “extracellular matrix organization”, “extracellular
structure organization”, “bone development”, “granulocyte
migration”, and “myeloid leukocyte migration” exhibited highly
significant enrichment within the BP category. For the CC
category, DEGs were significantly enriched in “collagen-
containing extracellular matrix”, “collagen timer”, “secretory
granule lumen”, “cytoplasmic vesicle lumen”, and “vesicle
lumen”. In addition, the MF category contained DEGs
significantly enriched in “receptor ligand activity”, “signaling
receptor activator activity”, “extracellular matrix structural
constituent”, “cytokine activity” and “glycosaminoglycan binding”
(Figure 2C). The top enriched KEGG pathways included
“cytokine–cytokine receptor interaction”, “viral protein
interaction with cytokine and cytokine receptor”, “protein
digestion and absorption”, and “biosynthesis of unsaturated fatty
acids” (Figure 2D).

Construction of co-expression modules

WGCNA algorithm was used to identify the co-expressed genes
and modules in the merged gene expression datasets of
GSE45485 and GSE76885. To construct the scale-free clustering
dendrograms, soft threshold power was picked as 5 (Figure 3A). The
signed R2 was shown in a log-log linear model for module
connectivity analysis is R2 = 0.90, suggesting the successful
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construction of scale-free correlation (Figure 3B). After merging
similar modules, eight modules with high adjacency from the co-
expression network were visualized in the dendrograms (Figure 3C).
According to the module-trait relationships, the MEblue module
was identified as the key module that most associated with SSc
disease trait (Cor = 0.64, p < 0.01) (Figures 3D, E). The dendrogram
and adjacency heatmap of eigengenes further indicated that the
MEblue module was the closest one to reflect the pathogenesis of SSc
(Figure 3F). Thus, MEblue module was selected for downstream
analysis.

Identification and GSEA of hub genes

A total of 901 genes were included in the MEblue model. On one
hand, with GS > 0.45 and MM > 0.80, 45 genes (top 5% of all genes

in the key module) with biological importance in the MEblue
module were filtered out. On the other hand, on the basis of the
expression values of IMConn, the top 30 highly connected genes in
the key module to mine potential key molecules were selected. Venn
plot showed the intersection of DEGs, top 30 genes with the highest
IMConn, and 45 genes with biological importance (Figure 4A).
Thus, 7 overlapping genes (THY1, SULF1, PRSS23, COL5A2,
NNMT, SLCO2B1, and TIMP1) were ultimately selected and
defined as the final hub genes that might be involved in the
pathogenesis of SSc. Detailed information of hub genes was
presented in Table 2. Correlation analysis among 7 hub genes
revealed that they were highly connected in the expression levels
with each other (Figure 4B).

GSEA results revealed the potential biological roles of hub genes
(Figure 4C). The ridge plots have shown that they are associated with
autoimmune diseases (systemic lupus erythematosus, rheumatoid

FIGURE 1
The schematic diagram of the data Analysis. Abbreviations: DEG, differentially expressed genes; WGCNA, Weighted gene co-expression network
analysis; CMap, Connectivity map; LASSO, least absolute shrinkage and selection operator; GSEA, gene set enrichment analysis; ROC, receiver operating
characteristic.

TABLE 1 Detailed information of GEO datasets.

GSE number Platform Samples (HC vs. SSc) Tissue

GSE45485 GPL6480 Agilent-014850 20 vs. 33 Skin

GSE76885 GPL6480 Agilent-014850 18 vs. 64 Skin

GSE125362 GPL6480 Agilent-014850 4 vs. 8 Skin

GSE95065 GPL23080 Affymetrix [HG-U133A_2] 15 vs. 18 Skin

GSE58095 GPL10558 Illumina HumanHT-12 V4.0 43 vs. 59 Skin

GSE32413 GPL4133 Agilent-014850 8 vs. 27 Skin

HC: healthy control; SSc: systemic sclerosis.

Frontiers in Genetics frontiersin.org04

Yan et al. 10.3389/fgene.2023.1202561

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202561


arthritis, and lipid and atherosclerosis), microorganism infections
(tuberculosis, staphylococcus aureus infection, pertussis, and
leishmaniasis), inflammatory related pathways (NF-kappa B
signaling pathway, chemokine signaling pathway, TNF signaling
pathway, AGE-RAGE signaling pathway in diabetic complications),
immune responses (phagosome, complement and coagulation
cascades, natural killer cell mediated cytotoxicity), and fibrosis
process (protein digestion and absorption, ECM-receptor
interaction, focal adhesion, osteoclast differentiation).

Construction and validation of a diagnostic
model

In the discovery cohort of GSE45485 and GSE76885, LASSO
regression algorithmwas employed to further screen prognostic SSc-
related signature genes. According to the minimum partial
likelihood deviance and optimum λ value, THY1 and
SULF1 were identified as prognostic markers (Figure 5A). The

violin plots revealed that THY1 and SULF1 exhibited higher
expression levels in SSc patients than HCs (p < 0.05) (Figure 5B).
The AUC values of THY1 and SULF1 in the merged dataset were
0.903, 0.903, respectively, suggesting high diagnostic efficacy, and
the combined diagnostic value of THY1 and SULF1was 0.922
(Figure 5B). Then, the relationships between the diagnostic
markers and causative genes (TGFB1, CTGF, COL1A1, COL1A2,
IL6, CCL2, VCAM1, and THBS1) was verified by Pearson
correlation analysis. The expression levels of THY1 and
SULF1 were positively associated with these causative genes levels
with high relevance (p < 0.05) (Figure 5C). To further verify the
diagnostic markers, expression level detection and ROC analysis
were conducted in the validation datasets. The expression levels of
THY1 and SULF1 were higher in SSc patients than HCs, based on
the violin plots of GSE32413, GSE95065, GSE58095 and GSE125362
(p < 0.05) (Figure 5D). Similarly, the AUC values of THY1 and
SULF1 were 0.787, 0.963 in GSE32413, respectively; 0.970, 0.996 in
GSE95065, respectively; 0.883, 0756 in GSE58095, respectively; and
1.000, 1.000 in GSE125362, respectively (Figure 5D).

FIGURE 2
Differentially expressed gene profiles analysis. (A,B) Volcano plot and heatmap of DEGs between HC and SSc skin samples in the merged gene
expression profile of GSE845485 and GSE76885. (C,D) Top 10 biological process (BP), cellular component (CC), molecular functions (MF) terms and top
6 KEGG enrichment pathways of DEGs in themerged gene expression profile of GSE845485 andGSE76885. The size of each circlemeans the amounts of
genes. The different color of each circle means p-adjust-value. GeneRatio means the ratio of genes that belong to this pathway divided by the
number of genes in the background gene cluster that belong to this pathway. Abbreviations: DEG: differentially expressed genes; HC, healthy control;
KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Drug prediction for SSc

Top 30 genes with the highest IMConn were then incorporated into
the CMap database for further analysis to screen target drugs related to
SSc. According to CMap score, top 10 small-molecule drugs with
potential therapeutic effects were ranked as follows: desoxypeganine,
clofazimine, BRL-50481, GW-311616, methyllycaconitine, acetyl-
geranyl-cysteine, SB-525334, dipyridamole, tomelukast, and warfarin

(Table 3). The 3D structure diagrams of these candidate molecule
drugs are shown in Supplementary Figure S1. The targets of the
predicted drugs analyzed by SwissTargetPrediction online database
were also summarized in Table 3. Molecular docking analysis was
based on the structure of proteins and structure of drugs. It is
believed that the molecular docking binding energy is less than 0,
indicating that the ligand and the receptor can spontaneously bind.
The results showed that BRL-50481 bounds to PDE4B, PDE4D, and

FIGURE 3
Construction of the co-expression network. (A) Analysis of the scale-free topology model fit index for soft threshold powers (β) and the mean
connectivity for soft threshold powers. (B )Histogram of the connectivity distribution and check scale-free topology scale when the soft threshold power
(β) was 5. (C ) Cluster dendrogram of the co-expression network modules was produced based on topological overlap in the merged gene expression
profiles of GSE845485 and GSE76885. Each branch means one gene; Each color means one co-expressed module. (D) Heatmap of the correlation
between module eigengenes and clinical traits. Red represents a positive correlation, and blue represents a negative correlation. (E) Correlation of
module membership (MM) and gene significance (GS) in the MEblue module. (F) Dendrogram and unsupervised hierarchical clustering heatmap of
module eigengenes and SSc. Abbreviations: SSc: systemic sclerosis; MM, module membership; GS, gene significance.
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FIGURE 4
Hub genes and GSEA. (A) seven hub genes were obtained by taking the intersections of 58 upregulated genes, top 5% genes (GS > 0.45, MM > 0.80)
in the MEblue module, and top 30 genes with the highest IMConn in the MEblue module. (B ) Correlation analysis among seven hub genes revealed that
they were highly connected in the expression levels with each other. (C) GSEA revealed the enriched pathways of THY1, SULF1, COL5A2, NNMT,
SLCO2B1, TIMP1, and PRSS23. Abbreviations: GS, gene significance; MM, module membership; IMConn, intra-module connectivity; GSEA, gene set
enrichment analysis.

TABLE 2 Hub genes.

Gene name IMConn GS MM LogFC

1 COL5A2 82.43 0.54 0.88 0.64

2 NNMT 80.55 0.47 0.88 0.87

3 SLCO2B1 87.98 0.49 0.91 0.65

4 PRSS23 83.97 0.53 0.88 0.86

5 THY1 86.10 0.62 0.90 0.94

6 SULF1 69.90 0.56 0.84 1.28

7 TIMP1 70.44 0.50 0.85 0.69

IMConn: Intra-module connectivity; GS: gene significance; MM: module membership; LogFC: log fold change. The p values of GS, MM, LogFC are all <0.01.
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PDE7A with the low binding energy of −4.5, −5.8, and −4.8 kcal/mol,
respectively (Figure 6A). Similarly, dipyridamole bounds to PDE2A,
PDE5A, PDE10A, SLC29A1 with the low binding energy
of −5.5, −4.5, −5.4 and −5.2 kcal/mol, respectively (Figure 6B). SB-
525334 bonds to TGFBR1 with the low binding energy of −6.4 kcal/
mol (Figure 6C). And, GW-311616 bonds to ELANE with the low
binding energy of −5.7 kcal/mol (Figure 6D). These data all indicated the
highly stable binding between drugs and proteins.

On the other hand, ADMET properties were predicted to further
understand how these compounds behave in a biological system, as
shown in Table 4. According to the theory provided by the pkCSM
server, the compounds are all well absorbed (Intestinal
absorption >30%). Dipyridamole is poorly distributed to the brain
(log BB < −1) and unable to penetrate central nervous system (log
PS < −3), while SB-525334 can readily cross the blood–brain barrier
(log BB > 0.3) and penetrate central nervous system (log PS > −2).

FIGURE 5
Establishment and validation of diagnostic biomarkers. (A) LASSO coefficient profiles of the seven genes in SSc. The log(lambda) sequence was used
to construct a coefficient profile diagram. The LASSO model’s optimal parameter (lambda) was chosen. (B) Expression of THY1 and SULF1 in the HC and
SSc skin samples in the merged gene expression profiles of GSE45485 and GSE76885. ROC curves and corresponding AUC values of THY1, SULF1, and
combination of them in themerged gene expression profiles of GSE45485 andGSE76885. (C) The relationships between the diagnosticmarkers and
causative genes (TGFB1, CTGF, COL1A1, COL1A2, IL6, CCL2, VCAM1, and THBS1) was verified by Pearson correlation analysis in the merged gene
expression profiles of GSE45485 and GSE76885. (D) Expression of THY1 and SULF1 in the HC and SSc skin samples in validation cohorts (GSE32413,
GSE95065, GSE58095 and GSE125362, respectively). ROC curves and corresponding AUC values for the four expression cohorts. Abbreviations: HC,
healthy control; SSc, systemic sclerosis; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; AUC, area under
the curve.
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TABLE 3 Top 10 chemical compounds identified by L1000 platform.

Rank Compound
name

PubChem
CID

CMap
score

Description Targets (SwissTargetPredic-tion
Probability>0.95)

1 desoxypeganine 442,894 −99.93 Acetylcholinesterase inhibitor /

2 clofazimine 2794 −99.93 GK0582 inhibitor /

3 BRL-50481 2921148 −99.89 Phosphodiesterase inhibitor PDE4B, PDE4D, PDE7A

4 GW-311616 9800961 −99.89 Leukocyte elastase inhibitor ELANE

5 methyllycaconitine 5288811 −99.89 Acetylcholine receptor antagonist /

6 acetyl-geranyl-cysteine 87288217 −99.89 Isoprenylated protein methylation
inhibitor

/

7 SB-525334 9967941 −99.89 TGF beta receptor inhibitor TGFBR1

8 dipyridamole 3108 −99.86 Phosphodiesterase inhibitor PDE5A, SLC29A1, PRUNE1, PDE2A, PDE11A,
PDE10A

9 tomelukast 3969 −99.83 Leukotriene receptor antagonist /

10 warfarin 54678486 −99.82 Vitamin K antagonist /

FIGURE 6
Drug prediction andmolecular docking. (A)Molecular docking analyses for BRL-50481with target proteins PDE4B, PDE4D, and PDE7A, respectively.
(B)Molecular docking analyses for dipyridamole with target proteins PDE2A, PDE5A, PDE10A, and SLC29A1, respectively. (C)Molecular docking analyses
for SB-525334 with target protein TGFBR1. (D) Molecular docking analyses for GW-311616 with target protein ELANE.

Frontiers in Genetics frontiersin.org09

Yan et al. 10.3389/fgene.2023.1202561

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202561


Mostly, dipyridamole, GW-311616, and BRL-50481 are not inhibitors
of cytochrome P, except that BRL-50481 is an inhibitor of CYP1A2. In
terms of toxicity, all compounds are predicted to have no skin
sensitization, and no obvious cardiotoxicity. However, most of
them may have potential AMES toxicity or hepatotoxicity.

Discussion

Through the combination of multiple microarray data and
integrated bioinformatics analysis, seven genes (THY1, SULF1,
COL5A2, TIMP1, NNMT, SLCO2B1, and PRSS23) were
identified as hub genes that may play vital roles in the
pathogenesis of SSc. THY1 and SULF1 were screened as
diagnostic markers for the diagnosis of SSc. Furthermore, ten
potential small-molecule drugs were predicted by CMap analysis,
developing novel strategies for the therapy of SSc.

GSEA analysis of seven hub genes indicated that they were
mainly involved in infections, inflammation, autoimmunity, and
fibrogenesis, which are roughly in line with previous findings and
cognitions of SSc. The etiology or the initial trigger(s) in SSc
remains elusive (Fett, 2013). The GSEA results stressed that
microbial infections may be considered in the etiology of SSc,
or, SSc may initial similar inflammatory and immune responses
to microbial infection, including phagosome, complement and
coagulation cascades, natural killer cell mediated cytotoxicity and
so on. Besides, the results suggested that SSc may share molecular
disease pathways, such as the interferon (IFN) type I pathways,

with other autoimmune diseases (systemic lupus erythematosus,
rheumatoid arthritis) (Ortíz-Fernández et al., 2022). In addition,
as an inflammatory fibrotic disease, SSc is related with
inflammatory genes including cytokines, chemokines, adhesion
molecules and so on. A study found that serum and tissue levels
of C-C motif chemokine 2 (CCL2; also known as MCP1), CCL3
(also known as MIP1α), IL-8 and CCL18 are increased in SSc
patients and correlate with disease severity and progression
(Hasegawa et al., 2013). Inflammatory pathways are also
involved in the pathogenesis of SSc. For example, the nuclear
factor-κB (NF-κB) pathway regulates the profibrogenic
transcriptional programme in fibroblasts and promotes the
bleomycin-induced skin fibrosis in mice (Fullard et al., 2013;
Worrell et al., 2020).

Two of the seven hub genes, including THY1 and SULF1 were
screened to construct a diagnostic model, which may be useful to
guide the diagnosis of SSc in clinical applications. THY1 (Thy-
1 cell surface antigen; also known as CD90), a 25–37 kDa
glycosylphosphatidylinositol (GPI) - anchored glycoprotein,
contains an integrin-binding RGD-like motif (RLD). It is
implicated in organ fibrosis by regulating the phenotype of
fibroblasts and cell-matrix interactions (Rege and Hagood,
2006; Bradley et al., 2009). THY1 was recently found to interact
with TGFβRI, indicating a novel mechanism whereby
THY1 affects TGF-β1 signalling and myofibroblast
differentiation in the contest of liver fibrosis (Koyama et al.,
2017). And, by conformational coupling with integrin,
THY1 regulates cell adhesion, cytoskeletal organization, and

TABLE 4 Predicted values of ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of predicted compounds.

Property Model name dipyridamole SB-525334 GW-311616 BRL-50481

Absorption Water solubility (log mol/L) −2.927 −2.899 −3.151 −2.403

Intestinal absorption (human) (%) 66.311 93.366 86.8 84.762

Skin Permeability (log Kp) −2.735 −2.735 −3.2 −2.46

Distribution BBB permeability (log BB) −1.412 0.374 −0.703 −0.636

CNS permeability (log PS) −3.511 −1.783 −3.082 −2.546

Metabolism CYP1A2 inhibitor No Yes No Yes

CYP2C19 inhibitor No Yes No No

CYP2C9 inhibitior No Yes No No

CYP2D6 inhibitior No No No No

CYP3A4 inhibitior No Yes No No

Excretion Total Clearance (log mL/min/kg) 0.295 0.798 0.187 1.071

Toxicity AMES toxicity No Yes Yes Yes

Max. tolerated dose (human) (log mg/kg/day) 0.423 0.382 −0.418 0.606

hERG I inhibitor No No No No

hERG II inhibitor No Yes No No

Oral Rat Acute Toxicity (LD50) (mol/kg) 1.976 2.476 2.809 2.431

Hepatotoxicity Yes Yes Yes No

Skin Sensitisation No No No No
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myo-fibroblastic differentiation (Fiore et al., 2015).
THY1 expression was markedly elevated in skin and serum in
patients with SSc, and co-localized with fibroblast activator protein
(FAP) in the deep dermis (Kollert et al., 2013; Marangoni et al.,
2022). Thereby, THY1 was identified as a potential biomarker for
SSc fibrosis. SULF1 (human sulfatase 1) is a member of sulfatases
that hydrolyze sulfate ester bonds of a wide range of substrates
while the roles of SULF1 in SSc has been little discussed. A research
found that SULF1 over-expression enhances TGF-β and VEGF cell
signalling by simultaneously upregulating HS 6-O transferase
(HS6ST) activity in dermal endothelial cell (Justo et al., 2022).
And, SULF1 may act as an autocrine regulator of fibroblast
expansion in the course of an inflammatory response in
response to TNF-α stimulation (Sikora et al., 2016). These
evidences indicated that SULF1 may be implicated in the
pathogenesis of SSc by modulating the activities of growth
factors and morphogens. As for others, COL5A2 (collagen type
V alpha 2 chain) and TIMP1 (Tissue inhibitor of metalloproteinase
1) regulates ECM deposition and inhibits the ECM degradation
(Susol et al., 2000). NNMT (nicotinamide N-methyltransferase)
plays a vital role in cancer-associated fibroblasts, involving
depletion of S-adenosyl methionine and reduction in histone
methylation (Eckert et al., 2019). PRSS23 (serine protease 23), a
novel vascular protease, may inhibit the Snail-dependent
endothelial-to-mesenchymal transition (EndoMT) to prevent
fibrosis (Chen et al., 2013). However, studies on the fibrotic
roles of SLCO2B1 (solute carrier organic anion transporter
family member 2B1) are rare.

In CMap analysis, it is worth noting that two out of ten
predicted drugs are phosphodiesterase (PDE) inhibitors,
namely, dipyridamole (targeting PDE5A, SLC29A1, PRUNE1,
PDE2A, PDE11A and PDE10A) and BRL-50481 (targeting
PDE4B, PDE4D and PDE7A). As vasodilators, PDE inhibitors
help to alleviate vasculopathy, the initial event in the pathogenesis
of SSc, thereby solving critical ischemia and prevent digital
ulcerations (Barsotti et al., 2019). With vasodilator activity,
dipyridamole has potent modifying effects in the treatment of
progressive SSc patients with thallium-201 myocardial perfusion
abnormalities (Kahan et al., 1986). Moreover, dipyridamole may
alleviate the pathogenesis of peritoneal fibrosis, involving
inhibiting PDGF-stimulated HPMC cell line proliferation and
TGF-β-induced collagen gene expression in HPMC, possibly
through modulation of the ERK pathway (Hung et al., 2001a;
Hung et al., 2001b; Hung et al., 2001c). Recently, more published
studies have demonstrated that PDE inhibitors showed good
antifibrotic efficacy in various organ fibrosis, especially in lung
(Zisman et al., 2010; Brusilovskaya et al., 2020; Richeldi et al.,
2022). Evidence showed that PDE inhibitors could reduce skin
fibrosis as well. Mirodenafil, a potent PDE5 inhibitor, ameliorated
dermal fibrosis in the BLM-induced mice and downregulated the
expression of profibrotic genes and collagen in fibroblasts, possibly
by suppressing TGF-β/Smad signalling pathway (Roh et al., 2021).
Sildenafil, a well-known PDE5 inhibitor, prevents ROS-induced
instability in human dermal fibroblasts isolated by SSc patients (Di
Luigi et al., 2020). Interestingly, as a PDE4 inhibitor, small-
molecule drug apremilast was applied in the treatment of atopic
dermatitis, which, like scleroderma, belongs to type
2 inflammatory diseases (Abrouk et al., 2017). Specific

inhibition of PDE4 by rolipram and apremilast reduces dermal
fibrosis through inhibiting profibrotic cytokines release from
M2 macrophages, while fibroblasts are not the direct targets of
PDE4 blockade (Maier et al., 2017). Therefore, PDE inhibitors may
have therapeutic effects on SSc by alleviating both vasculopathy
and fibrosis in skin and lung. As for SB-525334, it is a TGF-β
receptor inhibitor as well as an activin receptor-like kinase (ALK5)
inhibitor. SB-525334 blocked the expression of fibrotic genes in
vivo, such as PM2.5-treated hepatocytes, TGF-β1-induced
A498 renal epithelial carcinoma cells, and so on (Grygielko
et al., 2005; Leilei et al., 2021). SB-525334 treatment
significantly attenuated collagen deposition in the bleomycin-
induced pulmonary fibrosis and reversed pulmonary arterial
pressure by modifying abnormal proliferation of vascular
smooth muscle cells (Higashiyama et al., 2007; Thomas et al.,
2009). Studies on other drugs are rare. Collectively, dipyridamole,
BRL-50481, SB525334 and other predicted drugs are new and
promising targets for SSc therapy. However, data mining has its
limitations. Even for the same data, using different methods will
give different results. Our previous study conducted WGCNA
analysis to detect hub genes in GSE58095 and found that serum
insulin-like growth factor binding protein 7 (IGFBP7) may be a
candidate biomarker for SSc (Yan et al., 2021). Therefore, the
effects and molecular mechanisms of the predicted drugs in this
study await further experimental validation.

In summary, we identified seven hub genes that may play a
pathogenic role through different biological pathways in SSc
development. In particular, the diagnostic model of THY1 and
SULF1 was created and validated. Moreover, to the best of
knowledge, this is the first demonstration that drugs with therapeutic
promise for SSc were predicted using CMap analysis. However, our
predictions of hub genes, diagnostic model and drugs await further
experimental validation in the following studies. Anyway, these findings
shed new lights into the development of SSc and may provide
therapeutic basis for clinical applications in the prevention of SSc.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: http://www.ncbi.nlm.nih.gov/geo/.

Author contributions

Y-MY and W-HY conceived and designed the study. Y-MY,
M-ZJ, S-HL, and YW performed data analysis and interpreted the
results. Y-MY, QW, F-FH, and CS prepared the figures, and wrote
the manuscript. W-HY checked the results and reviewed the
manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This research was funded by the grants from Zhejiang medical
and health science and technology program (grant number:
No.2022KY1243) and the Jiaxing Key Discipline of Chinese

Frontiers in Genetics frontiersin.org11

Yan et al. 10.3389/fgene.2023.1202561

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202561


Medicine Dermatology and Venereology of Integrative Medicine
(grant number: No.2019XK-C06).

Acknowledgments

Special thanks to Dr. Xiao-Jing Du (Department of
Gastroenterology, Minhang Hospital, Fudan University, Shanghai,
China) for his guidance on R software.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those
of their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1202561/
full#supplementary-material

References

Abrouk, M., Farahnik, B., Zhu, T. H., Nakamura, M., Singh, R., Lee, K., et al. (2017).
Apremilast treatment of atopic dermatitis and other chronic eczematous dermatoses.
J. Am. Acad. Dermatol 77, 177–180. doi:10.1016/j.jaad.2017.03.020

Bairkdar, M., Rossides, M., Westerlind, H., Hesselstrand, R., Arkema, E. V., and
Holmqvist, M. (2021). Incidence and prevalence of systemic sclerosis globally: A
comprehensive systematic review and meta-analysis. Rheumatol. Oxf. 60,
3121–3133. doi:10.1093/rheumatology/keab190

Barsotti, S., Orlandi, M., Codullo, V., Di Battista, M., Lepri, G., Della Rossa, A., et al.
(2019). One year in review 2019: Systemic sclerosis. Clin. Exp. Rheumatol. 37, 3–14.

Bradley, J. E., Ramirez, G., and Hagood, J. S. (2009). Roles and regulation of thy-1, a
context-dependent modulator of cell phenotype. Biofactors 35, 258–265. doi:10.1002/
biof.41

Brusilovskaya, K., Königshofer, P., Lampach, D., Szodl, A., Supper, P., Bauer, D., et al.
(2020). Soluble guanylyl cyclase stimulation and phosphodiesterase-5 inhibition
improve portal hypertension and reduce liver fibrosis in bile duct-ligated rats.
United Eur. Gastroenterol. J. 8, 1174–1185. doi:10.1177/2050640620944140

Chen, I. H., Wang, H. H., Hsieh, Y. S., Huang, W. C., Yeh, H. I., and Chuang, Y. J.
(2013). Prss23 is essential for the snail-dependent endothelial-to-mesenchymal
transition during valvulogenesis in zebrafish. Cardiovasc Res. 97, 443–453. doi:10.
1093/cvr/cvs355

Clark, R. A. (1985). Cutaneous tissue repair: Basic biologic considerations. I. J. Am.
Acad. Dermatol 13, 701–725. doi:10.1016/s0190-9622(85)70213-7

Denton, C. P., and Khanna, D. (2017). Systemic sclerosis. Lancet 390, 1685–1699.
doi:10.1016/s0140-6736(17)30933-9

Di Luigi, L., Duranti, G., Antonioni, A., Sgrò, P., Ceci, R., Crescioli, C., et al. (2020).
The phosphodiesterase type 5 inhibitor sildenafil improves DNA stability and redox
homeostasis in systemic sclerosis fibroblasts exposed to reactive oxygen species.
Antioxidants (Basel) 9, 786. doi:10.3390/antiox9090786

Eckert, M. A., Coscia, F., Chryplewicz, A., Chang, J. W., Hernandez, K. M., Pan, S.,
et al. (2019). Proteomics reveals nnmt as a master metabolic regulator of cancer-
associated fibroblasts. Nature 569, 723–728. doi:10.1038/s41586-019-1173-8

Elhai, M., Meune, C., Boubaya, M., Avouac, J., Hachulla, E., Balbir-Gurman, A., et al.
(2017). Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76,
1897–1905. doi:10.1136/annrheumdis-2017-211448

Fett, N. (2013). Scleroderma: Nomenclature, etiology, pathogenesis, prognosis, and
treatments: Facts and controversies. Clin. Dermatol 31 (4), 432–437. doi:10.1016/j.
clindermatol.2013.01.010

Fiore, V. F., Strane, P. W., Bryksin, A. V., White, E. S., Hagood, J. S., and Barker, T. H.
(2015). Conformational coupling of integrin and thy-1 regulates fyn priming and
fibroblast mechanotransduction. J. Cell Biol. 211, 173–190. doi:10.1083/jcb.201505007

Fullard, N., Moles, A., O’Reilly, S., van Laar, J. M., Faini, D., Diboll, J., et al. (2013).
The c-rel subunit of nf-κb regulates epidermal homeostasis and promotes skin fibrosis
in mice. Am. J. Pathol. 182, 2109–2120. doi:10.1016/j.ajpath.2013.02.016

Grygielko, E. T., Martin, W. M., Tweed, C., Thornton, P., Harling, J., Brooks, D. P.,
et al. (2005). Inhibition of gene markers of fibrosis with a novel inhibitor of
transforming growth factor-beta type i receptor kinase in puromycin-induced
nephritis. J. Pharmacol. Exp. Ther. 313, 943–951. doi:10.1124/jpet.104.082099

Hasegawa, M., Asano, Y., Endo, H., Fujimoto, M., Goto, D., Ihn, H., et al. (2013).
Serum chemokine levels as prognostic markers in patients with early systemic sclerosis:

A multicenter, prospective, observational study. Mod. Rheumatol. 23, 1076–1084.
doi:10.1007/s10165-012-0795-6

Higashiyama, H., Yoshimoto, D., Kaise, T., Matsubara, S., Fujiwara, M., Kikkawa,
H., et al. (2007). Inhibition of activin receptor-like kinase 5 attenuates bleomycin-
induced pulmonary fibrosis. Exp. Mol. Pathol. 83, 39–46. doi:10.1016/j.yexmp.2006.
12.003

Hu, H. H., Chen, D. Q., Wang, Y. N., Feng, Y. L., Cao, G., Vaziri, N. D., et al. (2018).
New insights into tgf-β/smad signaling in tissue fibrosis. Chem. Biol. Interact. 292,
76–83. doi:10.1016/j.cbi.2018.07.008

Hung, K. Y., Chen, C. T., Huang, J. W., Lee, P. H., Tsai, T. J., and Hsieh, B. S.
(2001c). Dipyridamole inhibits tgf-beta-induced collagen gene expression in human
peritoneal mesothelial cells. Kidney Int. 60, 1249–1257. doi:10.1046/j.1523-1755.
2001.00933.x

Hung, K. Y., Chen, C. T., Yen, C. J., Lee, P. H., Tsai, T. J., and Hsieh, B. S. (2001b).
Dipyridamole inhibits pdgf-stimulated human peritoneal mesothelial cell proliferation.
Kidney Int. 60, 872–881. doi:10.1046/j.1523-1755.2001.060003872.x

Hung, K. Y., Shyu, R. S., Fang, C. C., Tsai, C. C., Lee, P. H., Tsai, T. J., et al. (2001a).
Dipyridamole inhibits human peritoneal mesothelial cell proliferation in vitro and
attenuates rat peritoneal fibrosis in vivo. Kidney Int. 59, 2316–2324. doi:10.1046/j.1523-
1755.2001.00749.x

Jerjen, R., Nikpour, M., Krieg, T., Denton, C. P., and Saracino, A. M. (2022). Systemic
sclerosis in adults. Part i: Clinical features and pathogenesis. J. Am. Acad. Dermatol 87,
937–954. doi:10.1016/j.jaad.2021.10.065

Justo, T., Smart, N., and Dhoot, G. K. (2022). Context dependent sulf1/
sulf2 functional divergence in endothelial cell activity. Int. J. Mol. Sci. 23, 3769.
doi:10.3390/ijms23073769

Kahan, A., Devaux, J. Y., Amor, B., Menkes, C. J., Weber, S., Foult, J. M., et al. (1986).
Pharmacodynamic effect of dipyridamole on thallium-201 myocardial perfusion in
progressive systemic sclerosis with diffuse scleroderma. Ann. Rheum. Dis. 45, 718–725.
doi:10.1136/ard.45.9.718

Kollert, F., Christoph, S., Probst, C., Budweiser, S., Bannert, B., Binder, M., et al.
(2013). Soluble cd90 as a potential marker of pulmonary involvement in systemic
sclerosis. Arthritis Care Res. Hob. 65, 281–287. doi:10.1002/acr.21799

Koyama, Y., Wang, P., Liang, S., Iwaisako, K., Liu, X., Xu, J., et al. (2017). Mesothelin/
mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis.
J. Clin. Invest. 127, 1254–1270. doi:10.1172/jci88845

Langfelder, P., and Horvath, S. (2008). Wgcna: An r package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-
9-559

Leilei, L., Xue, S., Yan, L., Yuyuan, L., Ying, W., Wenke, Q., et al. (2021). Pm2.5-
exposed hepatocytes induce hepatic stellate cells activation by releasing tgf-β1. Biochem.
Biophys. Res. Commun. 569, 125–131. doi:10.1016/j.bbrc.2021.07.002

Maier, C., Ramming, A., Bergmann, C., Weinkam, R., Kittan, N., Schett, G., et al.
(2017). Inhibition of phosphodiesterase 4 (pde4) reduces dermal fibrosis by interfering
with the release of interleukin-6 from m2 macrophages. Ann. Rheum. Dis. 76,
1133–1141. doi:10.1136/annrheumdis-2016-210189

Marangoni, R. G., Datta, P., Paine, A., Duemmel, S., Nuzzo, M. A., Sherwood, L., et al.
(2022). Thy-1 plays a pathogenic role and is a potential biomarker for skin fibrosis in
scleroderma. JCI Insight 7, e149426. doi:10.1172/jci.insight.149426

Frontiers in Genetics frontiersin.org12

Yan et al. 10.3389/fgene.2023.1202561

https://www.frontiersin.org/articles/10.3389/fgene.2023.1202561/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1202561/full#supplementary-material
https://doi.org/10.1016/j.jaad.2017.03.020
https://doi.org/10.1093/rheumatology/keab190
https://doi.org/10.1002/biof.41
https://doi.org/10.1002/biof.41
https://doi.org/10.1177/2050640620944140
https://doi.org/10.1093/cvr/cvs355
https://doi.org/10.1093/cvr/cvs355
https://doi.org/10.1016/s0190-9622(85)70213-7
https://doi.org/10.1016/s0140-6736(17)30933-9
https://doi.org/10.3390/antiox9090786
https://doi.org/10.1038/s41586-019-1173-8
https://doi.org/10.1136/annrheumdis-2017-211448
https://doi.org/10.1016/j.clindermatol.2013.01.010
https://doi.org/10.1016/j.clindermatol.2013.01.010
https://doi.org/10.1083/jcb.201505007
https://doi.org/10.1016/j.ajpath.2013.02.016
https://doi.org/10.1124/jpet.104.082099
https://doi.org/10.1007/s10165-012-0795-6
https://doi.org/10.1016/j.yexmp.2006.12.003
https://doi.org/10.1016/j.yexmp.2006.12.003
https://doi.org/10.1016/j.cbi.2018.07.008
https://doi.org/10.1046/j.1523-1755.2001.00933.x
https://doi.org/10.1046/j.1523-1755.2001.00933.x
https://doi.org/10.1046/j.1523-1755.2001.060003872.x
https://doi.org/10.1046/j.1523-1755.2001.00749.x
https://doi.org/10.1046/j.1523-1755.2001.00749.x
https://doi.org/10.1016/j.jaad.2021.10.065
https://doi.org/10.3390/ijms23073769
https://doi.org/10.1136/ard.45.9.718
https://doi.org/10.1002/acr.21799
https://doi.org/10.1172/jci88845
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/j.bbrc.2021.07.002
https://doi.org/10.1136/annrheumdis-2016-210189
https://doi.org/10.1172/jci.insight.149426
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202561


Ortíz-Fernández, L., Martín, J., and Alarcón-Riquelme, M. E. (2022). A summary on
the genetics of systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis,
and sjögren’s syndrome. Clin. Rev. Allergy Immunol. 64, 392–411. doi:10.1007/s12016-
022-08951-z

Pires, D. E., Blundell, T. L., and Ascher, D. B. (2015). pkCSM: Predicting small-
molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med.
Chem. 58 (9), 4066–4072. doi:10.1021/acs.jmedchem.5b00104

Rege, T. A., and Hagood, J. S. (2006). Thy-1 as a regulator of cell-cell and cell-matrix
interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis.
Faseb J. 20, 1045–1054. doi:10.1096/fj.05-5460rev

Richeldi, L., Azuma, A., Cottin, V., Hesslinger, C., Stowasser, S., Valenzuela, C., et al.
(2022). Trial of a preferential phosphodiesterase 4b inhibitor for idiopathic pulmonary
fibrosis. N. Engl. J. Med. 386, 2178–2187. doi:10.1056/NEJMoa2201737

Roh, J. S., Jeong, H., Lee, B., Song, B. W., Han, S. J., Sohn, D. H., et al. (2021).
Mirodenafil ameliorates skin fibrosis in bleomycin-induced mouse model of systemic
sclerosis. Anim. Cells Syst. Seoul. 25, 387–395. doi:10.1080/19768354.2021.1995486

Sikora, A. S., Hellec, C., Carpentier, M., Martinez, P., Delos, M., Denys, A., et al.
(2016). Tumour-necrosis factor-α induces heparan sulfate 6-o-endosulfatase 1 (sulf-1)
expression in fibroblasts. Int. J. Biochem. Cell Biol. 80, 57–65. doi:10.1016/j.biocel.2016.
09.021

Susol, E., Rands, A. L., Herrick, A., McHugh, N., Barrett, J. H., Ollier, W. E., et al.
(2000). Association of markers for tgfbeta3, tgfbeta2 and timp1 with systemic sclerosis.
Rheumatol. Oxf. 39, 1332–1336. doi:10.1093/rheumatology/39.12.1332

The Gene Ontology Consortium (2019). The gene ontology resource: 20 years
and still going strong. Nucleic Acids Res. 47, D330–D338. doi:10.1093/nar/gky1055

Thomas, M., Docx, C., Holmes, A. M., Beach, S., Duggan, N., England, K., et al.
(2009). Activin-like kinase 5 (alk5) mediates abnormal proliferation of vascular
smooth muscle cells from patients with familial pulmonary arterial hypertension
and is involved in the progression of experimental pulmonary arterial
hypertension induced by monocrotaline. Am. J. Pathol. 174, 380–389. doi:10.
2353/ajpath.2009.080565

Tyndall, A. J., Bannert, B., Vonk, M., Airò, P., Cozzi, F., Carreira, P. E., et al. (2010).
Causes and risk factors for death in systemic sclerosis: A study from the eular
scleroderma trials and research (eustar) database. Ann. Rheum. Dis. 69, 1809–1815.
doi:10.1136/ard.2009.114264

Worrell, J. C., Leslie, J., Smith, G. R., Zaki, M. Y. W., Paish, H. L., Knox, A., et al.
(2020). Crel expression regulates distinct transcriptional and functional profiles driving
fibroblast matrix production in systemic sclerosis. Rheumatol. Oxf. 59, 3939–3951.
doi:10.1093/rheumatology/keaa272

Yan, Y. M., Zheng, J. N., Li, Y., Yang, Q. R., Shao, W. Q., and Wang, Q.
(2021). Insulin-like growth factor binding protein 7 as a candidate biomarker for
systemic sclerosis. Clin. Exp. Rheumatol. 39, 66–76. doi:10.55563/clinexprheumatol/
b9j9fd

Zisman, D. A., Schwarz,M., Anstrom, K. J., Collard, H. R., Flaherty, K. R., Hunninghake,
G. W., et al. (2010). A controlled trial of sildenafil in advanced idiopathic pulmonary
fibrosis. N. Engl. J. Med. 363, 620–628. doi:10.1056/NEJMoa1002110

Frontiers in Genetics frontiersin.org13

Yan et al. 10.3389/fgene.2023.1202561

https://doi.org/10.1007/s12016-022-08951-z
https://doi.org/10.1007/s12016-022-08951-z
https://doi.org/10.1021/acs.jmedchem.5b00104
https://doi.org/10.1096/fj.05-5460rev
https://doi.org/10.1056/NEJMoa2201737
https://doi.org/10.1080/19768354.2021.1995486
https://doi.org/10.1016/j.biocel.2016.09.021
https://doi.org/10.1016/j.biocel.2016.09.021
https://doi.org/10.1093/rheumatology/39.12.1332
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.2353/ajpath.2009.080565
https://doi.org/10.2353/ajpath.2009.080565
https://doi.org/10.1136/ard.2009.114264
https://doi.org/10.1093/rheumatology/keaa272
https://doi.org/10.55563/clinexprheumatol/b9j9fd
https://doi.org/10.55563/clinexprheumatol/b9j9fd
https://doi.org/10.1056/NEJMoa1002110
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202561

	Hub genes, diagnostic model, and predicted drugs in systemic sclerosis by integrated bioinformatics analysis
	Introduction
	Materials and methods
	Data collection and preprocessing
	Differential expression analysis
	Construction of a weighted gene co-expression network
	Identification of hub genes
	Functional enrichment analysis
	Screening and validation of diagnostic model
	Drug prediction
	Statistical analysis

	Results
	Identification and functional enrichment analysis of DEGs
	Construction of co-expression modules
	Identification and GSEA of hub genes
	Construction and validation of a diagnostic model
	Drug prediction for SSc

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material 
	References


