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Background: Breast cancer (BC), the leading cause of cancer-related deaths
among women, remains a serious threat to human health worldwide. The
biological function and prognostic value of disulfidptosis as a novel strategy for
BC treatment via induction of cell death remain unknown.

Methods: Gene mutations and copy number variations (CNVs) in 10 disulfidptosis
genes were evaluated. Differential expression, prognostic, and univariate Cox
analyses were then performed for 10 genes, and BC-specific disulfidptosis-related
genes (DRGs) were screened. Unsupervised consensus clustering was used to
identify different expression clusters. In addition, we screened the differentially
expressed genes (DEGs) among different expression clusters and identified hub
genes. Moreover, the expression level of DEGs was detected by RT-qPCR in
cellular level. Finally, we used the least absolute shrinkage and selection operator
(LASSO) regression algorithm to establish a prognostic feature based onDEGs, and
verified the accuracy and sensitivity of its prediction through prognostic analysis
and subject operating characteristic curve analysis. The correlation of the
signature with the tumor immune microenvironment and tumor stemness was
analyzed.

Results: Disulfidptosis genes showed significant CNVs. Two clusters were
identified based on three DRGs (DNUFS1, LRPPRC, SLC7A11). Cluster A was
found to be associated with better survival outcomes(p < 0.05) and higher
levels of immune cell infiltration(p < 0.05). A prognostic signature of four
disulfidptosis-related DEGs (KIF21A, APOD, ALOX15B, ELOVL2) was developed
by LASSO regression analysis. The signature showed a good prediction ability. In
addition, the prognostic signature in this study were strongly related to the tumor
microenvironment (TME), tumor immune cell infiltration, tumor mutation burden
(TMB), tumor stemness, and drug sensitivity.

Conclusion: The prognostic signature we constructed based on disulfidptosis-
DEGs is a good predictor of prognosis in patients with BC. This prognostic
signature is closely related to TME, and its potential correlation provides clues
for further studies.
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1 Introduction

Breast cancer (BC), the most frequently diagnosed malignancy
in women, is a highly heterogeneous disease that accounted for 30%
of female malignancies in 2020. This malignancy poses a great threat
to women’s health, due to its extremely high recurrence and
mortality rates (Siegel et al., 2019; Sung et al., 2021). At present,
treatment strategies for BC mainly include surgery, radiotherapy,
chemotherapy, hormone therapy, targeted therapy, and
immunotherapy. Despite these, however, the mortality rate for
BC remains very high (Wang et al., 2021). Therefore, it is
imperative to explore new therapeutic targets and reliable
prognostic models in order to achieve optimal BC clinical outcomes.

Disulfidptosis is a new type of programmed cell death that has been
found to be independent of apoptosis, iron death, necrotic apoptosis,
and copper death (Vanden Berghe et al., 2014; Liu et al., 2023).
Disulfidptosis is a rapid cell death mechanism caused by disulfide
stress resulting from the accumulation of excess cysteine in cells, which
usually occurs during glucose starvation (Liu et al., 2023). In glucose-
deficient cancer cells expressing high levels of SLC7A11, a large
accumulation of disulfide molecules leads to abnormal disulfide
formation in the actin cytoskeleton, interfering with the organization
of tissues and ultimately leading to the breakdown of the actine network
and eventual cell death (Liu et al., 2020). We identified several genes
involved in disulfidptosis that may provide novel strategies for
predicting outcomes in patients with BC.

This study systematically studied the genomic characteristics of BC-
specific disulfidptosis-related genes (DRGs). Based on DRGs, two
disulfidptosis expression patterns were determined by unsupervised
consensus clustering. The differences in prognosis, clinicopathological
factors, and immune features between the two clusters were elucidated.
In addition, the prognostic signature based on differentially expressed
genes (DEGs) between the two disulfidptosis subtypes has been
established to quantify disulfidptosis-related characteristics, high risk
score predicted poor prognosis and higher TMB in BC patients. We
then analyzed tumor microenvironment (TME) evaluation scores,
tumor mutation burden (TMB) associations, RNA based stemness
scores (RNAss) associations, and differences in chemotherapy
sensitivity in the high-low risk group. These results suggest that
disulfidptosis related genes play an important role in BC, which
helps us to evaluate the prognosis of patients with BC and their
response to chemotherapy and immunotherapy, and these genes
may be potential synergistic targets to improve the therapeutic
efficacy of BC.

2 Methods

2.1 Public data acquisition and
preprocessing

Disulfidptosis-related gene lists were acquired from recently
published literature (Liu et al., 2023). The gene expression data,
corresponding survival information, copy number variations
(CNVs), and somatic mutation data of patients with BC were
obtained from The Cancer Genome Atlas (TCGA) database. Bulk
RNA expression matrices were calibrated to the TPM format for
subsequent analysis, and the GSE86166 and TCGA-BRCA bulk

RNA expression matrices were integrated to form a complete queue.
The data were then randomly divided at a ratio of 1:1, into training
and test cohorts for subsequent analyses.

The “maftools” R package (version 4.2.2) was used to characterize
DRGs and tumor mutation burden (TMB). The “ggpubr” R package
was used to analyze the correlation between risk score and TMB, and
the boxplot and correlation graph were used to visualize the results.
Based on the CNV data, we analyzed the frequency of CNVs in DRGs
and used the “RCircos” R package to locate CNVs on the 22 somatic
human chromosomes, as well as the X/Y sex chromosomes.

2.2 Screening of BC-specific disulfidptosis-
related genes

We investigated the differences in the expression levels of DRGs
between tumor and normal samples. Statistical significance was
considered to be p < 0.05. Univariate Cox regression and
Kaplan–Meier (KM) analyses were used to screen for BC-specific
DRGs. The “limma” and “reshape2” R packages were used to screen
DRGs. The KM survival analysis and univariate Cox analysis based
on above genes were performed using the R packages “survival” and
“survminer.” Venn diagrams were constructed using the R packages
“ggplot2” and “VennDiagram.”

2.3 Unsupervised clutering for
disulfidptosis-related genes

A consensus clustering algorithm based on the R package
“ConsensuClusterPlus” with 1000 permutations was used to
calculate the number of disulfidptosis clusters in the overall cohorts.
Principal component analysis (PCA) was conducted to verify the
expression patterns using the R packages “limma” and “ggplot2.”

2.4 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed for
patients between high- and low-risk groups using the
“clusterProfiler” R package. Statistical significance was set at p <
0.05 for GO and KEGG pathways.

2.5 Analysis of correlation with immune
infiltration

Based on the LM22 gene set on the CIBERSORT website, the
CIBERSORT algorithm was used to estimate the total immune
infiltration of high- and low-risk groups, as well as DRGs.

2.6 Screening of hub disulfidptosis-related
DEGs

Gene expression between clusters was compared by “limma” R
package, and the differentially expressed genes were obtained
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according to | FC | > 1, p < 0.05. These genes were included in
univariate Cox analysis to obtain genes with important value. Least
absolute shrinkage and selection operator (LASSO) Cox regression
was used for 10-fold cross-validation of overall survival (OS), and
genes related to disulfidptosis were screened. The “glmnet” R
package was used to identify genetic signatures containing
biomarkers that were the most helpful for prognosis, and risk
scores were calculated for each sample in all datasets based on
these signatures. The risk score was calculated using the following
formula:

Risk score � KIF21A*0.218( ) + APOD* − 0.058( )
+ ALOX15B* − 0.071( ) + ELOVL2* − 0.087( )

To assess the predictive ability of disulfidptosis-related
differentially expressed genes (DEGs), time-dependent
receiver operating characteristic (ROC) at 3 years, 5 years,
and 10 years of survival were analyzed in training and test
data sets using the “timeROC” R package. For survival
analysis, the optimal cut-off value of risk score was analyzed
using the “Survival” R package, and the samples were divided
into a high-risk and low-risk group. Kaplan–Meier analysis was
used to investigate the prognostic significance of disulfidptosis-
related DEGs. In addition, a prognostic nomogram was
established based on the TCGA-BC dataset. Time-dependent
calibration curves were plotted to predict the accuracy of the
nomogram.

2.7 Cell culturing

The cell lines used in the study included human normal breast
cell line MCF-10A and human breast cancer cell line MDA-MB-
231were purchased from Procell (Wuhan, China). Cells were
cultured in DMEM medium supplemented with 10% FBS (Gibco,
United States) and antibiotics (Penicillin 100 U/mL, Streptomycin
100 mg/mL) (Gibco, United States). Cells were cultured at 37°C with
5% CO2.

2.8 RNA extraction and quantitative real-
time PCR (qRT-PCR)

RNA was isolated using TRIzol reagent (Invitrogen, Thermo
Fisher Scientific, Waltham, MA, United States), and reverse
transcription was performed using the PrimeScriptTM RT
Reagent Kit (Takara; Takara Bio, Shiga, Japan). SYBR Green PCR
Master Mix (Takara) was used for qRT-PCR on a StepOnePlus
System (Applied Biosystems, Thermo Fisher Scientific). Fold-
changes in gene expression were determined using the 2−ΔΔCT

method, using GAPDH for normalization. The primers used in
this study are listed in Supplementary Table S1.

2.9 Statistical analysis

The Wilcoxon rank-sum test was used to compare differences
between the two groups. The K–W test was performed to compare

three or more groups. Kaplan–Meier analysis was used to evaluate
survival differences between the low- and high-risk- groups. All
statistical analyses were done using R version 4.2.2 with p <
0.05 indicating statistical significance.

3 Results

3.1 Genetic alterations analysis and
screening of disulfidptosis-related genes
in BC

We identified 10 genes (NCKAP1, LRPPRC, NDUFS1, GYS1,
SLC3A2, RPN1, SLC7A11, OXSM, NDUFA11, and NUBPL) that
were closely related to disulfidptosis. We first determined the
somatic mutation levels, CNVs, gene expression levels, and
prognostic values of DRGs in BC samples.

Somatic mutations were not widespread in these genes
(Figure 1A). Somatic mutations in the DRGs were present in
47 of the 987 samples, a frequency of 4.76%. Among these, the
mutation frequencies of NCKAP1, LRPPRC, NDUFS1, and GYS1
were the highest. By investigating the frequency of the CNVs, we
noticed that DRGs had widespread alterations in CNVs and that
most genes had a gain status that was higher than the loss status.
The primary genes showing CNV amplification were SLC3A2 and
NUBPL. By contrast, NDUFA11 had the highest number of CNV
deletions (Figure 1B). The positions of these 10 genes on the
chromosome are shown in Figure 1C. We then analyzed the
expression levels of these 10 genes in cancers and their adjacent
normal tissues. NDUFA11, LRPPRC, SLC7A11, SLC3A2, OXSM,
and RPN1 showed higher expression levels in cancer tissues,
whereas NDUFS1 and NUBPL were expressed at lower levels (p <
0.01). The expression of NCKAP1 and GYS1 was not significantly
different between cancer and adjacent normal tissues
(Figure 1D). OS analysis showed that the group with high
expression of NDUFA11 and the group with low expression of
NDUFS1, SLC7A11, OXSM, NCKAP1, and LRPPRC had better
prognoses (p < 0.05; Figure 1E). There were no significant
differences in OS between the NUBPL, RPN1, and SLC3A2
expression groups.

3.2 Identification of BC-specific DRGs and
distinct expression patterns

Univariate Cox regression analysis identified three primary
genetic risk factors: LRPPRC, NDUFS1and SLC7A11 (p < 0.01;
Figure 2A). Three BC-specific DRGs were identified by
intersections of eight DRGs, six prognostic DRGs, and three
risk factors from the univariate cox regression analysis. These
were the genes NDUFS1, LRPPRC and SLC7A11 (Figure 2B).
Based on these genes, unsupervised consensus clustering of the
overall cohort was performed and patients with BC in the overall
cohort were categorized into clusters A and B (Figures 2C, D).
PCA showed that BC samples could be distinguished according to
distinct expression patterns, and our KM survival curve showed
that the median OS of cluster A was better than that of cluster B
(Figure 2E).

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2023.1193944

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1193944


FIGURE 1
Gene mutational, copy number variations (CNV), differentially expressed, and survival analysis of disulfidptosis-related genes. (A) Waterfall plot
showing the gene mutational frequency and types of genetic mutations. (B, C) Bar chart and circus show the CNV frequency and the position of the
disulfidptosis-related genes on the chromosomes. (D) Gene expression analysis between normal and breast cancer samples. (E) K–M survival analysis
between high and low expression of genes. **p < 0.01, ***p < 0.001.
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3.3 Correlation between expression patterns
and BC molecular subtype

We constructed a heat map that showed the differences in the
clinical factors between clusters A and B (Figure 2F). In order to
further explore the relationship between breast cancer molecular
subtypes and the expression pattern we identified, we drew the

Sankey diagram and KM survival curve. The results showed that in
cluster A, patients with luminal A, luminal B, HER2 and Basel
subtypes account for 60.4%, 17.4%, 8.8% and 13.4%, respectively. In
cluster B, luminal A, luminal B, HER2 and Basel subtypes accounted
for 39.8%, 26.0%, 5.8% and 28.4%, respectively (Supplementary
Figure S1A). The results indicated that the proportion of patients
with Luminal A subtype in cluster A is significantly higher than that

FIGURE 2
The construction of distinct disulfidptosis-related expression patterns. (A)Univariate Cox regression and correlation analysis between disulfidptosis-
related genes. (B) Venn plot showing the shared genes according to the results of differentially expressed analysis, univariate Cox regression analysis, and
K–M survival analysis. (C) The consensus clustering matrix (k = 2) was used to stratify Breast cancer (BC) patients into two clusters. (D) Consensus
clustering model with cumulative distribution function (CDF) by k from 2-9. (E) K-M survival analysis between cluster A and (B) (F) The heat map
shows differences in clinicopathological factors in each distinct cluster.
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in cluster B, and the proportion of patients with Basel subtype in
cluster B is significantly higher than that in cluster A. The results of
KM survival analysis showed that there was a significant difference

in the prognosis of patients in the cluster A and B of luminal subtype,
but no difference was found in HER2 and Basel subtypes.
(Supplementary Figure S1B).

FIGURE 3
ssGSEA and immune infiltration analysis in distinct cluster and functional enrichment analysis of disulfidptosis. (A)Heatmap plot showing our ssGSEA
analysis of clusters (A, B). (B) Box plot showing the differences between clusters (A, B). (C) Principal Component Analysis (PCA) based on the two clusters.
(D) The differentially expressed genes between cluster (A, B). (E, F)GOand KEGG analysis ofmolecular subtype-relatedDEGs. *p < 0.05, **p < 0.01, ***p <
0.001.
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3.4 Analysis immune infiltrate level analysis
and functional enrichment analysis between
two clusters

GSVA functional enrichment analysis indicated that cluster A
was mainly enriched in mutations pertaining to arachidonic acid
and drug metabolism pathways. Cluster B was mainly enriched in
tumor-related pathways (e.g., DNA replication and cell cycle) and
metabolic pathways (e.g., primary bile acid biosynthesis, pyrimidine
metabolism, cysteine and methionine metabolism, and glyoxylate
and dicarboxylate metabolism; Figure 3A). As shown in Figure 3B,
the extent of immune cell infiltration differed distinctly between
clusters A and B. CD56bright natural killer cells, immature B cells,
immature dendritic cells, MDSC, macrophages, natural killer T cells,
follicular helper T cells and Type 1 helper T cells were observed. The
infiltration of immune cells was higher in cluster A than in cluster B.
PCA analysis showed that cluster A and B could better distinguish
patients into different group. Therefore, we further explored the
difference between the two clusters (Figure 3C). 239 disulfidptosis-
DEGs were identified between cluster A and B (Figure 3D). GO and
KEGG enrichment analyses of disulfidptosis-DEGs showed that
these genes were mainly enriched in cell division-related

pathways (e.g., nuclear division, mitotic nuclear division, and
chromosome segregation; Figure 3E). The results of the KEGG
analysis showed that disulfidptosis-DEGs were significantly
enriched in cancer-related pathways (e.g., cell cycle, p53 signaling
pathway, and ECM-receptor interaction; Figure 3F).

3.5 Construction of prognostic signature

A total of 239 DEGs between clusters A and B, including
71 prognostic-associated disulfidptosis-DEGs were selected for
univariate Cox regression analysis. A prognostic signature of four
disulfidptosis-DEGs was then developed by LASSO regression
analysis based on the training cohort (Figure 4A). We then
verified the expression levels of four disulfidptosis-DEGs at
the cellular level. KIF21A and ALOX15B were low expressed
in cancer cells, APOD was high expressed in cancer cells, and
ELOVL2 expression was not significantly different between
cancer cells and normal cells (Supplementary Figure S2).
Cluster B had a higher risk score than Cluster A (Figure 4B).
Except for NDUFA11, the expression of nine of the DRGs differed
between the high- and low-risk groups. Of these nine, NUBPL

FIGURE 4
Establishment of disulfidptosis-related prognostic signature. (A) Lasso regression was used to establish the four-gene prognostic signature. (B) Box
plot showing the differences in the risk score of patients between clusters (A, B). (C) The differential gene expression analyses that were performed
between low- and high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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was expressed at low levels in the high-risk group, whereas the
remaining eight genes were highly expressed in the high-risk
group (Figure 4C).

3.6 Validation of the disulfidptosis-related
prognostic signature

The risk score of the high-risk group was higher than that of the
low-risk group, and the number of deaths increased with risk score
in the training and testing cohorts and all cohort (Figure 5A). A
heatmap showed the differential expression of disulfidptosis-DEGs
between the high- and low-risk groups (Figure 5B). Among these
genes, KIF21A was highly expressed in the high-risk group, whereas
APOD, ALOX15B, and ELOVL2 were highly expressed in the low-
risk group.

3.7 Evaluating the independent role of the
prognostic signature and building a
predictive nomogram for prognosis
prediction

We also confirmed that the overall survival (OS) of the low-risk
group was significantly longer than that of the high-risk group (p <
0.05; Figure 6A). We also explored the consistency of prognostic
value of prognostic models across different molecular subtypes of
BC. We found that in Luminal and Her2 subtypes, the PFS and DSS

of high-risk group were worse than those of low-risk group. There
was no difference in the prognosis of the high- and low-groups in
Basel subtype, which may due to the small number of patients in the
low-risk group (the number of patients with Basel subtype in the
low- and the high-risk group was 14 and 175, respectively).
However, we found that the 7-year PFS and DSS of the low-risk
group was also significantly better than that of the high-risk group in
the K-M survival curve. In general, the prognostic models had good
prognostic value for different molecular subtypes of BC
(Supplementary Figure S3). The AUCs of the prognostic
signature suggested that the model had good predictive accuracy
(Figure 6B). Nomograms are another quantitative model for
predicting clinical outcomes in patients with BC. Therefore, a
nomogram was developed based on the risk score and other
clinical characteristics (e.g., age, disease stage and molecular
subtype), so that the probability of survival at 1, 3, and 5 years
for each patient with BC could be calculated (Figure 6C). The
calibration charts used for internal validation of the line charts
showed good agreement between the predicted OS results and actual
observations (Figure 6D).

3.8 Analysis of immune cell infiltration, TMB,
RNAss, and drug sensitivity

We used the CIBERSORT algorithm to calculate the
correlation between the level of infiltration of 22 immune cells
and the disulfidptosis-DEGs we identified. Among these, APOD

FIGURE 5
The relationship between survival status and risk score, and differential expression analysis of signature related genes, in the different risk groups. (A)
Scatterplots showing the changes in survival statuses of BC patients as a function of increasing risk scores. (B) Heat map plots showing the differences
between the low- and high-risk group in four signature-related genes.

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2023.1193944

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1193944


and naïve B cells, as well as ELOVL2 and resting mast cells,
showed significant positive correlations. APOD and
M0 macrophages, as well as ELOVL2 and CD4 resting
memory T cells were negatively correlated (Figure 7A). We
then analyzed the correlation between the content of stromal
cells immune cells in the tumor microenvironment (TME), and
the risk score. The low-risk group showed higher stromal and
estimated scores (Figure 7B). Next, we analyzed whether there
were differences in the TMB between the high- and low-risk
groups. The results showed that the TMB frequency in the high-
risk group was greater than in the low-risk group (Figure 7D).
There was a positive correlation between TMB and risk score
(Figure 7E). In BC, the TMBs of 20 genes with high mutation

frequencies differed significantly between the high- and low-risk
groups. For example, the mutation frequencies for PIK3CA were
23% and 46% in the high-and low-risk groups, respectively. TP53
was mutated in 46% of the high-risk group and 18% of the low-
risk group (Figure 7C). A positive correlation between RNAss
and risk score was observed in tumor stemness analysis
(Figure 7F). The results of drug sensitivity analysis showed
that the sensitivity of low-risk group to cisplatin,
cyclophosphamide, docetaxel, lapatinib, paclitaxel, and
tamoxifen was higher than that of high-risk group, while the
drug sensitivity of high-risk group to Ribociclib was higher than
that of low-risk group, which could help to guide the selection of
clinical treatment (Supplementary Figure S4).

FIGURE 6
Prognostic value and reliability analyses of the prognostic signature for the training, testing, and all cohorts during development of the nomogram.
(A) K–M survival analysis between low- and high-risk group in the three cohorts. (B) Receiver operating characteristic (ROC) curves were constructed,
and the area under the ROC curve (AUC) were determined. (C) A nomogramwas built based on prognostic signature and clinicopathological factors (age
and disease stage). (D) The calibration curve showing the predictive accuracy of nomogram.
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4 Discussion

Cell energy metabolism is a necessary condition for maintaining
biological development and internal environmental balance (Vander
Heiden et al., 2009). Studies have shown that disulfide is closely related

to energy metabolism in cancer cells. Cancer cells typically exhibit
increased glucose uptake and, in the context of high
SLC7A11 expression, limit NADPH production by glucose
starvation or GLUT inhibition, resulting in massive accumulation of
disulfide, defective oxidation-reduction reactions, and cell death

FIGURE 7
The correlation of tumor immune cell infiltration, gene mutational frequency, TMB, and RNAss with prognostic signature. (A) The heat map shows
the correlation between four signature-related genes and level of tumor immune cell infiltration. (B) A violin plot showing the differences in stromal score,
immune score, and estimate score between the different risk groups. (C) Waterfall plots showing the top 20 genes with highest gene mutational
frequencies, and the types of gene mutations. (D) A box plot showing the difference in TMB between the low- and high-risk group. (E) Correlation
analysis of TMB andmolecular subtypeswith risk score. (F)Correlation scatterplot showing the relationship between RNAss and risk score. *p < 0.05, **p <
0.01, ***p < 0.001.
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(Stockwell et al., 2017; Liu et al., 2020).Disulfidptosis has recently been
identified as a new type of cell death (Liu et al., 2020; Liu et al., 2023),
and a new therapeutic approach for targeting and killing cancer cells.
Targeting and killing of cancer cells is a new therapeutic approach.
Aberrant expression of the cystine transporter solute carrier family
7 member 11 (SLC7A11; also known as xCT), the 11th member of the
seventh family of solute transporters, is a cystine/glutamate anti-
transporter involved in amino acid transport across the plasma
membrane (Conrad et al., 2018). In 2020, Gamboi et al. found that
for cells to maintain cystine at non-toxic levels, cancer cells with high
expression of SLC7A11 reduced cystine to more soluble cysteine,
leading to the rapid depletion of NADPH pools and abnormal
accumulation of disulfides, with resultant toxic effects that led to cell
death (Liu et al., 2020).We found that the expression of SLC7A11 in BC
tissues wasmuch higher than that in adjacent normal tissues. Therefore,
targeting the disulfidase pathway is a promising new strategy for BC
therapy.

BC is a molecular heterogeneous disease. The classical molecular
subtypes of BC classify patients into Luminal, HER2 and Basel
subtypes and the prognostic characteristics and drug sensitivity are
different among these molecular subtypes (Holm et al., 2017). In this
study, we investigated the relationship between expression patterns
we built and classical molecular subtypes of BC. We found that the
proportion of patients with Luminal A subtype in cluster A is
significantly higher than that in cluster B, and the proportion of
patients with Basel subtype in cluster B is significantly higher than
that in cluster A. The epidemiological study of breast cancer
reported that the prognosis of luminal A is the best among four
molecular subtypes, on the contrary, the basel subtype had the worst
prognosis. This is also consistent with the results in survival analysis
between cluster B and cluster A in our research. Besides, the results
of subgroup analysis based on the three BRCA subtypes (Luminal,
Her2, Basel) indicated that the expression pattern we identified can
combined with BRCA molecular subtype for better predicting and
improving the prognosis of patients with luminal subtype.

At present, there are few studies on constructing prognostic
models based on disulfidptosis-related gene. Recent studies have
found that disulfidptosis-related gene signature has an excellent
ability to identify the immune landscape of patients with bladder
cancer and predict their prognosis (Zhao et al., 2023).However, little
research has been conducted on DRGs in BC. Therefore, in this
study, we first integrated TCGA data and the GSE86166 dataset to
screen three DRGs (NDUFS1, LRPPRC, and SLC7A11) with
differential expression and prognostic value. According to the
expression pattern of DRGs, BC patients were divided into two
clusters, with significant differences in OS rate and immune cell
infiltration level. Indicating that these DRGs participate in TME.
Subcomponent PCAwas used to evaluate the prognostic value of the
two groups (clusters A and B). Subsequently, four disulfidptosis-
DEGs with prognostic value were identified using LASSO Cox
regression analysis, and a prognostic model was constructed. In
the training and validation cohort, the OS difference between the
high-risk group and the low-risk group indicates that the risk score
can be used as an indicator to distinguish the BC survival rate.
Multivariate Cox analysis showed that risk score, age and tumor
stage were considered to be independent prognostic indicators of
BC. In order to better quantify 1-year, 3-year, and 5-year OS in BC
patients, a nomogram combining these independent prognostic

factors was developed. The results of ROC and calibration curve
showed that the nomogram had significant prognostic performance.
This quantitative result can be used as a complementary tool to
improve prognosis assessment and personalized treatment.

The tumormicroenvironment includes a variety of complex cellular
components, such as immune cells, stromal cells and tumor cells (Shi
et al., 2022; Srinivasan et al., 2022). Their difference in composition and
expression is one of themain causes of tumor heterogeneity. Elucidating
tumor immune heterogeneity will help to identify effective synergistic
targets to enhance the efficacy of BC therapy. The prognosis of cluster A
was better than cluster B. Cluster A showed abundant infiltration of
activated B, CD8+ T, dendritic, natural killer cells and neutrophil. These
immune cells kill tumor cells and promote immune responses and
immunotherapy. In the constructed signature based on disulfidptosis-
DEGs, the stromal and estimated scores of the low-risk group were
higher than those of the high-risk group, and the immune scorewas also
higher in the low-risk group than in the high-risk group, although the
difference was not statistically significant. These findings suggest that
disulfidptosis is associated with TME, and can be used to guide targeted
immunotherapy.

Disulfidptosis is a novel type of cell death, and this study established
a prognostic model based on disulfidptosis-DEGs for the first time. Our
study adds to the understanding of the molecular biology of DRGs in
BC. TCGA and GEO data were integrated to expand the sample size
and improve the accuracy of the results. However, our study also had
several limitations. First, this study mainly used the TCGA and GEO
databases for analysis, and thus lacked real-world research, which
urgently needs to be used for full verification of our results in the
future. Second, the regulatory mechanism of DRGs in BC immune
infiltration remains unclear, and further functional verification at tissue,
cell and animal level is needed in the future. Finally, further research is
needed to determine whether the model can be used to predict
resistance to therapeutic agents in clinical practice.

5 Conclusion

We used consensus clustering to identify two disulfidptosis-
molecular subtypes in breast cancer with different OS. We further
constructed a prognostic signature based on disulfidptosis-DEGs
that better predicted patient survival outcomes and tentatively
identified the relationship between our risk model and the
immune landscape. The results of our study provide useful
insights into predicting the prognoses of patients with BC, and
may even aid their treatment in clinical practice.
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