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MicroRNAs (miRNAs) play a crucial role in various biological processes and human
diseases, and are considered as therapeutic targets for small molecules (SMs). Due
to the time-consuming and expensive biological experiments required to validate
SM-miRNA associations, there is an urgent need to develop new computational
models to predict novel SM-miRNA associations. The rapid development of end-
to-end deep learning models and the introduction of ensemble learning ideas
provide us with new solutions. Based on the idea of ensemble learning, we
integrate graph neural networks (GNNs) and convolutional neural networks
(CNNs) to propose a miRNA and small molecule association prediction model
(GCNNMMA). Firstly, we use GNNs to effectively learn the molecular structure
graph data of small molecule drugs, while using CNNs to learn the sequence data
of miRNAs. Secondly, since the black-box effect of deep learning models makes
them difficult to analyze and interpret, we introduce attention mechanisms to
address this issue. Finally, the neural attention mechanism allows the CNNsmodel
to learn the sequence data of miRNAs to determine the weight of sub-sequences
in miRNAs, and then predict the association between miRNAs and small molecule
drugs. To evaluate the effectiveness of GCNNMMA, we implement two different
cross-validation (CV) methods based on two different datasets. Experimental
results show that the cross-validation results of GCNNMMA on both datasets
are better than those of other comparison models. In a case study, Fluorouracil
was found to be associated with five different miRNAs in the top 10 predicted
associations, and published experimental literature confirmed that Fluorouracil is a
metabolic inhibitor used to treat liver cancer, breast cancer, and other tumors.
Therefore, GCNNMMA is an effective tool for mining the relationship between
small molecule drugs and miRNAs relevant to diseases.

KEYWORDS

small molecule drug, miRNAs, graph neural networks, convolutional neural networks,
CNN, liver cancer

Introduction

With the development of sequencing technology, the biomedical field has accumulated a
large amount of medical data, which provides more convenience for researchers to study the
relationship between diseases and drugs using these data. The prediction of the relationship
between small molecule (SM) drugs and microRNAs (miRNAs) has become an important
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and rapidly developing area in pharmacology and
pharmacogenomics research (Bartel, 2004; Beermann et al., 2016;
Kozomara et al., 2019; Liu et al., 2022). miRNAs are small non-
coding RNA molecules that regulate gene expression and play a key
role in various biological processes, including the development of
diseases (Cai et al., 2021; Peng et al., 2023). On the other hand, small
molecule drugs have been widely used to treat diseases, but their
impact on miRNA expression is not clear. However, there are still
blind issues in using traditional biological experiments to identify
small molecule drug-related miRNAs, which require a lot of
experimental time and cost. With the increasing availability of
large datasets, it is possible to predict the relationship between
small molecule drugs and miRNAs and use this information to
improve the efficacy and safety of drugs (Wang et al., 2019; Chen
et al., 2020). This field has tremendous potential in discovering new
therapeutic targets and developing personalized drugs (Chen et al.,
2021; Liu et al., 2023; Xu et al., 2023).

Computational methods have played a crucial role in
predicting the association between small molecule drugs and
miRNAs (Xu et al., 2020; Zhang et al., 2023). As the available data
on drugs and miRNAs continues to increase, various
computational methods have been proposed to identify and
predict their interactions. Lv et al. (2015) constructed a
complete network by combining small molecule similarity
networks, miRNA similarity networks, and known small
molecule-miRNA association networks. They calculated the
similarity of small molecules and miRNAs using a weighted
combination strategy, and then used the RWR (Random Walk
With Restart) algorithm to predict the potential associations
between small molecule drugs and miRNAs. BNNRSMMA
first defined a new matrix to represent the small molecule-
miRNA heterogenous network using miRNA-miRNA
similarity, small molecule-small molecule similarity, and
known small molecule-miRNA associations. They then
completed this matrix by minimizing its kernel parameter
count and used alternating direction multiplication to further
minimize the kernel parameter count and obtain prediction
scores. They introduced a regularization term to tolerate noise
in the integrated similarity. Wang et al. (2022a) proposed a novel
dual-network collaborative matrix factorization (DCMF) method
for predicting potential SM-miRNA associations. They first
preprocessed the missing values in the SM-miRNA association
matrix using the WKNKN method, and then constructed a
matrix factorization model for the dual network to obtain
feature matrices containing potential features of small
molecules and miRNAs, respectively. Finally, the predicted
SM-miRNA association score matrix was obtained by
calculating the inner product of the two feature matrices. Li
et al. (2016) proposed a network-based inference model for small
molecule-miRNA networks (SMiR-NBI), which relies solely on
known SM-miRNA associations. For a given SM, the initial
resources are evenly allocated to its associated miRNAs. Then,
the resources of each miRNA are allocated to all its associated
SMs, and the resources are then redistributed from SMs to their
associated miRNAs. The final resources obtained by the miRNAs
reflect the likelihood of associations between the given SM and
miRNAs. Guan et al. (2018) developed a new graphlet
interaction-based inference model for predicting small

molecule-miRNA associations (GISMMA). The complex
relationships among SMs or miRNAs are described by
graphlet interactions, which consist of 28 isomers. The
association score for an SM-miRNA pair is calculated by
counting the number of graphlet interactions. However, if
neither the SM nor the miRNA has a known association, the
model cannot predict the SM-miRNA association. Wang et al.
(2022b) proposed an ensemble method for predicting small
molecule-miRNA associations based on kernel ridge regression
(EKRRSMMA). This method combines feature dimension
reduction and ensemble learning to reveal potential SM-
miRNA associations. Firstly, the authors constructed different
feature subsets for SMs and miRNAs. Then, homogeneous base
learners were trained on different feature subsets, and the average
scores obtained from these base learners were used as the
association scores for SM-miRNA pairs. Peng et al. (2022)
proposed a new computational method based on deep
autoencoder and scalable tree boosting model (DAESTB) to
predict the associations between small molecules and miRNAs.
Firstly, a high-dimensional feature matrix was constructed by
integrating small molecule-small molecule similarity, miRNA-
miRNA similarity, and known small molecule-miRNA
associations. Secondly, the feature dimension of the integrated
matrix was reduced using a deep autoencoder to obtain potential
feature representations for each small molecule-miRNA pair.
Finally, a scalable tree boosting model was used to predict
potential associations between small molecules and miRNAs.
Although these models have achieved promising results and
played important roles in the development of computational
methods for small molecule-miRNA association identification,
they have certain issues or limitations: the experimental
validation of small molecule-miRNA associations is very
limited, and there are many negative associations. When
performed on this noisy and sparse small molecule-miRNA
association network, the predictors often detect many false
negative associations.

Therefore, we propose a miRNA-molecule association
prediction model (GCNNMMA) by integrating graph
convolutional networks (GCNs) (Scarselli et al., 2008) and
convolutional neural networks (CNNs) (Chen, 2015) (Figure 1).
Firstly, GCNs are used to effectively learn the molecular structural
graph data of small molecule drugs, and CNNs are used to learn the
sequence data of miRNAs. Due to the black-box nature of deep
learning models, it is difficult to analyze and interpret them.
Therefore, GCNNMMA introduces a neural attention mechanism
(Bahdanau et al., 2014) to address this issue. The neural attention
mechanism enables CNNs to learn the weights of sub-sequences in
miRNAs, thus predicting the associations between miRNAs and
small molecule drugs.

Materials and methods

Datasets

For dataset 1, we obtained a total of 664 known small molecule-
miRNA associations from SM2miR database (version 1.0) (Liu et al.,
2013). Then a total of 831 small molecules were extracted and
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integrated from SM2miR, DrugBank (Wishart et al., 2018), and
PubChem (Kim et al., 2019). 541 miRNAs were collected from
SM2miR, HMDD, miR2Disease, and PhenomiR (Ruepp et al.,
2010). To evaluate our model performance more
comprehensively, we constructed dataset 2, which contains
680 small molecules, 2,460 miRNAs, and 60,212 known small
molecule-miRNA associations. Additionally, we downloaded
corresponding small molecule drug SMILES data from
DrugBank. The SMILES format data was used to describe the
spatial structural information of small molecule drugs.
Furthermore, we obtained corresponding miRNA sequence data
from the miRbase database (Table 1).

Predictionmodel based on the integration of
CNNs and GNNs

GNNs process small molecule drug data
End-to-end learning model GNNs has been shown to achieve

good performance in many scenarios. Therefore, we first use two
functions [the transformation function tran(x) and the output
function f(x)] in GNNs to map the molecular structure graph
G(V, E) of small molecule drugs to a low-dimensional vector
yϵRd. The transformation function tran(x) updates the feature

information of each node in the molecular graph G(V, E) using
information from neighboring nodes (atoms in the molecular
structure graph) and neighboring edges (chemical bonds in the
molecular structure graph). The output function f(x) converts
the updated node information in the molecular graph after the
transformation function into a low-dimensional vector. In
GNNs, both the transformation function and the output
function are implemented as differentiable neural networks,
and the parameters in the functions are automatically learned
through the backpropagation process (Figure 2). The specific
steps are as follows:

Subgraph embedding with radius r: Here, we use G(V, E) to
represent a molecular graph, where V is a set of nodes and E is a
set of edges. In the molecular structure graph, viϵV represents the
i-th atom and eijϵE represents the chemical bond between atom i
and atom j. Because there are only a few types of nodes (hydrogen
and carbon) and edges (double and single bonds) in the
molecular graph, representative learning models cannot obtain
effective learning results. To solve this problem, GCNNMMA
introduces the concept of r-radius subgraphs. An r-radius
subgraph describes the set of atoms and chemical bonds
within a radius of r with a certain atom as the center. Here,
we use Γ(i, r) to represent the set of indices of all adjacent nodes
in the subgraph with node i as the center and a radius of r. Γ(i, 0)

FIGURE 1
The overall workflow of GCNNMMA.

TABLE 1 Statistics of datasets used in this study.

Dataset No. of miRNAs No. of molecules No. of associations

Dataset 1 541 831 664

Dataset 2 2,460 680 60,212
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is the node i itself. We use the following definition to describe the
subgraph with node vi and a radius of r:

vri � Vr
i , E

r
i( ) (1)

Where,Vr
i� vj|jϵΓ(i, r){ },Er

i � emnϵE|(m,n)ϵ(Γ(i, r) × Γ(i, r − 1)){ }
Similarly, the subgraph with a radius of r can be defined for the
edge eij: erij � (Vr−1

i ∪ Vr−1
j , Er

i ∩ Er
j).

Vertex transformation function: In the molecular structure
graph G, subgraph embedding can start from any vertex. v(t)i ϵRd

is used to describe the vertex i at the t-th step of subgraph
embedding information update. The update process is described
as follows:

v t( )
i � σ v t−1( )

i + ∑
jϵΓ i( )

h t( )
ij

⎛⎝ ⎞⎠ (2)

Where σ(x) � 1
(1+ex), Γ(i) represents the set of neighbor node

indices for vertex i. h(t)ij is a hidden vector describing the information
of neighbor node j and the edge eij between the two nodes for vertex
i. It can be calculated using the following formula:

h t( )
ij � max 0,Wneighbor*

v t( )
j

e t( )
ij

⎡⎣ ⎤⎦ + bneighbor( ) (3)

Were, WneighborϵRd×2d is a weight matrix and bneighborϵRd is a
bias matrix. e(t)ij represents the t-th subgraph embedding
information update between vertex i and vertex j. By summing
the hidden vectors of adjacent nodes and iteratively updating, vertex
embedding can gradually learn the global information of the
molecular structure graph.

The edge transformation function: The process of updating edge
embeddings are similar to the process of updating vertex
embeddings. Here, e(t)ij is used to represent the embedding of the
edge between vertex i and vertex j. At the same time, the
embeddings of adjacent vertices to the edge, v(t)i and v(t)j , are
used to update the edge embedding information. The update
process is described as follows:

e t( )
ij � σ e t−1( )

ij + g t−1( )
ij( ) (4)

The formula describes g(t−1)
ij as follows:

g(t)
ij � max(0,Wside*[v(t)i + v(t)j ] + bside). WsideϵRd×2d is a weight

matrix, and bsideϵRd is a bias vector.
Small molecule output function: To obtain the final output

ysmϵRd, the model sums up the embeddings of each vertex in
the molecular graph V � v(t)1 (t), v(t)2 (t), · · ·, v(t)|V|(t){ }. The
process is described as follows:

ysm � 1
V| | ∑

V| |

i�1
v t( )
i (5)

|V| represents the number of vertices in the molecular graph.

Using CNNs to process miRNA sequence
data

First, CNNs use filter functions to compute a hidden vector
y ∈ Rd based on the sub-sequences of the input sequence C and a
weight matrix (learned parameters). The filter functions are
implemented by neural networks. In CNNs, the overall function �
f(C) is differentiable and all parameters in f(x) are learned
through backpropagation (Figure 3). The specific steps are shown
as follows:

Sequence input function
To apply CNNs to miRNA sequence data, First, miRNA

sequences are defined as “words” consisting of n-length bases
(Dong et al., 2006; Costa and De Grave, 2010), where n refers to
the number of bases. Then, the miRNA sequence is divided into
overlapping n-mers. In this study, to maintain a manageable and
informative word vocabulary and to avoid using low-frequency
sequence fragmentation in learning representations, a relatively
small value of n � 3 was set for the number of bases. The
miRNA sequence S � x1, x2, · · ·, x|s|, where xi is the i-th base pair

FIGURE 2
Using GNNs to extract features of small molecule drugs.
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and |s| is the length of the sequence, is then split into overlapping
n-base pair segments. All words are then translated into randomly
initialized embeddings, referred to as “word embeddings.” The word
embeddings are ordered asX1, X2, · · ·, X|s|−1X|s|, whereXi ∈ Rd is a
d-dimensional embedding for the i-th word. Alternatively, we can
consider a sequence whose elements consist of concatenated word
embeddings. For example, a sequence composed of three
consecutive embeddings would be
[X1;X2; X3], [X2; X3;X4] · · · [X|S|−2;X|S|−1;X|s|], where
[Xi+1; Xi+2; Xi+3]ϵR3d is the concatenation of Xi+1, Xi+2, and
Xi+3. Here, Xi: i+w−1 refers to [Xi; · ··; Xi+w−1], where w is the
window size. This processed sequence can be used as input
for CNNs.

Filter function
Using Xi: i+w−1 � [Xi;Xi+w−1] � c(0)i ϵRdw as the input to the

filter function f(x), the output of the filter function is a hidden
vector c(1)i ϵRd. The description of the hidden vector is as follows:

c 1( )
i � f Wconv*c

0( )
i + bconv( ) (6)

Where f(x) is a non-linear activation function, WconvϵRd×dw is the
weight matrix, and bconv is the bias vector. By using the filter function
repeatedly, multiple hidden vectors can be obtained:

c t( )
i � f Wconv*c

t−1( )
i + bconv( ) (7)

Multiple hidden vectors form a hidden vector set C �
c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ }.

miRNA sequence output function. In order to obtain the final
output ymiRNAϵRd from C � c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ }, the average of C
is taken. The process is described as follows:

ymiRNA � 1
C| | ∑

C| |

i�1
c t( )
i (8)

|C| denotes the number of elements in set C.

Neural attention mechanism for predicting
potential associations between miRNAs and
small molecule drugs

GCNNMMA employs a neural attention mechanism to infer
interactions between small molecules and subsequences in miRNA
sequences. In the collection of hidden vector sequences C �
c(t)1 , c(t)2 , c(t)3 , ......c(t)|c|{ } for miRNA sub-sequences, each hidden
vector sequence represents its corresponding miRNA sub-
sequence. Different miRNA sub-sequences have different binding
abilities and probabilities with small molecules. A neural attention
mechanism is used to assign corresponding weights to each sub-
sequence in the miRNA hidden vector sequence collection, which
represents the importance of its association with small molecules.
The weight calculation process is described as follows:

hsm � f Winter*ysm + binter( ) (9)
hi � f Winter*ci + binter( ) (10)

αi � σ hTsm*hi( ) (11)

Where Winter is the weight matrix and binter_inter is the bias
vector. αi represents the strength of interaction between small
molecules and miRNA sub-sequences. Based on the calculated
attention weights, the final weighted sum can be obtained, as
shown below:

ymiRNA � ∑C| |

i�1
αi*hi (12)

Finally, the model obtains the final classification output vector
ZϵR2 by jointly considering ymiRNA and ysm:

Z � Woutput* ymiRNA;ysm[ ] + boutput (13)
WhereWoutput ∈ R2×2d is the weight matrix and boutput ∈ R2 is the

bias vector. Finally, the output vector Z � [y0, y1]] is passed through
the softmax function to compute the associated probabilities:

FIGURE 3
Using CNNs to extract features of miRNAs.
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Pt � exp yt( )∑iyi
(14)

Results

Performance of GCNNMMA in the cross-
validation

In this work, we compared the performance of the latest five
models [SMiR-NBI (Li et al., 2016), GISMMA (Guan et al., 2018),
SLHGISMMA (Yin et al., 2019), SNMFSMMA (Zhao et al., 2020),
EKRRSMMA (Wang et al., 2022b)] with GCNNMMA, and
conducted 5-fold cross-validation (CV) on both dataset 1 and
dataset 2 to evaluate the predictive performance of GCNNMMA.
All predicted small molecule miRNA pairs were ranked
according to the obtained scores. Based on the rankings, we
used receiver operating characteristic (ROC) curves to illustrate
the performance of our models in the cross-validation runs. As
shown in Figure 4, we found that GCNNMMA achieved the best
predictive performance on both dataset 1 (AUC = 0.9812) and
dataset 2 (AUC = 0.9384). This suggests that GCNNMMA
performed the best in predicting the correlation between small
molecule drugs and miRNAs.

GCNNMMA is superior to other popular
methods in predicting miRNAs associated
with new small molecule drugs

It is important to examine the performance of the above
method in predicting new miRNAs related to small molecule
drugs, in addition to testing the performance of global
prediction of small molecule drug-miRNA relationships. A
leave-one-out experiment is used to evaluate the ability of the

algorithm to predict miRNAs related to new small molecule drugs.
To compare the fairness of the test, we still use ROC as the
indicator of predictive performance. The local LOOCV
experiment was carried on the dataset 1 and dataset 2 (see
Figure 5). GCNNMMA showed a higher performance over
other approaches in terms of AUC on the dataset 2.
Specifically, GCNNMMA obtained AUC value of 0.9367,
outperforming that of SMiR-NBI (AUC = 0.6754), GISMMA
(AUC = 0.8473), SLHGISMMA (AUC = 0.8532), SNMFSMMA
(AUC = 0.9254), EKRRSMMA (AUC = 0.8751). In addition, we
can find that the performance of GCNNMMA is also second only
to SNMFSMMA on the dataset 1. This also sufficient GCNNMMA
is also the best way to predict m miRNAs related to new small
molecule drugs.

Case studies: identifying the relationship
between small molecule drugs and miRNAs
associated with liver cancer

To further verify the reliability capability of GCNNMMA, we
take all known miRNAs-small molecule drug associations in the
SM2miR dataset 1 as the training set, and regard the missing
miRNAs-small molecule drug associations as candidate sets. After
GCNNMMA predicted the interaction probabilities of all candidate
miRNAs-small molecule drug associations, we then ranked them
according to the predicted probabilities so that the top-ranked
associations were most likely to interact. We also validated these
top 30 associations by searching for corresponding PubMed
literature, as shown in Table 2. Among the top 10, 20, and
30 predicted associations, we were able to validate 6, 12, and
20 associations, respectively through literature search. In the top
10 predicted associations, we found that 5 different miRNAs were
associated with Fluorouracil (CID: 3385), a small molecule drug that
belongs to the class of pyrimidine analogs and is an anti-metabolic
drug used to treat tumors. It interferes with DNA synthesis by

FIGURE 4
The ROC curves for GCNNMMA and benchmark algorithms for 5-fold CV on the (A) dataset 1 and (B) dataset 2.
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blocking the conversion of deoxyuridine monophosphate to
thymidine monophosphate (Ellison, 1961). Currently,
Fluorouracil is used to treat diseases such as actinic keratosis,
breast cancer, colon cancer, pancreatic cancer, gastric cancer,
liver cancer, and superficial basal cell carcinoma (Lecluse and
Spuls, 2015; Guo et al., 2020). Among the top 20 predicted
associations, we discovered novel small molecule drugs associated
with miRNAs and Estradiol (CID:5757), Testosterone (CID: 6013),
and Dihydrotestosterone (CID: 10635). These three hormones have
high bioavailability and can enhance cellular metabolism. These

three hormones have high bioavailability and can enhance cellular
metabolism (Pentika€inen et al., 2000). Among the top 30 predicted
associations, we found that the small molecule drugs Etoposide
(CID: 36462) (Wang et al., 2003) and Gemcitabine (CID: 60750) are
used for cancer treatment. Etoposide is a semi-synthetic derivative
with anti-tumor activity. It inhibits DNA synthesis by forming a
complex with topoisomerase II and DNA, inducing double-stranded
DNA breaks and preventing repair by blocking the binding of
topoisomerase II. Accumulation of DNA breaks prevents cells
from entering mitosis, leading to cell death (Uesaka et al., 2007).

FIGURE 5
The ROC curves for GCNNMMA and benchmark algorithms for local LOOCV on the (A) dataset 1 and (B) dataset 2.

TABLE 2 Predicting the top 30 small molecule drugs associated with miRNAs.

Rank CID miRNA Evidence (PubMed) Rank CID miRNA Evidence (PubMed)

1 3,229 hsa-mir-212 28,131,841 16 5,757 hsa-mir-542 17,765,232

2 3,385 hsa-mir-149 27,415,661 17 5,757 hsa-mir-663a 32,215,262

3 3,385 hsa-mir-1915 22,121,083 18 6,013 hsa-mir-135a-1 32,735,753

4 3,385 hsa-mir-203a 25,526,515 19 6,013 hsa-mir-29a 26,296,572

5 3,385 hsa-mir-320a unconfirmed 20 10,635 hsa-mir-32 20,945,501

6 3,385 hsa-mir-483 unconfirmed 21 10,635 hsa-mir-630 20,945,501

7 3,385 hsa-mir-519c 26,386,386 22 31,401 hsa-mir-603 20,689,055

8 3,385 hsa-mir-617 21,743,970 23 36,462 hsa-mir-26b 31,985,026

9 5,311 hsa-mir-126 unconfirmed 24 36,462 hsa-mir-663a 31,639,426

10 5,311 hsa-mir-409 unconfirmed 25 60,750 hsa-mir-139 33,300,085

11 5,311 hsa-mir-574 unconfirmed 26 60,750 hsa-mir-211 25,789,319

12 5,311 hsa-mir-595 unconfirmed 27 60,750 hsa-mir-299 28,131,841

13 5,311 hsa-mir-744 unconfirmed 28 60,750 hsa-mir-326 unconfirmed

14 5,311 hsa-mir-760 unconfirmed 29 60,953 hsa-mir-137 22,740,910

15 5,757 hsa-mir-17 24,283,290 30 216,239 hsa-mir-664a unconfirmed
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Gemcitabine (CID: 60750) is a nucleoside analog used in
chemotherapy that, like fluorouracil and other pyrimidine
analogs, replaces a structural group of nucleic acids in DNA
replication to form cytidine in this case. The formation of
cytidine stops tumor growth as new nucleosides cannot attach to
the “defective” nucleosides, leading to cell apoptosis (cell “suicide”)
(Hastak et al., 2010; Vogl et al., 2010). Currently, Gemcitabine is
used to treat cancers such as non-small cell lung cancer, pancreatic
cancer, bladder cancer, and breast cancer.

Discussion

The development of deep learning provides new approaches
for predicting the association between small molecule drugs and
miRNAs. We developed a prediction model called GCNNMMA
based on graph neural networks (GNNs) and convolutional
neural networks (CNNs), and validated its performance on
two datasets. Experimental results show that GCNNMMA
exhibited the best performance in the datasets. Compared with
previous similarity-based models, our model extracts the
characteristic information of small molecule drugs and
miRNAs through GNN and CNN networks, avoiding the
dependence on known association information. Furthermore,
when predicting the top 30 associations in the dataset,
GCNNMMA identified Gemcitabine (CID: 60750) related to
hsa-mir-139 and Fluorouracil (CID: 3385) related to hsa-mir-
149, both of which are used in cancer treatment by targeting the
relevant miRNAs to inhibit cell division and induce cancer cell
death. While GCNNMMA achieved good performance, there is
still room for improvement, such as integrating multi-source data
which remains a challenging problem. In the future,
incorporating more data sources, such as miRNA spatial
structure data and miRNA precursor data, could improve
GCNNMMA. In addition, three-dimensional structural
information can better reflect spatial information. One of the
future research directions is to utilize the three-dimensional
structural information of miRNAs and small molecule drugs
to improve prediction accuracy.
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