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Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to
investigate the complex and heterogeneous tissue organization. However, it is
challenging for a single model to learn an effective representation within and
across spatial contexts. To solve the issue, we develop a novel ensemble model,
AE-GCN (autoencoder-assisted graph convolutional neural network), which
combines the autoencoder (AE) and graph convolutional neural network
(GCN), to identify accurate and fine-grained spatial domains. AE-GCN transfers
the AE-specific representations to the corresponding GCN-specific layers and
unifies these two types of deep neural networks for spatial clustering via the
clustering-aware contrastive mechanism. In this way, AE-GCN accommodates
the strengths of both AE and GCN for learning an effective representation. We
validate the effectiveness of AE-GCN on spatial domain identification and data
denoising using multiple SRT datasets generated from ST, 10x Visium, and Slide-
seqV2 platforms. Particularly, in cancer datasets, AE-GCN identifies disease-
related spatial domains, which reveal more heterogeneity than histological
annotations, and facilitates the discovery of novel differentially expressed
genes of high prognostic relevance. These results demonstrate the capacity of
AE-GCN to unveil complex spatial patterns from SRT data.
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Introduction

Spatially resolved transcriptomics (SRT) technologies, such as spatial transcriptomics
(ST) (Ståhl et al., 2016), 10x Visium, and Slide-seqV2 (Stickels et al., 2021), can measure the
transcript localization and abundance in the dissected tissue area, enabling novel insights
into tissue development and tumor heterogeneity (Atta and Fan, 2021; Nasab et al., 2022).
Their generated data (i.e., gene expression in tissue locations [spots] and spatial locational
information) can be used to decipher the spatially functional regions and cellular
architectures in tissues (Maniatis et al., 2021; Marx, 2021; Zeng et al., 2022). However,
due to technical limitations (Xu et al., 2022), modeling and integrating the available SRT
modalities for accurate spatial domain identification still remain challenging.
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Currently, the spatial domain detection methods could be mainly
divided into two categories: non-spatial and spatial clustering methods.
Some non-spatial methods originally developed for single-cell RNA-
sequencing (scRNA-seq) studies, e.g., Seurat (Butler et al., 2018) and
Scanpy (Wolf et al., 2018), are also applied in SRT studies. They only
utilize the expression profiles to cluster spots while often obtaining
domains lacking in spatial continuity to some extent. To address such
issues, spatial clustering approaches generally incorporate the additional
spatial information into their models. For example, with the spatial
prior, BayesSpace (Zhao et al., 2021) and HMRF (Dries et al., 2021) use
the Markov random field model (or its variant) to encourage the
spatially neighboring spots to belong to the same domain. SpaGCN (Hu
et al., 2021) and SEDR (Fu et al., 2021) enable spatial clustering by
learning the low-dimensional representation with graph constraints
that represent the spatial dependency. STAGATE (Dong and Zhang,
2022) identifies spatial domains by adaptively learning the similarity of
neighboring spots via attention mechanisms. Modeling the spatial
dependency of gene expression fairly facilitates the discovery of
spatial domains with spatial coherence.

Though these methods have provided useful information on the
usage of expression profiles and spatial information, they usually
depend on single models, which center on either expression data
itself or spatially neighboring structure, thus probably resulting in
the preferred usage of the focused data type. For example, the non-
spatial clustering methods only models the gene expression itself, while
the spatial clustering methods often take spatial neighbors prior as a
hard constraint to ensure spatial clustering continuity, which may lead
to over-smoothing of expression (Huang et al., 2018) andmissing subtle
spatial regions with a handful of spots. Thus, the rational combination
of these different kinds of models can fairly generate more useful
representations, enabling better spatial domain detection in SRT studies.

Here, we develop a novel combined model, AE-GCN (autoencoder-
assisted graph convolutional neural network), which combines the
autoencoder (AE) and graph convolutional neural network (GCN), for
accurate and fine-grained spatial domain identification. Specifically, AE-
GCN relies on AE for learning expression data-based representations and
GCN for spatial graph-constrained learning. AE-GCN orderly transfers
the AE-specific representations to GCN-specific layers and unifies these
two types of neural networks for spatial clustering via a clustering-aware
contrastivemechanism. In this way, AE-GCN combines the advantages of
the twomodels and takes full integration of the expression data and spatial
information during the representation learning process.

We demonstrate the effectiveness of AE-GCN on spatial domain
identification and data denoising using SRT datasets generated from
ST, 10x Visium, and Slide-seqV2 platforms. In particular, it is
validated in two cancer samples that AE-GCN can refine the
spatial functional regions and discover novel cancer-associated
genes. These results show that AE-GCN is capable of unveiling
complex tissue architecture from SRT data.

Materials and methods

Overview of AE-GCN

AE-GCN is an integrative scheme that incorporates the AE and
GCN learning processes, enabling tasks of spatial domain detection
and data denoising (Figure 1).

Given the original expression X0 ∈ RM×N (where M and N,
respectively, denote the number of genes and spots) and spatial
coordinates, the spatially neighboring network A ∈ RN×N and the
enhanced expression data X ∈ RM×N are computed as the input of
the combined learning process (see Methods). On the enhanced
expression data X, AE-GCN employs AE to learn the low-
dimensional representation (i.e., AE-specific representation
H(l)

1 , l � 1, . . . , L, where L is the number of total layers in AE) in
each layer. With the spatially neighboring network A, AE-GCN
utilizes GCN to learn the graph-constrained representation in each
layer (i.e., GCN-specific representationH(l)

2 , l � 1, . . . , B, where B is
the number of layers in GCN or the encoder of AE). Then, AE-GCN
transfers the AE-specific representations from the encoder to the
corresponding GCN layer, thus generating the combined
representation Y. Additionally, AE-GCN proposes a clustering-
aware contrastive module to make the combined representation
appropriate for spatial clustering.

When the learning process reaches convergence, the low-
dimensional representation (i.e., Y) of the last layer and the
reconstructed expression data (i.e., X′) can be used for
downstream analytical tasks. The optimal representation enables
AE-GCN to identify spatial domains interoperating with the Leiden
method (Traag et al., 2019). The reconstructed expression data serve
as the denoised profile, which overcomes the sparsity of the original
data to improve differentially expressed gene identification (see
Methods).

Spatially neighboring network construction
and expression augmentation

Spatially neighboring network construction
Assume that there are original expression matrix X0 and spatial

locations in the SRT dataset. We first use spatial coordinates and
Euclidean distance to calculate the distance between spots and then
select the k-nearest spatial neighbors of each spot to participate in
the subsequent process. In this work, we set k = 10 for ST and 10x
Visium datasets and k = 30 for Slide-seqV2 datasets. Then, we
perform principal component analysis (PCA) based on gene
expression and select the top p PCs (i.e., U ∈ Rp×N, default to
15) to calculate the similarity matrix D ∈ RN×N between the
center spot and its spatial neighbors using cosine metric:

D � exp 2 − cosine dist U( )( ), Dii � 0 (1)
Then, the weighted adjacency matrix A ∈ RN×N is obtained by

normalizing the similarity matrix D:

Aij � Dij

∑N
i�0Dij

(2)

Spatial expression augmentation
Limited by the transcript capture rate of SRT technologies,

expression data are often sparse and noisy. AE-GCN generates
the enhanced expression data X by borrowing the shared
information from spatial neighborhood, which can correct low-
quality measurements and strengthen local similarity:

X � X0 + αX0A (3)
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where the tunable parameter α is flexibly set, and it controls the
extent to aggregating expression information from neighboring
spots.

AE component

We employ AE to learn the useful representations from the
expression data itself and assume that there are B layers in the
encoder and (L − B) layers in the decoder. Specifically, the learned
lth layer representation, H(l)

1 , can be obtained as follows:

H l( )
1 � ϕl W

l( )H l−1( )
1 + b l( )( ), l � 1, . . . , B (4)

H l( )
1 � ψl W

l( )H l−1( )
1 + b l( )( ), l � B + 1, . . . , L (5)

where ϕl and ψl are the activation functions of the lth layer in the
respective encoder and decoder. W(l) and b(l) are the weight matrix
and reconstruction error in the lth layer, respectively. For
convenience, we denote the enhanced expression data X as H(0)

1 .

The output (i.e., X′ � H(L)
1 ) of the decoder part is obtained

through the reconstruction of the input data (i.e., X) by minimizing
the following loss function:

Lres � X −X′
���� ����2F (6)

GCN component

AE-specific representations, e.g., H(1)
1 , H(2)

1 , /, H(L)
1 , can

denoise data itself and extract valuable information from the data
itself, which can effectively reflect expression variation but cannot
guarantee the spatial smoothness of the identified domains. GCN
can model the spatial structural dependency between spots, which is
beneficial to improving the spatial smoothness of the identified
domains. Thus, we then transfer AE-specific representations in the
encoder into GCN-specific representations and use the GCN
module to propagate these AE-specific representations for

FIGURE 1
Schematic overview of AE-GCN and its potential applications. Given gene expression and spatial coordinates as input, AE-GCN first builds the
spatially neighboring network A and enhances expression X. AE-GCN uses AE to learn representations from the enhanced expression and employs GCN
to learn the representations of each layer from the spatially neighboring network A. Then, AE-GCN transfers the AE-specific representations from the
encoder to the corresponding GCN-specific layer and learns the combined representation Y . To ensure effective training of the combined deep
learningmodel for clustering, AE-GCN proposes a clustering-aware contrastivemodule based on the distribution of the representation Y . When AE-GCN
reaches convergence, the latent combined representation Y enables AE-GCN to identify spatial domains for different platforms, i.e., ST, 10x Visium, and
Slide-seqV2. The reconstructed expression data X′ serves to denoise expression profiles.

Frontiers in Genetics frontiersin.org03

Li et al. 10.3389/fgene.2023.1202409

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202409


capturing a more complete and powerful representation. Thus, the
GCN-learnable representations can accommodate two different
kinds of information: gene expression values and spatial
neighborhood structure. The representation learned by the lth
layer of GCN, H(l)

2 , can be obtained as follows:

H l( )
2 � 1 − μ( )ϕl W l( )H l−1( )

2
~D
−1
2 ~A ~D

−1
2( ) + μH l( )

1
~D
−1
2 ~A ~D

−1
2 (7)

where I denotes the identity diagonal matrix. ~A � A + I and
~Dii � ∑j

~Aij. ~D
−1
2 ~A ~D

−1
2 is the normalized adjacency matrix. μ is

the balance coefficient and is often uniformly set to 0.5. Note that
GCN and AE share weights.

Note that we denote the representation (i.e., H(B)
2 ) of the last

GCN layer as Y. The input of the first layer GCN can be obtained
from the enhanced expression data X:

H 0( )
2 � ϕl W 0( )X ~D

−1
2 ~A ~D

−1
2( ) (8)

Clustering-aware contrastive component

Although we have incorporated the encoder of AE into the
neural network architecture of GCN to obtain the combined
representation, this representation cannot be directly applied to
the clustering problem. Herein, we propose a clustering-aware
contrastive module to unify these two different deep learning
models for effective spatial clustering.

Specifically, we use student’s t-distribution to measure the
probability of assigning the spot i to cluster j based on the
combined latent representation Y as follows:

qij �
1 + yi − μj

�����
�����2/ρ( )

−ρ+1
2

∑j′ 1 + yi − μj′
�����

�����2/ρ( )
−ρ+1

2

(9)

where μj is the cluster center by K-means on learned
representations. yi is the ith column of Y. We regard Q � [qij]
as the distribution of the assignments of all samples. ρ is the degree
of freedom of student’s t-distribution.

To optimize the AE-GCN-learnable representation from the
high-confidence assignment, we make data representation closer to
cluster centers for improving the cluster cohesion. Hence, we
calculate the target distribution P as follows:

pij �
qij

2/sj
∑j′qij′

2/sj′ (10)

where sj � ∑iqij is the soft cluster frequency. Each assignment in Q
is squared and normalized to produce the target distribution P,
which makes the data representation surround the cluster centers
closer and helps AE-GCN learn a better representation for the
clustering task. By minimizing the KL (Kullback–Leibler)
divergence loss between Q and P distributions, the target
distribution P can help the AE-GCN learn a better representation
for the clustering task, i.e., making the data representation surround
the cluster centers closer, thus leading to the following loss function:

Lcl � KL P Q‖( ) � ∑i∑jpijlog
pij

qij
(11)

This design is regarded as a clustering-aware contrastive
mechanism, where the P distribution supervises the updating of
the distribution Q, and the target distribution P is calculated by the
distribution Q in turn. Using this mechanism, AE-GCN can directly
concentrate two different objectives: clustering objective and data
reconstruction objective, in one loss function. Thus, the overall loss
function of AE-GCN is

Lobj � Lres + βLcl (12)
where β denotes the tunable parameter β> 0 and can be flexibly set,
which balances data reconstruction and clustering optimization.

Data collection and general preprocessing

The top 3,000 highly variable genes (HVGs) for 13 10x Visium
datasets, one ST dataset, and one Slide-seqV2 dataset are selected
using scanpy.pp.highly_variable_genes() from the Scanpy Python
package. The log-transformation of the expression profiles is
performed using scanpy.pp.log1p() on the original gene
expression data.

Spatial domain detection and gene
expression denoising

AE-GCN uses the combined latent representation Y to detect
spatial domains by Leiden (Traag et al., 2019) algorithms
implemented as scanpy.tl.leiden(). The parameter “resolution”
can be adjusted to match the number of the manual annotations.

For the enhanced expression matrix X, AE-GCN aggregates the
shared information between each spot and its surrounding
neighbors by incorporating prior spatial information into gene
expression, which is used to adjust expression values in each spot
and enrich spatial local signals. For the reconstructed expression
data X′, AE-GCN uses AE and GCN to reconstruct the enhanced
expression matrix X. By minimizing the reconstruction error, the
reconstructed data X′ can reflect both the spatial local signals and
expression measurement global signals. Thus, AE-GCN uses the
reconstructed expression data X′ as the denoised profiles.

Performance evaluation

We use adjusted Rand index (ARI) (Hubert and Arabie, 1985)
and cluster purity (i.e., Eq. 13) (Zhao et al., 2021) to quantify the
accuracy of the identified spatial domain and the reference
annotations from original publications.

cluster purity � 1
N

∑
c∈C

max
g∈G

c ∩ g
∣∣∣∣ ∣∣∣∣ (13)

where C is denoted as the set of the spatial cluster set and G is
regarded as the set of annotated groups. Due to cancer slices with
rough annotations (e.g., IDC and PDAC cancer data), cluster purity
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is specifically used to evaluate the clustering performance on SRT
cancer datasets (Zhao et al., 2021).

Survival analysis

We use bulk expression data with patient survival information to
evaluate the prognostic significance of genes via the Kaplan–Meier
plotter (Zwyea et al., 2021) in the IDC and PDAC cancer studies.

Results

Benchmarking AE-GCN against state-of-
the-art methods

We evaluated the ability of AE-GCN to detect spatial domains
using 12 human dorsolateral prefrontal cortex (DLPFC) slices
generated using 10x Visium. The DLPFC dataset obtained from
spatialLIBD (Pardo et al., 2022) is manually annotated as the layered

regions by gene markers and cytoarchitecture. The annotations can
be considered as the ground truth for benchmarking. Based on this
dataset, we compared AE-GCN with the existing state-of-the-art
methods, including six spatial clustering methods [i.e., BayesSpace
(Zhao et al., 2021), Giotto (Dries et al., 2021), SEDR (Fu et al., 2021),
SpaGCN (Hu et al., 2021), stLearn (Pham et al., 2020), and
STAGATE (Dong and Zhang, 2022)] and three non-spatial
algorithms [i.e., variational autoencoder (VAE) (Kingma and
Welling, 2019), Leiden implemented in Scanpy (Wolf et al.,
2018), and Louvain implemented in Seurat (Butler et al., 2018)].
The adjusted Rand index (ARI) is used to quantify the similarity
between themanual labels and identified clusters, which ranges from
0 for poor consistency to 1 for identical clusters.

Generally, most of the spatial clustering methods performed better
than non-spatial algorithms (Wilcoxon signed-rank test P< 10−5,
Figure 2A), which showed that the integration of spatial information
is necessary to improve the spatial clustering performance. Strikingly,
AE-GCN had the highest mean ARI (mean ARI = 0.561) and
substantially performed better than the competing methods over the
slices (Wilcoxon signed-rank test P< 10−8, Figure 2A). Taking slice

FIGURE 2
Benchmarking AE-GCN against state-of-the-art spatial domain detection methods. (A) Spatial clustering performance is compared using ARI on
12 manually annotated DLPFC datasets from spatialLIBD. The bold line represents the mean ARI value of each approach on all the datasets. (B) Slice
151673 with the manual annotation. (C) Comparative illustration of the identified spatial domain on slice 151673. The identified spatial domains of each
method are distinguished by colors without strict correspondence.
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151673 as an example (Figure 2B), we found AE-GCN (ARI = 0.623),
STAGATE (ARI = 0.588), BayesSpace (ARI = 0.556), and SEDR (ARI =
0.515) delineated the layered regions (Figure 2C). Notably, the
partitions from AE-GCN (termed as a deep learning model-
combined method) exhibited clearer and less noisy outcomes than
those from singlemodel-basedmethods (e.g., GCN-based SpaGCN and
the VAE model).

AE-GCN reveals fine-grained anatomical
regions onmouse hippocampus Slide-seqV2
data

To illustrate the effectiveness of AE-GCN on high-resolution
SRT platforms, we applied AE-GCN to a mouse hippocampus Slide-
seqV2 dataset (n = 41,786 spots). Slide-seqV2 can measure gene
expression at near-cellular resolution (Stickels et al., 2021) but has
lower number of transcripts per location/spot and higher dropouts
than the 10x Visium platform. Thus, it poses more challenges for
accurately distinguishing tissue structures from the data of high
sparsity. To better validate the performance of AE-GCN, we also
compared it with other domain detection methods and used the
corresponding anatomical diagram from the Allen Mouse Brain
Atlas (Sunkin et al., 2012) as the illustrative reference (Figure 3A).

Comparing with the reference, we found that AE-GCN and
STAGATE can identify the spatially coherent domains compared to

other involved methods. However, AE-GCN performed better to detect
the fine-grained structures, such as the cornu ammonis 2 (CA2, AE-GCN
domain 16), ventricle (AE-GCN domain 12), and habenula (AE-GCN
domain 11) sections (Figure 3A). These sections are delineated with
sharper boundaries and higher concordance with the anatomical
annotation. We further isolated the focused regions and provided
validations from other perspectives (Figures 3B–D). For the
CA2 section, which is only detected by AE-GCN, the domain location
showed good alignment with the marker gene expression (i.e., Pcp4 (San
Antonio et al., 2014)) and independent in situ hybridization (ISH) image
(Figure 3B). For ventricle and habenula sections, AE-GCN domains are
closer to the shapes of their respective marker expression (Enpp2 for
ventricle (Koike et al., 2006) and Gabbr2 for habenula (De Beaurepaire,
2018)) or stained regions and match the anatomical shape well (Figures
3C, D). Thus, for higher-resolution SRT data, AE-GCN is capable of
effectively unveiling the fine-grained anatomical functional regions.

AE-GCN accurately discerns tumor regions
on human pancreatic ductal
adenocarcinoma data

To illustrate the effectiveness of AE-GCN on cancer tissue, we
applied AE-GCN to the human pancreatic ductal adenocarcinoma
(PDAC) ST dataset (n = 428 spots). The histopathological image and
annotations were taken as references (Figures 4A, B). We assessed these

FIGURE 3
AE-GCN reveals the finer-grained anatomical regions on mouse hippocampus Slide-seqV2 data. (A) Corresponding anatomical diagram from the
Allen Mouse Brain Atlas and spatial domains identified by each competed method. (B–D) CA2 and ventricle and habenula regions (at the top) from AE-
GCN partitions are, respectively, validated by the known gene markers (i.e., Pcp4, Enpp2, and Gabbr2) from gene expression (at the middle) and ISH
images (at the bottom). The ISH images of Pcp4, Enpp2, and Gabbr2 are also obtained from the Allen Mouse Brain Atlas.
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spatial domain identification methods using cluster purity (see
Methods) as the quantitative measure on cancer datasets with rough
annotation information. AE-GCN achieved the highest cluster purity
(purity = 0.756) and detectedmore spatially enriched functional regions
in tumor tissue than other compared methods (Figure 4C).

Next, we examined whether AE-GCN could provide more
insights into the underlying tumor heterogeneity, as data sparsity
could hinder other downstream analytical tasks, for example, the
identification of differentially expressed genes (DEGs). In this
manner, we used the AE-GCN-reconstructed data to denoise the
low-quality measurements and evaluated the effectiveness in
recovering gene spatial expression patterns. Based on the
denoised data, we selected the top 50 DEGs of each domain from
the reconstructed data X′ and compared the log fold change (LFC)
of these DEGs before and after denoising (Figure 4D). Overall, the
comparison highlights the significant improvement of biological
specificity brought by AE-GCN denoising across the identified
domains (Wilcoxon signed-rank test P< 10−14, Figure 4D). In
particular, we found that some DEG expression (e.g., S100P and

TNS4) appeared more spatially smoothed on spots in situ
(Figure 4E). These two DEGs were validated to be the potential
prognostic risk factors for PDAC (Figure 4F). For example, S100P is
ever reported to be involved in the aggressive properties of cancer
cells and associated with poor prognosis (Wang et al., 2012)
(Figure 4F); TNS4 is associated with cancer cell motility and
migration, whose high expression can indicate poor prognosis
(Sakashita et al., 2008). These results indicate that AE-GCN has
the potential to provide the in-depth biological insights into the
underlying tumor heterogeneity from the perspectives of spatial
domain detection and gene expression pattern recovery.

AE-GCN reveals more intratumor
heterogeneity on invasive ductal carcinoma
data

To illustrate the generalization ability of AE-GCN on cancer
tissues, we next tested AE-GCN using the invasive ductal carcinoma

FIGURE 4
AE-GCN identifies tumor regions on human PDAC ST data. The H&E-stained image (A) and the corresponding manual annotation (B) are shown as
references. (C) The identified spatial domains using all the compared methods are distinguished by different colors without strict correspondence.
Cluster purity is used to compare the similarity between identified domains and the reference annotation. (D) The change in gene differential expression
in each domain before and after data denoising. log2(FC): the logarithmic value of the gene expression fold changewith base 2. (E) Spatial expression
visualization of selected DEGs (i.e., S100P and TNS4) before and after data denoising. (F) Kaplan–Meier survival curves show the clinical relevance of the
identified DEGs (i.e., S100P and TNS4).
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(IDC) Visium dataset (n = 4,727 spots). The histopathological
annotations from the original paper (Zhao et al., 2021) were
taken as the reference (Figures 5A, B). We found that the
identified domains of AE-GCN were highly consistent with the
manual annotations (purity = 0.865, Figure 5C). Compared with the
domains captured by other methods, the clustering partitions from
AE-GCN showed clear spatial separations with few scatter points
and high regional continuity.

Then, for functional gene identification, we identified the top
50 DEGs of each cluster from the denoised data X′. Similarly, based
on the comparison before and after denoising, we found that AE-
GCN significantly improves the LFCs of gene expression, revealing
more biological specificity across domains, which may suggest the
detection of new disease-associated genes (Figure 5D). For example,
SLC7A5 and RDH16 are two newly found DEGs after denoising,
whose spatial expression patterns are greatly enhanced after
denoising (Figure 5E). Moreover, the two novel DEGs were

shown to be the potential prognostic risk genes for breast cancer
via survival analysis of independent clinical data (Figure 5F). Their
biological functions in tumors indicate the prognostic relevance
from previous studies. For example, SLC7A5 is reported to involve in
tumor cell metabolism and promotes cell proliferation (El Ansari
et al., 2018). RDH16 affects retinol metabolism to participate
indirectly in breast cancer occurrence and progression (Gao
et al., 2020). The application, along with the PDAC case,
demonstrates that AE-GCN can unveil cancer heterogeneity from
SRT data, enabling the discovery of novel spatial patterns of both
samples and genes.

Discussion

Spatially resolved transcriptomics technologies measure gene
expression on each spot while preserving spatial context, which can

FIGURE 5
AE-GCN provides more biological insights into intratumor heterogeneity on the IDC 10x Visium dataset. The fluorescent image (A) and the
correspondingmanual annotation (B) are shown as references. Each spot is colored due to the annotation label in (B). (C) The spatial domains obtained by
all involved methods are distinguished using different colors without strict correspondence. Cluster purity is used to compare the similarities between
identified outcomes and reference annotation. (D) The change gene FC before and after data denoising. (E) Spatial expression visualization of the
selected domain-specific genes (i.e., SLC7A5 and RDH16) before and after data denoising. (F) Kaplan–Meier survival curves show the clinical relevance of
the newly identified DEGs (i.e., SLC7A5 and RDH16).
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support computational methods to identify functional regions of
tissue and further resolve organizational heterogeneity. The
combined modeling of gene expression and spatial information
enables the improved identification accuracy of spatial domains,
especially for complex spatial architecture, e.g., tumor
microenvironments. In this paper, AE-GCN combines the
autoencoder and graph convolutional neural network to achieve
effective latent representations from expression data itself and spot
neighboring structure. The superiority of AE-GCN is shown not
only on the accurate and fine-grained identification of spatial
domains for multiple SRT platforms but also on the recovery or
identification of gene spatial expression patterns. In particular, the
application on cancer slices (i.e., IDC and PDAC) demonstrates that
AE-GCN reveals more functional regions and novel cancer
prognostic genes for interpreting cancer heterogeneity, suggesting
that AE-GCN has great capability of unveiling tissue heterogeneity
from SRT data.

The effectively combined modeling is key to the superiority of
AE-GCN in the SRT study. Generally, AE models learn the
representations from expression data itself, while GCN models
learn the structured representations from the sample graph
structure by providing an approximate second-order graph
regularization, which may suffer from over-smoothing issues.
AE-GCN combines the characteristics of these two deep learning
methods and integrates them to learn effective representations so
that AE is used to weaken the problem of overfitting while
simultaneously learning the structured representations in GCN.
Additionally, the proposed clustering-aware contrastive module
in AE-GCN further promotes the combined model from
processes independent of clustering targets to the model that
achieves effective spatial clustering. Thus, AE-GCN can not only
effectively use the information of the expression data itself but also
reasonably regularize the learned information from expression data
by spatial structure between spots, which has better advantages than
the spatial domain detection methods based on a single-model
design in SRT studies.

Currently, AE-GCN only models gene expression and spatial
information from SRT data and cannot utilize histological images
which are also provided by several SRT technologies, e.g., 10x
Visium. Although some methods have used histological images in
spatial domain detection, histological images are mainly used to
enhance the quality of expression data and lack of modeling image
data separately, e.g., stLearn (Pham et al., 2020). Compared with
expression data and spatial information, histological image data are
one type of modalities more suitable for deep learning modeling.
The future work to extend AE-GCN is to integrate deep learning
models for each multi-modal data characteristic (i.e., gene
expression, histological images, and spatial information) to
improve the performance of current methods in SRT research.
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