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Quantitative trait loci (QTL) is one of the most important steps in marker-assisted
selection. Few studies have validated quantitative trait loci for marker-assisted
selection of yield traits under drought stress conditions in wheat. A set of
138 highly diverse wheat genotypes were tested under normal and drought
stress conditions for 2 years. Plant height, heading date, spike length, grain
number per spike, grain yield per spike, and 1000-kernel weight were scored.
High genetic variation was found among genotypes in all traits scored under
both conditions in the 2 years. The same panel was genotyped using a diversity-
array technology (DArT) marker, and a genome-wide association study was
performed to find alleles associated with yield traits under all conditions. A set of
191 significant DArTmarkers were identified in this study. The results of the genome-
wide association study revealed eight common markers in wheat that were
significantly associated with the same traits under both conditions in the 2 years.
Out of the eight markers, seven were located on the D genome except one marker.
Four validatedmarkers were located on the 3D chromosome and found in complete
linkage disequilibrium. Moreover, these four markers were significantly associated
with the heading date under both conditions and the grain yield per spike under
drought stress condition in the 2 years. This high-linkage disequilibrium genomic
region was located within the TraesCS3D02G002400 gene model. Furthermore, of
the eight validated markers, seven were previously reported to be associated with
yield traits under normal and drought conditions. The results of this study provided
very promising DArT markers that can be used for marker-assisted selection to
genetically improve yield traits under normal and drought conditions.
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1 Introduction

Wheat (Triticum aestivum L.) is a crop of historical importance, as it marks the turning
point of human civilization 10,000 years ago with its domestication (Salamini et al., 2002).
Bread wheat, an allohexaploid species, originated through two successive hybridization
rounds. A second round of hybridization between tetraploid and diploid species is thought to
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have occurred around 10,000 years ago in the Fertile Crescent (Zhao
et al., 2020; Saini et al., 2021). Since its domestication, wheat has
undergone rounds of selection, adaptation, and hybridization.
Today, with more than 218 M ha and almost 760 metric
megatons of production, wheat is one of the most cultivated and
consumed crops, providing 20% of the calorie intake per day
(Sandhu K. et al., 2021). In terms of food security, wheat ranks
as the second most important food crop in developing countries
after rice, as around 80 million farmers rely on its production for
their livelihood (Challinor et al., 2014). Wheat breeding programs
mainly focus on improving grain yield, biotic and abiotic stress, and
end-use quality traits (Sandhu et al., 2021c; 2022). High-yielding
varieties with broader adaptations are one of the primary goals of
wheat breeders globally; however, this is hindered by limited
knowledge and testing of the genetic material for different
agronomic and abiotic stress traits (Sallam et al., 2018; Langridge
and Reynolds, 2021; Ahmed et al., 2022).

Drought affects the different physiological and yield
contributing factors in the plant, which ultimately affects the
plant yield (Sallam et al., 2019). Furthermore, the stage, intensity,
and duration of drought conditions play an important role in
deciphering its effect on the plant performance. Researchers
define drought differently; most important, it is categorized as a
meteorological drought, which is based on the temperature and
precipitation to give an estimate of the potential evapotranspiration
(PET) (Ahmed et al., 2019; Sallam et al., 2019). In wheat, depending
on the environment, drought occurs when the PET is higher than the
usual value for the region. The severity of the drought depends on
the extent and duration of the water deficit, the vulnerability of the
production system, and the limit of temperature elevation. In wheat,
drought at different stages affects performances differently in
different wheat-producing regions; in general, wheat is highly
susceptible to drought at the flowering stage (Ahmed et al., 2019;
Sallam et al., 2019). Drought occurring earlier could lead to poor
establishment, which can cause tremendous or complete crop loss;
on the contrary, terminal drought stress causes a reduction in the
harvest index. The higher temperature throughout the growing
season, which is getting common in many regions, will shorten
the growth cycle, ultimately affecting the seed number and weight.
Moreover, a severe heat event at critical stages also significantly
affects the grain number, size, and quality (Liu et al., 2019; Tanin
et al., 2022).

Connecting phenotypes with genotypes, known as genetic
mapping, provides a vital tool for crop breeding and
improvement (Kaur et al., 2021). Several statistical models have
been developed for marker-trait associations in genome-wide
association studies (GWASs), which range from simple to
increasingly complex models (Saini et al., 2021). With an
increase in genotyping information, statistical models that can
separate the real biological association from false positives are
required without the real association (false negatives) (Wang
et al., 2014). False positives in models are also observed when
familial relatedness or common ancestry between genotypes is
not accounted for. The structure, discriminant analysis, and
principal component analysis (PCA) are routinely used as a
covariate in statistical models for accounting for the population
structure (Price et al., 2006). However, PCA is gettingmore attention
because of its consistent performance with structures, and it is

computationally cheap to generate covariates. Identity by descent
is one of the traditionally used approaches for observing familial
relatedness. Recently, the kinship matrix calculated from genotyping
information is used as a covariate in mixed linear models (Zhang
et al., 2010).

Yield and drought tolerance are complex quantitative traits that
are controlled by a large number of small- and large-effect
quantitative trait loci (QTLs), and identifying all these genic
regions is important for breeding for drought stress tolerance,
shown in the study by Anuarbek et al. (2020) and Tanin et al.
(2022). Many mapping studies have identified various QTLs for
different agronomic, yield, diseases, and end-use quality-related
traits in wheat using GWAS-based approaches under normal and
stress conditions (Sallam et al., 2019; Sandhu et al., 2021b). Studies
have been conducted to dissect the genetic architecture of yield-
related traits in wheat under controlled and drought stressed
conditions. MacCaferri et al. (2011) evaluated 189 elite wheat
lines for 15 environments under normal and drought stress, and
the number of associations under drought conditions was far less
than that in normal conditions. Similarly, Sukumaran et al. (2018a)
identified a large number of QTLs for stress tolerance indices,
i.e., stress tolerance, stress susceptibility index, and stress
tolerance index under drought and heat stress conditions.
Detected and validated QTLs can be used in pre-breeding the
germplasm and breeding for abiotic stress tolerant cultivars for
climate resilience in wheat (Hanson et al., 2018).

In this study, we used 138 spring wheat genotypes that were
phenotyped for various yield-related traits under controlled and
drought conditions. The whole population was genotyped using
diversity-array technology (DArT) markers using the protocol
defined in the study by Saini et al. (2022). DArT markers have been
used in various genome-wide association studies to identify QTLs in
wheat for various traits (Saini et al., 2022). We studied the variation
present among all genotypes for normal and drought stress conditions
for 2 years. Associationmappingwas performed using the general linear
model (GLM) + principal component analysis (PCA) models to
account for false positives and negatives to avoid spurious
associations. The QTLs identified in this study and their population
were compared with other studies and breeding programs to validate
the utilization of those QTLs for MAB in wheat.

2 Materials and methods

2.1 Plant material

A set of 138 highly diverse springwheat genotypes from 22 countries
was obtained from the United States Department of Agriculture
(Agricultural Research Service, the GRIN-Global project), USDA. The
list of genotypes and their pedigree is presented in Supplementary Table
S1. The same collection was evaluated under drought stress at the
seedling stage by Ahmed et al. (2021).

2.2 Experimental layout

In two consecutive seasons 2018/2019 and 2019/2020, all
genotypes were sown under normal (N) and drought (D)
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conditions at the Experimental Field Station of the Department of
Genetics, Assiut, Egypt, where the soil was clay loam. A randomized
complete block design (RCBD) was used with two replications.
From each genotype, 15 seeds were hand-sown in 1.5 m rows with
10 cm as a distance between seeds and 50 cm between rows.

For normal conditions, all genotypes were irrigated 6–7 times
during growing seasons, while under drought stress, the genotypes
were irrigated two times and irrigation stopped when the plant
reached the tillering stage. No irrigation was applied for drought-
stressed genotypes until harvesting. The soil moisture content was
measured under normal and drought conditions from six soil
samples taken randomly at the depth of 45 cm two times (before
and after anthesis). The samples were weighed and then dried for
48 h at 110°C in an oven. The samples were then removed from the
oven and weighed again, with the weight loss representing the
quantity of water in the soil.

Soilmoisture content %( )
� Wetmatter − dry matter( )/Wetmatter( ) × 100[ ]

Humidity rate = soil moisture content (percentage) × 1.2.
The heading date (HD; days) was scored as the number of days

from sowing to the date when 50% of plants have started heading,
and plant height (PH; cm) was scored from the ground to the tip of
the main spike at maturity. Spike traits were measured including the
main spike length (SL; cm), number of grains per spike (GNPS) and
grain yield per spike (GYPS; g), and 1000-kernel weight (TKW; g).

2.3 Statistical analyses of phenotypic data

The analysis of variance was calculated for both the conditions
(normal and drought) using PLABSTAT software [1], with the
following model:

Yijk � μ + yi + rj + gk + gyik + yrg ijk( ) error( ),

where Yij is an observation of the genotype k in year i and replication
j and μ is the general mean. yi, rj, and gk are the main effects of the
year, replication, and genotype, respectively. The error is year ×
replication × genotypes interaction of genotype k with year i.
Replications and years were considered as random effects.

2.4 Genotypic data and genome-wide
association studies

A total of 407 DArT markers for the 138 genotypes evaluated in
this study were downloaded from the United States National Plant
Germplasm System database (https://www.ars-grin.gov/). Marker
data and genotypes were filtered using the following criteria: minor
allele frequency of 5% and 20% missing data. As a result of marker
filtration, the remaining 398 DArT markers and 138 genotypes were
used for genetic analyses.

The analysis of the population structure was performed for the
same set of markers and genotypes using STRUCTURE
3.4.0 software (Pritchard et al., 2000) by Ahmed et al. (2021),
who revealed that there were two possible subpopulations.
Therefore, the genome-wide association analysis was performed
using the general linear model with principle component analysis

to correct the effect of the population structure. The GWAS was
performed using TASSEL v.5.2.5 software (Bradbury et al., 2007).
Marker-trait association to identify significant markers was tested at
a significant level of 0.001 (Bradbury et al., 2007). The phenotypic
variation explained by a marker (R2) and the effect of the visible
allele was also determined using TASSEL v.5.2.5. Linkage
disequilibrium (r2) was analyzed for the validated markers using
TASSEL 5.0 v, and the haplotype (D′) view was analyzed using
Haploview software (Barrett et al., 2005).

Candidate genes and their functional annotations for the
validated markers were identified using Ensembl genome version
1.1 (http://ensemblgenomes.org/) using the International Wheat
Genome Sequencing Consortium (IWGSC) reference sequence
v1.0 to identify candidate genes and their functional annotations.
Gene network for the candidate gene model detected by GWAS was
analyzed from KnetMiner database (https://knetminer.com/
Triticum_aestivum/).

3 Results

3.1 Genetic variations in yield traits under
normal and drought conditions

The analysis of variance results for all genotypes under normal
and controlled conditions for both years are presented in Table 1. All
the six scored traits showed significant differences at p < 0.05 under
normal and drought stress conditions. The genotype × year
interaction also showed significant differences for all traits under
both conditions, except for PH under drought stress. Replication
and year effects were significant for few traits under both conditions
but not for all traits and stress conditions (Table 1). The phenotypic
variation for all the six traits under normal and drought conditions
for both years is presented in Figure 1. All the traits showed a normal
distribution for both years and conditions and the results were
validated with the help of the Shapiro–Wilk normality test (results
not shown). Few outliers were observed for each trait under both
conditions, and they are depicted in Figure 1. The average soil
humidity at 10 and 35 cm depth in both conditions is presented in
Supplementary Table S2.

3.2 Genome-wide association study for yield
traits under normal and drought conditions

A total of 398 DArT makers obtained after filtration were used
for genome-wide association studies. The number of DArT markers
was 144 (36%), 162 (41%), and 58 (15%) for A, B, and D genomes,
respectively. Additionally, there were 34 (8%) markers with
unknown chromosomal positions. In our previous study, we
showed that the whole population can be divided into two main
sub-clusters using PCA and structure analysis, where clusters 1 and
2 consisted of 78 and 60 genotypes, respectively (Ahmed et al., 2021).
Finally, six traits with 398 DArT markers were used for the GWAS
under normal and drought stress conditions for both years. Out of
the 398markers used, about 191 significant markers were detected at
the p-value ≤0.001 (Table 2, Supplementary Table S2). In each year,
the number of significant markers detected under drought stress was
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larger than those detected under normal conditions. Identified
markers explain 7.4%–18.7% of the total phenotypic variation for
all the six studied traits (Supplementary Table S3). A set of 14 major
QTLs were identified in 2019 and 60 in 2020, demonstrating a
greater number of QTLs in the year 2020. The allele effect for all
markers and major QTLs for all the traits is presented in
Supplementary Table S3 and Table 2, respectively.

The number and distribution of identified markers on different
chromosomes for both years under normal and drought stress
conditions are presented in Figure 2. Significant markers were

located on 11 chromosomes, 1A, 1D, 2B, 2D, 3A, 3D, 4A, 4D,
7D, and unknown, in the 2 years. The highest number of significant
DArT markers were found on 3D and 7D chromosomes in 2019/
2020 and 2020/2021, respectively.

For HD, three, nine, and seven major QTLs were identified
under normal conditions in 2019, normal conditions in 2020, and
drought stress conditions in 2022, respectively. R2 for these QTLs
varied from 7.86%–15.2% for the phenotypic variation for HD
(Supplementary Table S2 and Figure 2). No QTL was identified
for PH in 2019, while four QTLs were identified each for normal and

TABLE 1 Analysis of variance of all traits scored under normal and drought conditions throughout the two growing seasons, 2019 and 2020.

Treat SOV HD PH SPL GNPS GYPS TKW

Control Years (Y) 555.50a 1.41 0.17 1.06 2.22 2.11

Replication (R) 17.38a 0.56 20.32a 2.72 1.60 3.02

Genotype (G) 102.69a 31.25a 23.9a 16.67a 15.26a 21.92a

G × Y 4.44a 6.50a 7.02a 2.60a 2.03a 2.32a

Drought

Years 175.81a 101.99a 0.064 0.00 2.12 11.68a

Replication 31.92a 3.31 0.01 13.50 21.20a 10.48a

Genotype 55.32a 7.62a 11.10a 17.27a 17.28a 16.28a

G × Y 3.16a 1.23 2.04a 3.73a 4.29a 2.21a

aRefers to the significant level at p < 0.01.

FIGURE 1
Density diagram for all genotypes under normal and drought conditions in the two growing seasons.
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drought stress in 2020. These eight QTLs explained 7.8%–18.7% of
the phenotypic variation for PH (Table 2; Figure 2). For SPL, three,
three, and two QTLs were identified under drought conditions in
2019, normal conditions in 2020, and drought stress conditions in
2022, respectively. R2 for these QTLs varied from 7.8%–13.7% for the
phenotypic variation for SPL. The GNPS was associated with six and
ten QTLs under normal and drought conditions for 2020. These
QTLs explained 7.7%–19.9% of the phenotypic variation for the
GNPS. The TKW was associated with nine markers, from which
four were present under normal conditions in 2019, four under
drought stress in 2019, and the last one under normal conditions in
2020. R2 for these QTLs varied from 8.1%–13.0% for the phenotypic
variation for the TKW.

Interestingly, markers having associations with more than one
trait are presented in Supplementary Table S4. There were
11 common markers that were identified for normal and drought
stress conditions for the year 2019, while 33were common for the year
2020 (Figure 3A). Furthermore, there were 11 common markers
identified for both years under normal conditions, and 11 were

common in both years for drought conditions. Some markers had
significant associationswith the same trait under normal conditions in
both years (N19 and N20), such as WPT-9196, which was associated
with the GNPS. Likewise, in both years, some markers, such as WPT-
742230, were found to be significantly associated with the TKW only
under drought conditions (D19 and D20).

Notably, a total of 44 markers were found to be associated
with more than on trait, ranging from two to eight traits
(Supplementary Table S4). The WPT-1786 marker was found
to be associated with eight traits under N19, N20, D19, and D20.
Three markers WPT-6064, WPT-0044, and WPT-729788 were
found to be associated with PH and TKW in D19 and D20,
respectively. Some markers were found to be associated with the
same traits under all conditions.

Finally, there were eight common markers that were present
under both years and both conditions (normal and drought)
(Figure 3A). In our study, we focused on the common markers
that had significant associations under normal and drought stress in
both years.

TABLE 2 Summary of the GWAS for yield traits under normal and drought conditions.

Traits No. of sign. markers p-value R2a Allele effect No. of major QTLs

Season 2018/2019

HD N 5 0.0003–0.0009 7.86%–8.5% −18.9:−20.23

D 9 0.0001–0.00001 8.5%–12.6% −9.7:6.78 3

PH N 0

D 6 0.0001–0.0008 7.5%–9.7% −11.8–12.9 -

SPL N 3 0.0001–0.0008 7.8%–9.4% 1.55 -

D 1 0.0002–0.000078 7.4% −2.49:2.22 -

GNPS N 2 0.0001 7.6% 15.488 -

D 0 - - - -

TKW N 6 0.0001–0.00002 8.1%–11.8% −6.8:9.4 4

D 6 0.0001–0.0009 8.8%–13.0% −5.7:8.2 4

Season 2019/2020

HD N 14 0.0001–0.00002 8.4%–15.2% −6.3:8.3 9

D 12 0.0001–0.00001 8.3%–13.0% −6.9:5.9 7

PH N 8 0.0001–0.00006 8.2%–14.6% −12.5:17.2% 4

D 18 0.0001–0.0000002 7.8%–18.7% −12.6:15.1 4

SPL N 8 0.0002–0.00006 7.8%–13.7% −2.49:1.7 3

D 3 0.0001–0.0008 8.0%–10.4% −1.6:1.63 2

GNPS N 15 0.0001–0.00000009 7.7%–19.9% −16.13:12.07 6

D 24 0.0001–0.0000007 7.9%–17.7% −15.1:14.5 10

GYPS N 18 0.0001–0.000008 7.8–13.7 −0.68:0.50 6

D 25 0.0001–0.00001 8.2%–12.9% −0.50:0.43 8

TKW N 5 0.0001–0.0009 8.5%–10.3% −4.4:6.1 1

D 3 0.0006–0.00005 7.9%–8.8% −3.6:4.3 -

aPhenotypic variation explained by markers.
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3.3 Validation of the DArT-genomic region
associated with yield traits

The eight markers that had significant associations with yield
traits are presented in Table 3 and Figure 4. Interestingly, most of
these markers were located on the D genome (Figure 4). The
haplotype analysis for these markers is presented in
Supplementary Figures S1–S3. The WPT-729788 marker was
located within the TraesCS1D02G451100 gene model, which
encodes to protein EARLY FLOWERING 3-like. WPT-6064 was

found to be associated with PH in D19, D21, N20, and with SPL in
N19. This marker was located with TraesCS2D02G574400, which
encoded a P-loop containing nucleoside triphosphate hydrolase
(Figure 4). Notably, four markers were found to be associated
with HD under both conditions in the 2 years. These four
markers were found in complete linkage disequilibrium and were
located within a TraesCS3D02G002400 gene model which encodes a
P-loop containing nucleoside triphosphate hydrolase. The present
allele of all the four markers was found to be associated with early
flowering. Among the four markers, WPT-734051 had amajor effect

FIGURE 3
Venn diagram for significant markers in both conditions in the 2 years (A) and validated markers with pleotropic effects (B).

FIGURE 2
Number of significant markers in each environment and on each chromosome under normal (N) and drought (D) conditions in 2019 (A) and
2020 (B).
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on HD (R2 <10%) under D19, N20, and D20 (Supplementary Table
S5). Three DArT markers WPT-0044, WPT-729788, and WPT-
742443 were found to be significantly associated with the TKW
under both conditions in the 2 years. Present alleles of the three

markers were associated with a decreased TKW. Two markers
WPT-742443 and WPT-6064 were found to be associated with
the GYPS and PH under drought conditions in the 2 years,
respectively. No candidate gene models were found for WPT-0044.

TABLE 3 List of validated DArT markers associated with yield traits under normal (N19 and N20) and drought (D19 and D20) conditions.

Validated
markers

Chro: Pb N19 D19 N20 D20 References Candidate gene Protein coding

WPT-729788 1D:
493482175–493482606

TKW TKW TKW TKW Spike number per plant (Cui
et al., 2013)

- -

WPT-6064 2D:
639091664–639092067

SPL PH PH PH Plant height (http://
knetminer.org/data/rdf/
resources/trait_to_0000207)

TraesCS2D02G574400
(RGA5)

P-loop-containing
nucleoside
triphosphate
hydrolase

WPT-742443 3D: 1122666–1123082 HD HD HD and
GYPS

HD and
GYPS

Grain yield (Atta 2013) TraesCS3D02G002400 P-loop-containing
nucleoside
triphosphate
hydrolase

WPT-742530 3D: 1122666–1123082 HD HD
and
TKW

HD and
GYPS

HD and
GYPS

Grain yield and grain
protein content (Atta 2013)

TraesCS3D02G002400 P-loop-containing
nucleoside
triphosphate
hydrolase

WPT-742148 3D: 1122745–1123008 HD HD HD and
GYPS

HD, PH,
and
GYPS

Spike number per plant (Cui
et al., 2013)

TraesCS3D02G002400 P-loop-containing
nucleoside
triphosphate
hydrolase

WPT-740873 3D: 1122645–1123102 HD HD HD and
GYPS

HD and
GYPS

Spike number per plant (Cui
et al., 2013)

TraesCS3D02G002400 P-loop-containing
nucleoside
triphosphate
hydrolase

WPT-734051 3D: 4166079–4166677 HD HD HD HD Spike weight (Ogbonnaya
et al., 2017)

- -

WPT-0044 1B TKW TKW TKW TKW -

FIGURE 4
Physical position of the validated significant markers located on 1D, 2D, and 3D chromosomes. The gene network for the
TraesCS2D02G574400 gene model was illustrated on the 2D chromosome. The linkage disequilibrium among the four markers on 3D was illustrated on
the 3D chromosome.
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Out of the eight markers, five these markers were found to be
associated with more than one trait. For example, the high-LD
genomic region found on the 3D chromosome had associations with
HD (all conditions), GYPS (N20 and D20), TKW (D19), and PH
(D20). Furthermore, out of the eight significant markers, seven were
reported in earlier studies with their significant associations with
yield traits under normal and drought conditions (Table 3).

4 Discussion

Important abiotic stresses affecting the wheat yield includes heat,
drought, salinity, mineral toxicity, and waterlogging (Erdayani et al.,
2020;Mourad et al., 2021; Amro et al., 2022). Drought affects 42% of the
wheat production area, while heat affects 58% (Tanin et al., 2022).
Climatic uncertainty causes warmer temperatures, and erratic rainfalls
are predicted in the future, which could potentially convert the mega-
productive environment to short-season drought stress environments
(Mourad et al., 2019; Mondal et al., 2021). These conditions represent a
unique challenge to plant scientists for releasing climatic resilient
cultivars (Sallam et al., 2019). Furthermore, drought is a polygenic
trait controlled by a large number of genes and, hence, is difficult to
understand (Sukumaran et al., 2018b).

We phenotyped six different yield-related traits, i.e., HD, PH, SPL,
GNPS, GYPS, and THW, under normal and drought stress. Significant
differences were found between soil water capacities in both conditions
in the 2 years, indicating that the genotypes under drought conditions
were exposed to a water deficit. A high genetic variation existed among
genotypes in all traits that can be exploited for phenotypic selection
under drought stress. The genotype × year interaction was also
significant for these traits, which can be attributed to the interaction
of genotypes with management-, environmental-, and year-related
conditions, thus suggesting the need to evaluate the lines under
multiple environments and years for studying drought-related traits.
These traits showed a normal distribution under both the conditions
and years, which provides an opportunity tomake a selection from both
sides of the distribution according to the need of the breeding program
and expected stress conditions, which is pretty common in quantitative
traits as reported in the literature (Bhatta et al., 2018; Sallam et al., 2019).
Moreover, under the drought conditions, themeans of all these six traits
were less than normal conditions and similar trends were reported for
durum, spring, and winter wheat varieties (Liu et al., 2019). The soil
moisture volume was 19% at a 10 cm depth and 35% at a 35 cm depth.
In wheat, the optimum volumetric soil-moisture content remaining at
field capacity is about 45%–55% [three feet below the soil surface for
clay soils and it is 15%–20% in the wilting stage (https://nrcca.cals.
cornell.edu/soil/CA2/CA0212.1-3.php)], which is defined as the soil
water content when plants growing in that soil wilt and fail to recover
their turgor upon rewetting, indicating that successful drought stress
occurred in the population in the 2 years.

4.1 Genome-wide association study

The GWAS was performed for all traits using DArT markers
that were widely and previously used to identify important QTLs for
target traits such as disease resistance in wheat (Ladejobi et al., 2016;
Mourad et al., 2021). Moreover, many earlier studies have used

DArT markers for identifying genomic regions associated with
drought tolerance and yield trait studies in wheat (Ovenden
et al., 2017; Ahmed et al., 2021). These DArT markers have
become available in the United States National Plant Germplasm
System database for many wheat genotypes. Therefore, utilizing
such an important genotypic database for genetic association
analyses will be fruitful for marker-assisted selection to improve
target traits through the validation of previously reported QTLs in
different genetic backgrounds (Alexander et al., 2012; Choudhury
et al., 2021; Sallam et al., 2023).

The high genetic variation found among genotypes was very
useful to identifying important significant DArT markers. The same
population with the same number of DArT marker was used to
identify important genomic regions associated with drought
tolerance at the seedling stage (Ahmed et al., 2021). For GWAS
studies, 100–500 identical markers should be used to detect the
potential marker-trait association (Yu et al., 2012; Alqudah et al.,
2020). Although the number of DArTmarkers used in this study was
407, they were distributed in all wheat chromosomes. As mentioned
previously, the same DArT markers were previously used for yield
traits under drought and normal conditions. Therefore, the main
target of our study was to test the association of some previously
reported markers in our current wheat panel. Moreover, the same
population and same marker number were used to identify genomic
regions associated with stripe rust in wheat (Mourad et al., 2021).

Accounting for the population structure within the mapping
population is a critical step before performing GWA and mapping
studies (Price et al., 2006; Zhang et al., 2010). It provides an idea of
the genetic relationship among the lines present in the population
and assists in identifying genetic diversity in the target population to
control for spurious associations. False positives in GWAmodels are
also observed when familial relatedness or a common ancestry
among the genotypes is not accounted for (Liu et al., 2016).
Structure, discriminant analysis, and principal component
analysis are routinely used as a covariate in statistical models for
accounting for the population structure. Our previous study showed
that this population is subdivided into two clusters based on the
results from STRUCTURE software and PCA (Ahmed et al., 2021).
Within the cluster, genotypes were categorized based on their
country of origin and responses to drought conditions. The same
testing population was genotyped using SNP markers in another
study by Mourad et al. (2020), and PCA showed the same
subculturing techniques obtained using DArT markers in this
study and, thus, showed the effectiveness of using DArT markers.
These results gave us confidence in understanding the structure
present in our testing population and we accounted for that using
PCA in the GLM for conducting genome-wide analyses.

The GWAS is one of the most used methods for complex
quantitative traits, especially drought, in this study (Kaur et al.,
2021). Most of the traits controlling drought are complex and
controlled by a large number of small-effect genes (Mathew
et al., 2019).

In this study, out of the 398 markers used, about 191 significant
markers were detected at a p-value ≤0.001, which was significantly
associated with various target traits. We were able to identify
14 major QTLs for 2019 and 60 major QTLs for 2020 datasets
for normal and drought conditions. The majority of these QTLs and
markers were identified under drought stress conditions, thus
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showing that these markers have a strong association with traits
scored under drought stress and can ultimately be used for breeding
drought tolerance in wheat (Mourad et al., 2018; Ahmed et al., 2021).
Different numbers of QTLs were identified for each trait for each
year and stress condition, which can be correlated to the response of
these genotypes differently to drought stress conditions. There were
11 common markers identified for both years under normal
conditions, and 11 markers were common in both years for
drought conditions, which suggest the heritability of these
markers and their expressions under different environmental and
year conditions. Moreover, a set of 71 markers were found to have
major effects with R2> 10% on yield traits under both conditions.
Also, many markers were found to have a significant association
with more than one trait, indicating that these markers showed
pleotropic effects. For example, the WPT-1786 marker was found to
be associated with PH, GNPS, HD, and GYPS under N20 and D20.
Under drought conditions in both years, three markers were found
to be associated with HD. One marker, WPT-6064, was found to be
associated with PH. Two markers were found to be associated with
the TKW. Such markers could be very useful genomic regions, as
they remained significant with the same traits in both the years
under drought stress. Also, they could be considered as validation
markers for the respective trait under certain conditions. Genetic
validation of a QTL can be carried out when the same QTL or gene
tends to be significantly detected when the material is grown in other
years (Sallam et al., 2023).

4.2 Genetic validation of QTLs controlling
yield traits under drought stress

QTL/marker validation is an important step for molecular
breeding to improve target traits and marker-assisted selection. A
set of eight common markers were present under both years and
both conditions (normal and drought). Seven of these markers were
located on the D genome, indicating that this genome may include
important genome regions for drought tolerance. Five markers were
located on the 3D chromosome. Of these five markers, four were
found in complete LD (1122666–1123102 bp), indicating that the
four markers within this genomic region seem to have been co-
inherited together. The genomic region, including these four
markers, was located within a TraesCS3D02G002400 gene model
which encodes a P-loop containing nucleoside triphosphate
hydrolase. The protein has a role in zinc-ion binding (Jadon
et al., 2023). It plays a role in Zn, Fe, and protein remobilization
in seeds during grain development (Distelfeld et al., 2006;
Ricachenevsky et al., 2013) and in nitrogen from vegetative
tissues to grains (Waters et al., 2009). So, these genes have a
molecular function which is important to improving the yield
grain quality. All four markers located in this gene were found to
be associated with increased the GYPS and TKW. Moreover, the
four makers were associated with HD under all conditions,
suggesting that this genomic region is important for improving
early flowering in wheat, which is an important trait for wheat
breeders. Interestingly, these four markers were previously reported
to be significantly associated with the grain yield, number of spikes/
areas, grain protein content, and spike number per plant (Cui et al.,
2014). WPT-734051 was found to be associated with HD in this

study and with the spike weight in the study by Ogbonnaya et al.
(2017). The WPT-6064 marker was associated with SPL (N19) and
PH (D19, N20, and D20). This marker located within the
TraesCS2D02G574400 (RGA5) gene model encodes the same
protein found in TraesCS3D02G002400. This further supports
the importance of this protein in improving yield traits under
normal and drought conditions. The gene network of
TraesCS2D02G574400 is presented in Figure 4. It seems that this
gene is regulated by theGRF9 gene, which is strongly associated with
the plant height. Furthermore, this gene is present in a biological
process which contributes to the medium-chain fatty acid
biosynthetic process that plays an important role in the spike
and seed formation (Mihálik et al., 2015). WPT-729788 was
found to be significantly associated with the TKW in all
conditions and with the spike number per plant in the study
by Cui et al. (2013). The three important features of these eight
markers found in this study are as follows: 1) they were
associated with the same trait under normal and drought
conditions in the 2 years, 2) they were previously reported in
other studies, and 3) they have pleiotropic effects. Therefore,
these markers can be useful in breeding programs for MAS for
improving yield traits under normal and drought tolerance
conditions in wheat. This can be considered as QTL
validation, as genetic validation examines whether the same
marker/QTL is significantly detectable when the plant
material is tested in other locations or years and whether its
effect on the same marker can still be detected when examined in
different genetic backgrounds (Sallam et al., 2023). Here, we
detected the same marker in all tested conditions and also
examined the same marker in a different genetic background
that was completely different from those that were previously
reported.
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