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Background: There is growing interest in the genetic improvement of fertility traits
in female goats. With high-throughput genotyping, single-cell RNA sequencing
(scRNA-seq) is a powerful tool for measuring gene expression profiles. The
primary objective was to investigate comparative transcriptome profiling of
granulosa cells (GCs) of high- and low-fertility goats, using scRNA-seq.

Methods: Thirty samples from Ji’ning Gray goats (n = 15 for high fertility and n =
15 for low fertility) were retrieved from publicly available scRNA-seq data.
Functional enrichment analysis and a literature mining approach were applied
to explore modules and hub genes related to fertility. Then, interactions between
types of RNAs identified were predicted, and the ceRNA regulatory network was
constructed by integrating these interactions with other gene regulatory networks
(GRNs).

Results and discussion: Comparative transcriptomics-related analyses identified
150 differentially expressed genes (DEGs) between high- and low-fertility groups,
based on the fold change (≥5 and ≤−5) and false discovery rate (FDR <0.05).
Among these genes, 80 were upregulated and 70 were downregulated. In
addition, 81 mRNAs, 58 circRNAs, 8 lincRNAs, 19 lncRNAs, and 55 miRNAs
were identified by literature mining. Furthermore, we identified 18 hub genes
(SMAD1, SMAD2, SMAD3, SMAD4, TIMP1, ERBB2, BMP15, TGFB1,MAPK3,CTNNB1,
BMPR2, AMHR2, TGFBR2, BMP4, ESR1, BMPR1B, AR, and TGFB2) involved in goat
fertility. Identified biological networks and modules were mainly associated with
ovary signature pathways. In addition, KEGG enrichment analysis identified
regulating pluripotency of stem cells, cytokine–cytokine receptor interactions,
ovarian steroidogenesis, oocyte meiosis, progesterone-mediated oocyte
maturation, parathyroid and growth hormone synthesis, cortisol synthesis and
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secretion, and signaling pathways for prolactin, TGF-beta, Hippo, MAPK, PI3K-Akt,
and FoxO. Functional annotation of identifiedDEGs implicated important biological
pathways. These findings provided insights into the genetic basis of fertility in
female goats and are an impetus to elucidate molecular ceRNA regulatory
networks and functions of DEGs underlying ovarian follicular development.
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1 Introduction

Improvement in reproductive performance is a priority in
the goat industry as it is one of the most important determinants
of productivity, sustainability, and profitability. The
reproductive cycle involves dynamic and complex ovarian
functions, characterized by progressive emergence and
development of ovarian follicles (Fatet et al., 2011) under
endocrine control. Both granulosa and theca cells are
involved in steroidogenesis (Qiu et al., 2013). Granulosa cells
(GCs) are one of the most important cell types in ovarian
follicles, playing crucial roles in follicular development and
atresia (Matsuda et al., 2012), especially in the late stages of
oocyte development and ovulation. In addition, these cells also
control cytoplasmic maturation and play a key role in nuclear
maturation by responding to gonadotropins (Mori et al., 2000).
Thus, reproductive function in the female is inherently complex,
involving various anatomical and physiological processes (Li
et al., 2021a). Furthermore, litter size, an important attribute
directly related to reproductive efficiency, is controlled by
multiple genes and factors (Lai et al., 2016). Hence,
knowledge of the genetic basis of reproductive efficiency will
provide insights into components controlling ovarian
folliculogenesis and fertility in goats (de Lima et al., 2020).

The candidate gene approach for fertility has been extensively
studied in various livestock species (Miao et al., 2016a; Miao
et al., 2016b; Bahrami et al., 2017; Quan et al., 2019).
Furthermore, it requires well-developed tools to detect and
characterize multiple genes, pathways, and networks (Ahlawat
et al., 2016; Zhang et al., 2017; Ghafouri et al., 2021; Naserkheil
et al., 2022).

Single-cell RNA sequencing (scRNA-seq) has been used to
characterize transcripts and differences in gene expression,
identify functional genes, and analyze regulatory networks in
numerous species (Chen et al., 2015; Li et al., 2021b; Li et al.,
2021c). In addition, scRNA-seq is being used for mapping and
quantifying transcriptional activity at single-cell resolution for all
genes in the genome (Islam et al., 2014). It is useful for analysis of
cellular heterogeneity as it can concurrently sequence thousands
of cells and discover novel cell types in animals (Choi and Kim,
2019). Conversely, an integrated approach is needed to manage
large-scale data generated with high-throughput technologies
alongside literature mining. Integrated analyses can combine
multilevel views of physiology data into a total interpretation
of nonlinear regulatory molecular procedures (La et al., 2019;
Reyhan et al., 2022; Sadeghi et al., 2022). Currently, various
bioinformatics tools, computational approaches, and algorithms
are available to identify interactions and protein functions in

regulatory modules in various complex biological networks (Bugrim
et al., 2004). In this regard, multi-partite networks such as
circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory
networks consider various RNAs and have highlighted a new
regulatory mechanism of interaction among RNAs. Circular
RNAs (circRNAs) are single-stranded, covalently closed RNA
molecules without free 5′ and 3′ ends that exert biological
function by acting as transcriptional regulators, microRNA
sponges, and protein templates (Zhou et al., 2020). Long
intergenic non-coding RNAs (lincRNAs), RNA transcripts
with >200 nucleotides, play major roles in biological
processes such as gene expression control, epigenetic control,
and scaffold formation (Deniz and Erman, 2017). Long non-
coding RNAs (lncRNAs) are non-coding RNA transcripts
involved in various biological procedures, such as cell
proliferation and transcriptional regulation (Wei et al., 2016).
In addition, microRNAs (miRNAs), regulatory molecules with
19–25 nucleotides, play vital regulatory roles in multiple
biological procedures (cell differentiation and migration,
oncogenesis, and apoptosis) by suppressing mRNAs (Wang
et al., 2015). Therefore, this approach seems well-suited to
understand molecular regulatory mechanisms in polygenic
traits (Hallock and Thomas, 2012).

Several studies have identified important candidate genes
associated with hormonal regulation of the reproductive cycle and
fertility traits in goats (Li et al., 2010; Ahlawat et al., 2016; Lai et al.,
2016; Zhang et al., 2018a; Li et al., 2021b). Furthermore, gene ontology
and systems biology enable identification of hub genes and co-
expression genes with critical roles in fertility (Ahlawat et al., 2016;
Zhang et al., 2018b). For instance, in a study comparing high- versus
low-fertility goats, many candidate genes were identified in each
group. In an analysis of the entire genome of Chinese Laoshan
dairy goats, several candidate genes (CCNB2, AR, SMAD2,
AMHR2, KDM6A, SOX5, and SYCP2) were associated with both
high and low fertility (Lai et al., 2016). Therefore, the purpose of the
present study was to examine the ovarian GC signature genomic
regions of Ji’ning Gray goats with high and low fertility, using a public
repository scRNA-seq dataset. In addition, we critically reviewed the
literature, searching for relevant publications using keywords related
to GCs and fertility in goats. Genes with significant differences related
to our bioinformatics analyses and candidate gene list extracted from
literature mining were compiled, and the two gene sets were merged
and used to identify protein–protein interaction (PPI) networks and
gene regulatory networks (GRNs). Overall, the ceRNA regulatory
network, consisting of circRNA–lincRNA–lncRNA–miRNA–mRNA,
was constructed based on various interactions to explore the effects of
functional modules and hub differentially expressed mRNAs,
miRNAs, lncRNAs, lincRNAs, and circRNAs on fertility.
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2 Materials and methods

As an overview, the general workflow for analyzing data collection
and methods of identifying key genes, metabolic and signaling
pathways, and construction of the lncRNA–miRNA–mRNA ceRNA
regulatory network and modules affecting high fertility (HF) and low
fertility (LF) in domestic goats (Capra hircus) is shown in Figure 1.

2.1 Data collection

scRNA-seq data from ovarian GCs of high- and low-fertility
Ji’ning Gray goats (HF and LF, respectively) were retrieved from the
National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) public database under the accession
number GSE135897 (www.ncbi.nlm.nih.gov/geo). This dataset was
produced using the GPL15473 Illumina HiSeq 2000 platform (Li
et al., 2021b). A case–control study approach was designed to
identify differentially expressed genes (DEGs) between HF and
LF goats. A total of 30 samples from Ji’ning Gray goats (first
group: 15 with high litter size (HF; ≥3 offspring) and second
group: 15 with low litter size (LF; ≤2 offspring)) were analyzed.
The Ji’ning Gray goat is a local breed and the oldest domesticated
goat species with high fertility in China that has year-round estrus

and a mean litter size of 2.94 (Huang et al., 2012; Miao et al., 2016a;
b). All ovarian follicles from each group of these Ji’ning Gray goats
(from small (<3 mm) to large (˃7 mm)) were collected. Then,
oocytes and GCs were mechanically separated by repeated
pipetting. Oocytes from high- and low-fertility groups were
labeled. This study was performed in accordance with ARRIVE
guidelines. Library preparation and sequencing were performed
separately for oocytes and GCs. Details regarding animal ethics
approval, total RNA extraction, separate library preparation,
sequencing, and validation of scRNA-seq data have been
reported (Zhao et al., 2020; Li et al., 2021b).

2.2 Quality control and detection of
differentially expressed genes

First, the quality of the raw RNA sequences was assessed using
FastQC software v0.11.5 (Andrew, 2010) and FastQ Groomer
software v1.1.5 (Blankenberg et al., 2010); thereafter, these
sequences were pre-processed with Trimmomatic software
v0.38.0 (Bolger et al., 2014) to remove adapters, low-quality
reads, and PCR primers. Alignment sequences, mapping, and
identification of known and novel RNAs of reads were related to
the reference genome of C. hircus (https://ftp.ensembl.org/pub/

FIGURE 1
Workflow for analyzing the scRNA-seq dataset, literature mining, protein–protein interaction (PPI) network, gene regulatory network (GRN), and
downstream ontology functions, constructing the circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory network; module analyses were
constructed and visualized using Cytoscape software v3.9.1.
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release-108/fasta/capra_hircus/dna/) using HISAT2 software v2.2.
1 with default parameters to determine the number of aligned and
unaligned reads (Kim et al., 2015). Regarding transcript quacation,
total raw counts of mapped reads were calculated using
featureCounts software (v2.0.1) (Liao et al., 2014). Subsequently,
to examine whether accumulation or degradation of transcripts was
related to fertility, transcripts and their expression levels were
compared between ovarian GC samples of high- and low-fertility
Ji’ning Gray goats. Differences in gene expression were detected
from reading counts using DESeq2 software (v2.11.40.7) (Love et al.,
2014). The threshold for statistical significance of the differential
expression of each gene was obtained with the criteria of log2FC
(fold change ≥5 and ≤−5) and FDR <0.05 (false discovery rate).

2.3 Literature mining to identify candidate
genes for fertility in goats

Various online databases were examined to discover candidate
circRNAs, lincRNAs, lncRNAs, miRNAs, and mRNAs relevant to
comprehensive literature mining. Online search databases and

papers included Google Scholar, PubMed, Web of Science, iHOP
web services, and CrossRef from 2010 to 2023, with no language
restrictions. Search terms consisted of both keywords and database-
specific subject headings for the ceRNA regulatory network, GCs,
and fertility in goats: breeds–goats; practical tools–scRNA-seq; and
outcome–ceRNA network or regulatory RNAs-fertility, and litter
size trait. Keywords included goats, fertility, litter size, ovarian GCs,
circRNA, lincRNA, lncRNA, miRNA,mRNA, and ceRNA networks.
For this purpose, first, identifiers and synonyms for each framework
element were merged by applying the Boolean operator “OR.” Then,
elements of the framework were merged by applying the Boolean
operator “AND.” In total, 74 relevant papers were identified using
online search databases. All identified papers were imported into
Covidence (Covidence systematic review software, Veritas Health
Innovation), and duplicates were removed. The included articles
were further screened for relevant references, and a citation check
was performed. After the final screening, 41 papers with the final
qualified literature were listed, and regulatory RNAs (i.e., circRNAs,
lincRNAs, lncRNAs, miRNAs, and mRNAs) with significant
differences related to the candidate RNA list extracted from
literature mining were compiled as RNA sets 2–6, respectively

FIGURE 2
Top significant gene ontology (GO) terms enriched using differentially expressed genes associated with fertility in female goats. (A) The significant
biological processes, (B) the significant molecular function, and (C) the significant cellular component GO terms associated with fertility in female goats.
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(Supplementary Tables S2–6). Finally, RNA set 1 (from our
bioinformatics analyses) and RNA sets 2–6 (from literature
mining) were merged and used as input files for target prediction
tools, the STRING website, and Cytoscape software to identify PPI
GRNs, and reconstruct the circRNA–lincRNA–lncRNA–miRNA–
mRNA ceRNA regulatory network and modules.

2.4 Gene ontology and functional
enrichment analysis

Gene set annotation and enrichment analysis used DAVID (the
Database for Annotation, Visualization, and Integrated Discovery;
https://david.ncifcrf.gov/) v6.8 (Sherman and Lempicki, 2009), g:

FIGURE 3
Top significant KEGG pathway terms enriched using differentially expressed genes associated with fertility in female goats.

FIGURE 4
ceRNA regulatory network: 57 circRNAs, 8 lincRNAs, 19 lncRNAs, 51 miRNAs, and 175 mRNAs in an interacted network were identified. In this
network, circular nodes represent circRNAs, diamond nodes represent lincRNAs, octagonal nodes represent lncRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. Yellow quadrilateral nodes represent hub mRNAs/genes involved in the network. Black edges indicate
interactions between nodes.
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Profiler (https://biit.cs.ut.ee/gprofiler/gost) (Reimand et al., 2016),
GeneCards (https://www.genecards.org/), and STRING database
v11.0 (https://string-db.org) (Szklarczyk et al., 2019) to determine
potential functions and metabolic pathways. Genes were assigned to
functional categories using the Gene Ontology (GO) database under
biological process (BP), molecular function (MF), and cellular
component (CC).

2.5 Target prediction of differentially
expressed mRNAs and other types of
regulatory RNAs

Functional annotation of types of regulatory RNAs,
i.e., circRNAs, lincRNAs, lncRNAs, and miRNAs, consisted of
functional annotation of their potential target mRNA genes.

TABLE 1 Basic network statistics of the generated main ceRNA regulatory network and its modules.

Main ceRNA regulatory network Module

1 2 3 4

Number of nodes 310 70 42 77 44

Number of edges 758 282 85 112 59

Clustering coefficient 0.048 0.163 0.112 0.067 0.074

Characteristic path length 2.707 2.019 1.926 1.780 1.736

Network density 0.008 0.058 0.049 0.019 0.031

FIGURE 5
Module 1: 2 lincRNAs, 12 miRNAs, and 56 mRNAs in an interacted network were identified. In this network, diamond nodes represent lincRNAs,
triangle nodes represent miRNAs, and quadrilateral nodes represent mRNAs/genes. Yellow quadrilateral and big triangle nodes represent hub mRNAs/
genes and miRNAs involved in the network, respectively. Edges indicate the interactions; black edges represent mRNA–mRNA interactions, green edges
represent lincRNA–mRNA interactions, and red edges represent miRNA–mRNA interactions.
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Predicted targeted genes and types of regulatory RNAs were
predicted using miRBase (Kozomara et al., 2019) (https://www.
mirbase.org/), TargetScan (Grimson et al., 2007), miRanda
(http://www.microrna.org/), miRWalk 3.0 (a comprehensive atlas
of microRNA–target interaction tools that integrates
12 miRNA–target prediction tools; http://mirwalk.umm.uni-
heidelberg.de/), NONCODE database (Volders et al., 2019)
(http://www.noncode.org/), LNCipedia database (Bader et al.,
2006) (https://lncipedia.org), and CircInteractome web tool
(Dudekula et al., 2016) (a computational tool that enables
prediction and mapping of binding sites for RBPs and miRNAs
on reported circRNAs; https://circinteractome.nia.nih.gov/).
Identified target genes were selected and submitted to DAVID,
KEGG, Reactome pathways, and the PANTHER database for
enrichment and validation of target genes for each type of RNA.

2.6 CircRNA–lincRNA–lncRNA–miRNA–m
RNA ceRNA regulatory network
construction

Based on the ceRNA theory, global functions for all non-coding RNAs
can serve as an endogenous “sponge” to regulate upregulated or
downregulated circRNAs, lncRNAs, lincRNAs, miRNAs, or mRNAs
that have inverse relationships together in the mRNA–mRNA,
mRNA–miRNA, mRNA–lncRNA, mRNA–lincRNA, mRNA–circRNA,
miRNA–lncRNA, and miRNA–circRNA interaction pairs chosen to
construct the circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA

regulatory network (Xu et al., 2019). In this regard, PPI network
analysis was performed using the STRING database v11.0 (Szklarczyk
et al., 2019) (Search Tool for the Retrieval of Interacting Genes or
Proteins; https://string-db.org), BIND (Biomolecular
Interaction Network Database) (Bader et al., 2003), MIPS
(Mammalian Protein–Protein Interaction Database) (Pagel
et al., 2005), and BioGRID (Biological General Repository
for Interaction Datasets) (Chatr-Aryamontri et al., 2012) to
explore interactions between genes in C. hircus. After identifying
interactions between types of regulatory RNAs and gene expression data
(co-expression), the circRNA–lincRNA–lncRNA–miRNA–mRNA
ceRNA regulatory network was reconstructed and plotted using
Cytoscape software v3.9.1. (Shannon et al., 2003; National Institute of
General Medical Sciences, Bethesda Softworks, Rockville, MD,
USA). Furthermore, statistical and topological significance of the
network was assessed with the Network Analyzer plugin in
Cytoscape software.

2.7 Clustering of the
circRNA–lincRNA–lncRNA–miRNA–mRNA
ceRNA regulatory network and identification
of main hub regulatory RNAs

Modules or subnets may play a significant role in the biologically
rebuilt main ceRNA regulatory network as they represent a set of
nodes with similar functions that pursue specific biological purposes
as functional modules. To evaluate topological properties and cluster

FIGURE 6
Module 2: 2 lincRNAs, 8 miRNAs, and 32 mRNAs in an interacted network were identified. In this network, diamond nodes represent lincRNAs,
triangle nodes represent miRNAs, and quadrilateral nodes represent mRNAs/genes. Yellow quadrilateral and big triangle nodes represent hub mRNAs/
genes and miRNAs involved in the network, respectively. Edges indicate the interactions; black edges represent mRNA–mRNA interactions, green edges
represent lincRNA–mRNA interactions, and red edges represent miRNA–mRNA interactions.
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nodes of the circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA
regulatory network, the Cytoscape plugins ClusterONE (Shannon
et al., 2003) andMCODE (Lotia et al., 2013), clustering algorithms to
draw directional and directionless graphs, were used. ClusterONE is
a plugin to discover densely connected sub-graphs of a network by
minimizing edges between clusters and maximizing edges within a
cluster. In addition, the MCODE plugin can be used for directed or
undirected graphs. Various parameters and the statistical and
topological significance of the ceRNA regulatory modules were
calculated using the Cytoscape plugin Network Analyzer
v4.4.8 with the default for the directed network (Assenov et al.,
2008).

3 Results and discussion

3.1 scRNA-seq analysis to identify
differentially expressed genes

In this study, we investigated the pattern of transcriptome profiles
of ovarian GCs in goats. To provide insights into the genetic basis of
fertility in Ji’ning Gray goats, gene expression analyses using the
scRNA-seq dataset with the access number GSE135897 (obtained
from the GEO database) were used. The selected gene expression
profile had 30 samples, including 15 samples of GCs from high-
fertility goats and 15 samples of GCs from low-fertility goats. To
perform this analysis, these 30 samples were divided into two groups
(high- and low-fertility) to compare expressions of gene profiles and
identify significant DEGs. A total of 3,245 significant genes were
identified by processing the expression profile of GCs of high- versus

low-fertility goats. Finally, by considering the expression change
threshold (fold change ≥5 and ≤−5, FDR <0.05), 150 genes were
significantly differentially expressed in GCs from goats with high
versus low fertility. Of these genes, 80 genes were upregulated and
70 were downregulated (Supplementary Table S1).

Recently, many studies in molecular genetics, bioinformatics, and
biological systems have been conducted to discover candidate genes
and identify molecular pathways involved in fertility (Ahlawat et al.,
2020; An et al., 2021; Li et al., 2021b). The most identified genes were
related to reproductive functions and strongly regulated ovarian
follicular growth and secretion of hormones involved in fertility;
consequently, increasing or decreasing their expression at various
times can lead to complex BPs during pregnancy (Wang et al.,
2019). In this regard, in a study using scRNA-seq analysis for
ovarian tissue of pregnant and non-pregnant goats, four genes
(PGR, PRLR, STAR, and CYP19A1) were identified to play
important roles in goat reproduction (Quan et al., 2019). In
addition, another study concluded that some lncRNAs in goats play
key roles in regulating follicle development and cell growth during
ovarian development (Li et al., 2021c).

3.2 Literature mining-based evidence for
identified DEGs and types of regulatory
RNAs

Literature mining provided evidence for 81 well-known DEGs that
were not included in our investigated outputs; adding this list of DEGs to
our discovered DEGs created a good platform for further downstream
analyses, including GO and functional enrichment analysis. Identified

FIGURE 7
Module 3: 1 circRNA, 7 lncRNAs, 16 miRNAs, and 53 mRNAs in an interacted network were identified. In this network, circular nodes represent
circRNAs, octagonal nodes represent lncRNAs, triangle nodes representmiRNAs, andquadrilateral nodes representmRNAs/genes. Yellowquadrilateral, big
triangle, and big octagonal nodes represent hub mRNAs/genes, miRNAs, and lncRNAs involved in the network, respectively. Edges indicate interactions;
black edges represent mRNA–mRNA, lncRNA–miRNA, and circRNA–miRNA interactions, and red edges represent miRNA–mRNA interactions.
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DEGs based on literature mining and their role in fertility in goats were
collected as RNA set 2 (Supplementary Table S2). In addition, literature
mining provided evidence for 58, 8, 19, and 55 well-known types of
regulatory RNAs, i.e., circRNAs, lincRNAs, lncRNAs, andmiRNAs with
significant differences, compiled as RNA sets 3–6, respectively
(Supplementary Tables S3–6). The gene list in Supplementary Table
S2 was merged with the gene list in Supplementary Table S1 and used to
identify intergenic interactions and reconstruct the PPI network. Then,
after identifying interactions between types of regulatory RNAs in RNA
sets 3–6 together and with gene expression data, the
circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network was reconstructed.

3.3 Gene ontology and pathway enrichment
analysis

The functional annotation of GO terms was detected based on
BP, MF, and CC to identify functions and metabolic pathways, as

well as systematic features of the merged list of 231 DE genes (RNA
sets 1 and 2), using the STRING, DAVID, PANTHER, and g:Profiler
databases. The results of the GO classification of the DEGs for high-
and low-fertility goats are presented in Figure 2. Identified DEGs
were significantly involved in the following functions: >10 genes
from DEGs played roles in the cellular process, regulation of BP,
response to stimulus, cellular response to stimulus, cell
communication, regulation of the cellular metabolic process, CC
organization or biogenesis, reproductive process, intracellular signal
transduction, transforming growth factor beta receptor signaling
pathway, BMP signaling pathway, response to steroid hormone, and
SMAD protein complex assembly for BPs (Figure 2A). The gene list,
including genes SMAD2, ESR1, SOX5, BMP4, BMP15, CTNNB1,
ERBB2, FGFR1, CDH26,GH,AR, and FSHB, was involved in most of
the MF terms that can be considered significant genes. Moreover,
16 MF terms were identified, such as ion binding, transmembrane
receptor protein kinase activity, signaling receptor binding, MF
regulator, receptor–ligand activity, growth factor binding, and
transforming growth factor beta-activated receptor activity, which

FIGURE 8
Module 4: 5 lncRNAs, 2 miRNAs, and 37 mRNAs in an interacted network were identified. In this network, octagonal nodes represent lncRNAs,
triangle nodes represent miRNAs, and quadrilateral nodes represent mRNAs/genes. Yellow quadrilateral and big triangle nodes represent hub mRNAs/
genes and miRNAs involved in the network, respectively. Edges indicate interactions; black edges represent mRNA–mRNA and lncRNA–miRNA
interactions, and red edges represent miRNA–mRNA interactions.
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were the most significant functions associated with fertility
(Figure 2B). Regarding CCs, five GO terms, namely, the
extracellular space, plasma membrane region, receptor complex,
membrane raft, and caveola, were identified (Figure 2C). In addition,
KEGG-based pathway analysis for identified DEGs was performed
using three online databases, DAVID, STRING, and g:Profiler. The
identified DEGs involved in fertility were enriched in the signaling
pathways regulating pluripotency of stem cells, cytokine–cytokine
receptor interaction, ovarian steroidogenesis, oocyte meiosis,
progesterone-mediated oocyte maturation, parathyroid hormone
synthesis, secretion and action, growth hormone synthesis,
secretion and action, cortisol synthesis and secretion, prolactin,
TGF-beta, Hippo, MAPK, PI3K-Akt, and FoxO signaling
pathways (Figure 3).

Concerning female reproductive function, CTNNB1, BMP4,
FSHR, TGFB1, BMPR1B, and ESR1 genes are jointly encoded in
functions of the ovulatory cycle process, ovarian follicular
development, developmental process involved in reproduction,
and cell differentiation. Hence, according to genes involved in
the identified pathways, ESR1 and BMPR1B were considered
candidate genes for reproductive functions, growth, and cell
differentiation in goats. However, many studies have implicated
the BMPR1B gene as one of the main genes controlling reproductive
function and fertility (e.g., ovulation rate) in small ruminants,
especially goats (Pramod et al., 2013; Ahlawat et al., 2014). In
addition, the FSHR (follicle-stimulating hormone receptor) gene
plays roles in growth, differentiation, and maturation of follicles and
enhances reproductive function in goats and sheep (Chen et al.,
2017). Moreover, another study demonstrated that FSHR is involved
in differential expression of ovarian mRNA hormone receptor genes
in goat fertility (Saraiva et al., 2011). The ESR1 gene encodes
estrogen receptor and ligand-activated transcription factor, and
regulates the main genes involved in growth, metabolism, and
pregnancy. It has also been reported that expression of this gene
was highest in the kidney, ovary, uterus, and testes but lowest in
brain and heart tissue (Mohammadabadi, 2020). Given the role of
the BMP4 gene in reproduction, especially in growth and
differentiation of ovarian follicles and ovulation, it can be
considered a main candidate gene for reproductive function and
fertility (Sharma et al., 2013). The CTNNB1 gene encodes a complex
of proteins that constitutes adherens junctions (AJs); they are
necessary for formation and maintenance of epithelial cell layers
by regulating cell growth and intercellular connectivity. In addition,
they play an essential role in reproduction and multiplication
(Zhang et al., 2018b). Therefore, our findings regarding genes
FSHR, CTNNB1, BMPR1B, and ESR1 were consistent with other
studies.

3.4 Construction and clustering of the
circRNA–lincRNA–lncRNA–miRNA–mRNA
ceRNA regulatory network

A decade ago, Salmena et al. presented the competitive
endogenous RNA hypothesis (Salmena et al., 2011). The ceRNA
regulatory networks have provided a new mechanism of interaction
among RNAs and play crucial roles in multiple BPs (Kfir et al., 2018;
Yang et al., 2019; Gao et al., 2021). In this regard, many studies have

been dedicated to elucidating the ceRNA roles of non-coding RNAs
in some economically important traits by constructing competitive
endogenous RNA networks (Salmena et al., 2011; Han et al., 2020).
To detect the mechanism of how non-coding RNAs
(ncRNAs) regulate mRNA through sponging miRNA, a ceRNA
regulatory network was constructed with a merge of
predicted mRNA–miRNA, mRNA–lncRNA, mRNA–lincRNA,
mRNA–circRNA, miRNA–lncRNA, and miRNA–circRNA
interaction pairs. The reconstructed ceRNA regulatory network
for up- and downregulated mRNAs/genes and types of regulatory
RNAs, indicating physical connections between two or more protein
molecules related to biochemical functions, is presented in Figure 4.
Based on knowledge of interactions, this ceRNA regulatory network
consisted of 310 nodes and 758 edges and the associated files with
the networks are given in Supplementary Table S7 (stored in “.cys
format” for further analyses). In detail, 57 circRNAs, 8 lincRNAs,
19 lncRNAs, 51 miRNAs, and 175 mRNAs were included in the
network (Figure 4). As mentioned, molecular species (circRNAs,
lincRNAs, lncRNAs, mRNAs, and miRNAs) in constructed
networks are indicated as nodes and interactions between them
as edges. Moreover, constructed networks were combined in a
simple interaction format (SIF) using Cytoscape (v3.9.1.) for
topological analysis. Topological parameters of the ceRNA
regulatory network and modules such as the number of nodes,
number of edges, clustering coefficient, characteristic path length,
and network density were evaluated to examine the state of
communication and information transfer of a node with other
nodes of interactive networks, as presented in Table 1. In this
ceRNA regulatory network, 18 genes (SMAD1, SMAD2, SMAD3,
SMAD4, TIMP1, ERBB2, BMP15, TGFB1, MAPK3, CTNNB1,
BMPR2, AMHR2, TGFBR2, BMP4, ESR1, BMPR1B, AR, and
TGFB2) had the most interactions with other genes in the
network. Among these 18 hub genes, four genes (BMP4,
BMPR1B, CTNNB1, and ESR1) were involved in MF and BPs, in
agreement with Pramod et al. (2013), Sharma et al. (2013), Zhang
et al. (2018a), and Mohammadabadi (2020). Among the miRNAs,
chi-miR-423-5p, chi-miR-122, chi-miR-187, and chi-miR-133b
suppressed most of the identified hub genes as targets of the
selected miRNAs. In addition, four of the lincRNAs,
i.e., ENSCHIG00000000609, ENSCHIG00000000641, ENSCHIG
00000000886, and ENSCHIG00000002761, interacted with
TGBFR2, CTNNB1, TGFB2, and SMAD2 hub genes, respectively.
Conversely, the miRNAs such as chi-miR-92a-5p, chi-miR-21-3p,
chi-miR-202-3p, and chi-miR-223-3p interacted with most of the
lncRNAs involved in the ceRNA regulatory network and were
defined as hub miRNAs that interacted with lncRNAs.

In this study, clustering of the circRNA–lincRNA
–lncRNA–miRNA–mRNA ceRNA regulatory network was
performed using ClusterONE (Shannon et al., 2003) and
MCODE plugins (Lotia et al., 2013), in accordance with the
clustering algorithms utilized to determine significant sub-
networks or modules by an integrated approach. There were four
candidate modules involved in goat fertility; the node interactions of
each component are described in Supplementary Table S7.

Interestingly, module 1 consisted of 70 nodes and 282 edges and,
in detail, comprised 2 lincRNAs, 12miRNAs, and 56mRNAs. In this
module, SMAD1, SMAD2, SMAD3, SMAD4, TGFBR2, CTNNB1,
and ESR1 were hub genes. In addition, chi-miR-128, chi-miR-122,
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chi-miR-187, chi-miR-200a, chi-miR-206, and chi-miR-133b, as
hub miRNAs, suppressed most of the involved genes such as
DNMT3B, SMAD2, SMAD4, CHRD, RBCK1, BMPR1B, KDM6A,
KRR1, GNA13, ERBB3, TGFB2, ERBB2, SPSB1, TGFBR2, BMPR2,
CCL21, THBS1, PRLR, ESR1, and RASGRP1. Moreover, in this
module, ENSCHIG00000000609 and ENSCHIG00000000886
lincRNAs interacted with TGFBR2, and TGFB2, respectively. All
hub–hub genes in this module were involved in the metabolic
signaling pathways that were analyzed (Figure 5).

Additionally, module 2 consisted of 42 nodes and 85 edges and,
in detail, comprised 2 lincRNAs, 8 miRNAs, and 32 mRNAs. In this
module, SMAD2, SMAD4, CTNNB1, and TIMP1 were hub genes. In
addition, chi-miR-182, chi-miR-200a, chi-miR-187, and chi-miR-
122, as hub miRNAs, suppressed most of the genes such as SMAD2,
TRIP10, COPS2, PAK2, KMT2A, ERBB2, APC, GNA13, USB1, and
FZD6. Among these, the SMAD2 gene was suppressed more than
other genes involved in the network. Moreover, in this module,
ENSCHIG00000000641 and ENSCHIG00000002761 lincRNAs
interacted with CTNNB1 and SMAD2, respectively (Figure 6).

Furthermore, module 3 consisted of 77 nodes and 112 edges and,
in detail, comprised 1 circRNA, 7 lncRNAs, 16 miRNAs, and
53 mRNAs. In this module, TUBB4B, CETN2, XAB2, and 3BHSD
had the most interaction with other module genes as hub genes. In
addition, chi-miR-200a, chi-miR-494, and chi-miR-128, as hub
miRNAs, suppressed genes ANAPC7, KMT2A, PAK2,
MARVELD2, SLC27A1, TADA1, FZD3, KDM6A, FSHB, and
PKNOX1. Among these, chi-miR-128 miRNA suppressed most of
the genes involved in the network. Moreover, in this module, XR_
001297559.1 and XR_001297560.1 circRNAs interacted with most
miRNAs such as chi-miR-494, chi-miR-3959-5p, chi-miR-494, chi-
miR-1, chi-miR-202-5p, chi-miR-34c-5p, chi-miR-320-3p, and chi-
miR-136-3p (Figure 7).

Finally, module 4 consisted of 44 nodes and 59 edges and, in
detail, comprised 5 lncRNAs, 2 miRNAs, and 37 mRNAs. In this
module, MAPK3, JAK1, and ERBB3 had the most interaction with
other module genes as hub genes. In addition, almost all genes
involved in this module were suppressed by chi-miR-423-5p and
chi-miR-187 miRNAs. Moreover, chi-miR-423-5p miRNA
interacted with all of the five lncRNAs, i.e., XR_001297560.1,
XR_001297559.1, LNC_000292, LNC_000417, and LNC_000492,
involved in the module (Figure 8).

Based on the literature, genes related to reproductive function
in dairy goats, including CCNB2, AR, ADCY1, DNMT3B, SMAD2,
AMHR2, ERBB2, and FGFR1 genes, were specifically selected in
goats with high fertility (Lai et al., 2016; Zonaed Siddiki et al.,
2020). Therefore, our results provided further evidence of the
association between nine hub genes (AR, SMAD1, SMAD2,
SMAD3, SMAD4, AMHR2, TGFBR2, CTNNB1, and ERBB2) and
female reproductive functions in goats. It was reported that the
ERBB2 (Erb-b2 receptor tyrosine kinase 2) gene is a steroid
hormone receptor involved in calcium signaling (Zwick et al.,
1999). Similarly, the AR (androgen receptor) gene is a protein that
involves a DNA-binding transcription factor and chromatin
binding; furthermore, it plays a key role in reproduction by
transmitting androgen signals (Zonaed Siddiki et al., 2020).
TGFBR2 (transforming growth factor beta receptor 2) is a
protein-coding gene that plays a major role in TGF-beta
receptor signaling, activating SMADs, transferase activity,

transferring phosphorus-containing groups, and protein
tyrosine kinase activity (Yao et al., 2022). CTNNB1 (catenin
beta 1) and TGF-β2 genes were associated with transforming
growth factor beta (TGF-β), signaling pathways regulating
pluripotency of stem cells, HTLV-I infection, neuroactive
ligand–receptor interaction, Wnt, and Hippo signaling pathways
(Li et al., 2021b). The SMAD2, SMAD3, and SMAD4 genes play
critical roles in growth and differentiation of ovarian cells,
consistent with some aspects of ovulation (Li et al., 2008; Fortin
et al., 2014).

Notably, the AMHR2 (anti-Mullerian hormone receptor type 2)
gene is associated with transferase activity, transport of phosphorus-
containing groups, and protein tyrosine kinase activity. This gene is
also involved in growth and development of ovarian follicles in cattle
and goats (Monniaux et al., 2011). Furthermore, genes BMP15 and
GDF9, as candidate genes, are members of the beta-growth factor
(TGF-β) family, directly related to twinning, increasing ovulation,
and growth and development of ovarian follicles in sheep and goats
(Pramod et al., 2013). The FOXL2 gene is involved in ovarian growth
and function, as well as early stages of mammalian ovarian growth
(Baron et al., 2005). FSHB (follicle-stimulating hormone subunit
beta) is a critical gene in follicle-stimulating hormone activity and
peptide hormonemetabolism. Moreover, variations in this gene may
affect signaling of follicle differentiation and ovulation (Zi et al.,
2020). The GH (growth hormone) gene is directly involved in
nutrition-induced changes in the control of reproductive
functions, e.g., ovarian follicular growth and development, cell
division, and ovulation (Zhang et al., 2011). The PRLR (prolactin
receptor) gene has been detected in various tissues, including the
brain, ovary, placenta, and uterus in various mammals, especially
small ruminants. This hormone is involved in many endocrine
activities and is essential for reproductive function (Ozmen et al.,
2011). Therefore, according to the functions of hub genes identified
in the circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA
regulatory network and modules, we concluded that these genes
play important roles in reproductive performance and fertility of
goats. In this regard, they are involved in endocrine glands, growth,
cell differentiation, as well as follicle maturation, and increased
ovulation and could be selected in breeding programs to increase
economic benefits. In addition, most genes involved in the ceRNA
regulatory network encode signaling pathways regulating
pluripotency of stem cells, cytokine–cytokine receptor interaction,
ovarian steroidogenesis, and neuroactive ligand–receptor
interaction, thereby confirming functions of the involved genes,
especially hub genes.

Signaling andmetabolic pathways encoded by the genes involved in
the circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network and modules are presented in Figures 2, 3. The signaling
pathways of TGF-beta, regulating pluripotency of stem cells, Hippo,
MAPK, PI3K-Akt, and FoxO are encoded by the ceRNA regulatory
network andmodules. The TGF-beta signaling pathway encodes a large
group of related structural proteins, including bone morphogenetic
proteins, growth factor, and differentiation (Liu et al., 2018). Signaling
pathways regulating pluripotency of stem cells are encoded by
pluripotent stem cells (PSCs), which show potential to produce all
three germ cell layers. It is noteworthy that embryonic stem cells (ESCs)
are derived from the inner cell mass (ICM) of blastocyst-stage embryos
(Mossahebi-Mohammadi et al., 2020). The Hippo signaling pathway is
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involved in inhibiting cell proliferation and enhancing apoptosis
(Saucedo and Edgar, 2007). MAPK3 (mitogen-activated protein
kinase 3) is a gene in a MAP kinase family. This gene plays a major
role in the signaling cascade that regulates various cellular processes
such as proliferation, differentiation, and cell cycle progression in
response to a variety of extracellular signals (Miao et al., 2016a).
Functional metabolic pathways such as the cytokine–cytokine
receptor interaction, ovarian steroidogenesis, neuroactive
ligand–receptor interaction, and growth hormone synthesis secretion
and action are also encoded in these subnetworks, with important roles
in reproduction and fertility.

In this study, a computational approach with a
circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network was performed using predicted and validated expression
profiles of RNAs. Spatiotemporal differential expression in various
tissues, especially ovarian follicles, covered the potential roles of
types of RNAs in the transcriptional and post-transcriptional
regulation of genes involved in fertility. A common explanation
for inconsistencies in our results was differences in applied
molecular techniques (GWAS, Microarray, scRNA-seq, and
simple relative gene expression), differences in ovarian tissue,
time of sampling, and bioinformatics algorithms. Limitations to
the present studies include the lack of a single, comprehensive
dataset with similar environmental conditions and ovarian tissue
from similar goat breeds.

In summary, we concluded that identified transcriptomic
signatures are potentially important biomarkers to better
understand functional pathways involved in fertility in female
goats. Further efforts are needed to elucidate the specific
biological functional types of RNAs in reproduction and fertility.
Moreover, our findings integrated circRNAs, lincRNAs, lncRNAs,
miRNAs, and mRNAs based on an integrated approach from
bioinformatics analyses and literature mining to construct ceRNA
regulatory networks. Although this can be considered a robust
approach to detect significant insights into BPs, further research
will be needed to confirm our results.

4 Conclusion

This study used a novel approach to combining various types
of RNA as an integrated network in goat fertility. Analyses of
scRNA-seq data resulted in identification of 150 DEGs in goats
with high versus low fertility. Among them, 80 genes were
upregulated and 70 were downregulated. Moreover, 81 mRNAs/
genes, 58 circRNAs, 8 lincRNAs, 19 lncRNAs, and 55 miRNAs, all
well-known types of regulatory RNAs, were obtained from literature
mining. Using circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA,
a regulatory network was constructed and these identified RNAs
were mainly associated with transcriptional regulatory activities
and signaling receptor-binding activities in terms of MFs, as well
as reproductive functions such as ovulation cycle, ovarian
follicle development, growth, and differentiation cells based
on BPs. Furthermore, our results are a valuable resource to
elucidate molecular networks and the functions of DEGs
underlying ovarian follicular development, and they increase

the understanding of the genetic basis of high- versus low-
fertility goats.
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