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Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology
that includes environmental and polygenic risk factors with significant cross-trait
genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield
numerous association signals. However, for most of these regions, we do not yet
have a firm understanding of either the specific risk variants or the effects of these
variants. Post-GWAS methods allow researchers to use GWAS summary statistics
and molecular mediators (transcript, protein, and methylation abundances) infer
the effect of these mediators on risk for disorders. One group of post-GWAS
approaches is commonly referred to as transcriptome/proteome/methylome-
wide association studies, which are abbreviated as T/P/MWAS (or collectively as
XWAS). Since these approaches use biological mediators, the multiple testing
burden is reduced to the number of genes (~20,000) instead of millions of GWAS
SNPs, which leads to increased signal detection. In this work, our aim is to uncover
likely risk genes for NPSUDs by performing XWAS analyses in two tissues—blood
and brain. First, to identify putative causal risk genes, we performed an XWAS using
the Summary-data-based Mendelian randomization, which uses GWAS summary
statistics, reference xQTL data, and a reference LD panel. Second, given the large
comorbidities among NPSUDs and the shared cis-xQTLs between blood and the
brain, we improved XWAS signal detection for underpowered analyses by
performing joint concordance analyses between XWAS results i) across the two
tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity
in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for
pathway enrichment. The results suggest that there were widely shared gene/
protein signals within the major histocompatibility complex region on
chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN,
NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and
pathways underlying risk may offer new targets for therapeutic development. Our
study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene
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sets. So, including vitamin D and omega-3 in treatment plans may have a modest
but beneficial effect on patients with bipolar disorder.
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1 Introduction

Genome-wide association studies (GWAS) have identified
numerous loci associated with neuropsychiatric and substance
use disorders (NPSUDs). Furthermore, the risk loci of NPSUDs
have not been fully discovered (Owen and Williams, 2021). For
instance, the largest GWAS for schizophrenia (SCZ) found
287 independent loci and estimates that the common variants
explain only 24% of the phenotypic variance (Trubetskoy et al.,
2022). Similarly, other NPSUD GWAS yield large numbers of
genome-wide significant signals (Howard et al., 2019; Nievergelt
et al., 2019; Sanchez-Roige et al., 2019; Mullins et al., 2021) that
capture a statistically significant but small proportion of the
phenotypic variance. Since most genome-wide significant signals
reside in non-protein coding genomic regions (Edwards et al., 2013),
the interpretation of these GWAS findings are not straightforward.
Performing post-GWAS analyses that infer associations between
genes or molecular pathways and traits could significantly advance
our understanding of these GWAS signals.

Associated variants are thought to influence risk through altered
gene regulation, e.g., via changes in the RNA levels, protein
abundance, or epigenetic markers. This assumption is supported
by empirical studies of quantitative locus mapping, which found that
expression quantitative trait loci (eQTL) (Ongen et al., 2017),
protein QTL (pQTL) (Robins et al., 2021), and methylation QTL
(mQTL) (Hannon et al., 2016) colocalize with disease-associated
loci. However, while there are many well-powered GWAS scans of
NPSUDs (Pardiñas et al., 2018; Demontis et al., 2019; Grove et al.,
2019; Howard et al., 2019; Nievergelt et al., 2019; Watson et al., 2019;
Johnson et al., 2020; Polimanti et al., 2020; Mullins et al., 2021;
Trubetskoy et al., 2022), none of these studies directly assayed the
transcriptome, proteome, or methylome for their cohorts.

However, researchers found ways around this assessment
limitation in GWAS cohorts. They assembled large blood and
brain reference molecular e/p/mQTL (henceforth denoted as
xQTL) datasets that are publicly available (Sun et al., 2018; van
der Wijst et al., 2020; Yang C. et al., 2021; Ferkingstad et al., 2021;
Võsa et al., 2021; Zhang et al., 2021). Researchers have developed
methods to integrate these molecular xQTL data and GWAS
summary statistics to impute the association between phenotypes
and molecular mediators (transcriptome, proteome, and
methylome). Such analyses are widely referred to as
transcriptome-wide association studies (TWAS), proteome-wide
association studies (PWAS), and methylome-wide association
studies (MWAS) (Gamazon et al., 2015; Gusev et al., 2016; Zhu
et al., 2016; Barbeira et al., 2018; Barbeira et al., 2019; Hu et al., 2019;
Nagpal et al., 2019; Bae et al., 2021)—henceforth collectively referred
to as XWAS. Moreover, since they directly model relevant biological
mediators, these approaches could identify putatively causal genes
(Wainberg et al., 2019). Until recently, XWAS analyses of NPSUDs

were mostly TWAS (Zhu et al., 2016; Niu et al., 2019; Hammerschlag
et al., 2020; Kapoor et al., 2021). However, PWAS analyses are also
increasing in number with the expanding pQTL reference data in the
brain (Wingo et al., 2021; Wingo et al., 2022). In addition to the
transcriptome and proteome, the methylome has also been
investigated as a mediator (Perzel Mandell et al., 2021; Shen
et al., 2022). Recently, MWAS yielded significant genes for
NPSUDs (Sugawara et al., 2018; Aberg et al., 2020; Howard
et al., 2022).

Changes in gross anatomical and cell type-specific phenotypes
have been observed for NPSUDs and associated risk alleles via
in vitro and post-mortem studies (Brennand et al., 2012; Schrode
et al., 2019; Zhang et al., 2020). Functional genomic profiles differ by
cell type (Marstrand and Storey, 2014; Buenrostro et al., 2015), and
cell type composition differs across brain regions (Wang et al.,
2018). In addition, different neuronal cell types have different
functional profiles and different distributions across regions
(Kelley et al., 2018). Genetic variants contributing to the
heritability of certain NPSUDs were enriched in cis-regulatory
elements that are specific to GABAergic and glutamatergic
neurons (Sanchez-Priego et al., 2022). Thus, integrating cell type-
specific xQTL with GWAS findings is very promising. However, due
to expense and other factors, sample sizes for functional profiles in
specific cell types across brain regions are still small (Spaethling
et al., 2017; Bryois et al., 2022) and limited in detection power.
Consequently, most functional genomics data available to support
xQTL mapping studies come from bulk brain tissue (GTEx
Consortium, 2020) rather than a single cell (Bryois et al., 2022)
or sorted cell types (Aygün et al., 2021), and despite their limited
cellular resolution, the use of bulk tissue and meta-analysis across
tissues is currently still more powerful.

To conduct an XWAS, two common approaches, TWAS (Gusev
et al., 2016) and PrediXcan (Gamazon et al., 2015), have been used,
with both requiring pre-computing of SNP weights from xQTL
datasets. To avoid LD confounding, these XWAS tools also require a
subsequent fine-mapping step—e.g., TWAS-FOCUS (Mancuso
et al., 2019). In contrast, Mendelian randomization (MR)-based
methods (Zhu et al., 2016; Yuan et al., 2020; Zhou et al., 2020) do not
require the pre-computation of SNP weights and test for inference in
a two-step regression framework. Among MR-based XWAS
methods, summary-data-based Mendelian randomization (SMR)
is among the most commonly used methods (Zhu et al., 2016). It
has the advantage of providing users with a heterogeneity in
dependent instruments (HEIDI) test to filter out non-causal loci
that may be just in linkage with causal signals.

There is widespread comorbidity among NPSUDs (Plana-Ripoll
et al., 2019). This is in part due to shared genetic risk factors (Lee
et al., 2019), e.g., as detected by the genetic correlation (rG) in cross-
trait analyses (Brainstorm Consortium et al., 2018). Consequently, it
is possible that there could be many shared XWAS signals among
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NPSUDs. This supports the joint analysis of NPSUDs to potentially
increase detection power, especially for underpowered disorders
(Turley et al., 2018; Gleason et al., 2020; Taraszka et al., 2022).
Additionally, there is significant concordance of cis-eQTL and cis-
mQTL effects between blood and the brain (Qi et al., 2018), and
more than 70% of cis-pQTL are shared between blood and the brain
(Yang C. et al., 2021). Moreover, the direction of effects across most
tissues for shared eQTLs is the same (GTEx Consortium, 2015).
Consequently, given the high comorbidities between traits and
xQTL concordance between tissues, a joint analysis of the XWAS
results from all traits and tissues would likely help uncover novel
signals, especially for relatively underpowered NPSUDs and tissues
(e.g., brain).

In this study, we used SMR to perform blood and brain XWAS of
NPSUDs to identify potential molecular mediators for these
disorders. To increase signal detection in underpowered disorders
and tissue (brain), we leveraged comorbidities between NPSUD and
cis-xQTL cross-tissue agreement in a joint trait/tissue concordance
analysis. Subsequent analyses of XWAS signals were used to uncover
putative risk loci and pathways, shedding light on the etiology of
NPSUDs.

2 Materials and methods

2.1 Statistical method

We performed univariate XWAS analyses for nine NPSUDs
[attention-deficit and hyperactivity disorder (ADHD), autism
spectrum disorder (ASD), alcohol use disorder (AUD), bipolar
disorder (BIP), cannabis use disorder (CUD), major depressive
disorder (MDD), opioid use/dependence disorder (OD), post-
traumatic stress disorder (PTSD), and schizophrenia (SCZ)]
(Table 1) for three XWAS paradigms (TWAS, PWAS, and

MWAS) and two tissues (blood and brain). For this purpose, we
used SMR (v.1.03) (Zhu et al., 2016) to infer the association between
the transcriptome/proteome/methylome and NPSUDs. We
performed SMR analysis for GWAS of NPSUDs (Table 1) using
external xQTL reference datasets (Table 2). To prioritize genes and
perform pathway analyses, we adjusted the probe (RNA/protein/
CpG) SMR p-value (PSMR) for the HEIDI test p-value (PHEIDI) by
combining the two p-values into a single one by requiring that i)
PSMR was not penalized when PHEIDI was above 0.01 and ii) PSMR

was penalized by the amount of PHEIDI that fell below 0.01.
Consequently, we adjusted PSMR to PSMR

′ � PSMR

min (PHEIDI
0.01 ,1). We used

this approach instead of filtering by PHEIDI < 0.01 because a
misalignment between the GWAS cohort population and the
European LD reference panel used by SMR might yield very low
PHEIDI, e.g., the well-known C4A in our SCZ TWAS
(PHEIDI � 5.94 × 10−4). Subsequently, to extend the inference to
pathways, we performed a gene set enrichment analysis for
suggestive (PSMR

′ < 1
number ofprobes) signals (Figure 1).

2.2 Parameters for SMR-based XWAS
analyses

SMR analyses were performed only for cis-xQTLs (SNPs with
p-value < 5 × 10−8 within 2 Mbp of the probe). We also used the
default maximum (20) and minimum (3) number of xQTLs selected
for the HEIDI test. We set the significance threshold as < 1.57 × 10−3

for the HEIDI test p-values and the mismatch of minimum allele
frequency among input files as < 15%. For the HEIDI test, SNPs with
LD > 0.9 and <0.05 with the top associated xQTL SNPs were pruned.
In case-control studies, we log-transformed the odds ratio as
suggested by the SMR analysis guidelines (https://yanglab.
westlake.edu.cn/software/smr/#SMR&HEIDIanalysis, accessed on
3 August 2022).

TABLE 1 Summary statistics of eight major PGC GWAS and MVP AUD GWAS.

Neuropsychiatric and substance use
disorders

GWAS significant markersa/total
markers

Study Number of cases and controls/
ancestry

Attention-deficit and hyperactivity disorder 317/8,094,095 Demontis et al.
(2019)

19,099–34,194/EUR

Autism spectrum disorder 93/7,822,833 Grove et al. (2019) 18,381–27,969/EUR

Alcohol use disorder 588/6,895,251 Kranzler et al. (2019) 34,658–167,346/EUR

Bipolar disorder 3,205/7,608,184 Mullins et al. (2021) 41,917–371,549b/EUR

Cannabis use disorder 29/7,735,104 Johnson et al. (2020) 20,196–363,116/EUR

Major depressive disorder 4,625/7,286,335 Howard et al. (2019) 411,965–1,285,068/EUR

Opioid use/dependence disorder 0/4,571,339 Polimanti et al.
(2020)

4,503–32,500/EUR

Post-traumatic stress disorder 3,434/3,875,929 Nievergelt et al.
(2019)

30,000–170,000/EUR

Schizophrenia 22,344/7,585,077 Trubetskoy et al.
(2022)

33,640–43,456/mostly EUR

aUnpruned (based on LD) variants.
bCase group includes individuals with bipolar or unipolar, and control groups include individuals without any such diagnosis.

EUR: European.
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2.3 Neuropsychiatric and substance use
disorder GWAS

All summary statistics except for AUD (Table 1) were
downloaded from the Psychiatric Genomics Consortium (PGC;

web portal (https://www.med.unc.edu/pgc/download-results/,
accessed on 15 December 2022). For the AUD GWAS summary
statistics, we had access to the data granted through NIH from the
Million Veteran Program (MVP) (dbGaP Study Accession:
phs001672. v6. p1). For SMR analysis, GWAS summary statistics

TABLE 2 Reference xQTL molecular datasets used for XWAS studies.

Study Tissue Sample size Study Genotype Probe assay Number of probes
in SMR analysis

Reference eQTL data

eQTLGen Peripheral
blood

31,684 Võsa et al. (2021) SNP array Expression array and RNA-seq 19,250

BrainMeta v2* Brain cortex 2,865 (effective
sample size: 2,443)

Qi et al. (2022) SNP
array/WGS

Expression array and RNA-seq 16,744

Reference pQTL data

deCODE** Blood plasma 35,559 Ferkingstad et al.
(2021)

SNP
array/WGS

SOMAscan 4,773

ROS/MAP-
Banner- MSBB

dPFC + FC/
dPFC/PG

366 + 70/151/135 Wingo et al. (2022) WGS TMT isobaric labeling MS 9,346

Reference mQTL data

Blood mQTL*** Peripheral
blood

1,980 McRae et al. (2018);
Wu et al. (2018)

SNP array Illumina
HumanMethylation450 array

94,338

Brain
mQTL****

dPFC/fetal
brain

1,160 Qi et al. (2018) SNP array Illumina
HumanMethylation450 array

436,077

SOMAScan: slow off-rate modified aptamer scan; WGS: whole-genome sequencing; ROS: Religious Orders Study; MAP: Rush Memory and Aging Project; MSBB: Mount Sinai NIH

NeuroBioBank; dPFC: dorsolateral prefrontal cortex; FC: frontal cortex; PG: parahippocampal gyrus; TMT: tandem mass tag; MS: mass spectrometry.
aThese data are a meta-analysis of the GTEx brain, CMC, and ROS/MAP by using MeCS (Qi et al., 2018).
bOne group of participants is from deCODE, and the second group is from the Icelandic Cancer Project.
cMeta-analysis of mQTL data from two independent cohorts: Brisbane System Genetics (BSGS) and Lothian Birth Cohorts (LBC).
dMeta-analysis of mQTL data from three independent cohorts [Hanon et al., Jaffe et al., and ROS/MAP (Hannon et al., 2016; Jaffe et al., 2016; Ng et al., 2017)] by MeCS.

FIGURE 1
Flowchart of SMR XWAS analyses paired in both blood and brain tissues. To penalize for heterogeneity (non-causality), we employed an adjusted probe
p-value [PSMR

′ = PSMR/min (PHEIDI/0.01,1)]. For gene set enrichment analysis, we used the suggestive signals (expected to occur once per scan by chance). The
Primo method was used to conduct multitrait analysis, and functional mapping and annotation (FUMA) was used for gene set enrichment analysis.
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were processed into the SMR-ready file format. The positions for all
variants and genes in the input files (LD reference panel, GWAS
summary statistics, and xQTL summary statistics files) for the SMR
analysis were based on the GRCh37/hg19 reference genome.

2.4 Molecular xQTL reference datasets

For our analyses, to obtain the highest signal detection, we
selected the largest publicly available blood and brain xQTL datasets
(Table 2). When pQTL summary statistics from the reference data
were not available (blood and brain pQTL) in the SMR-required
input binary file format (i.e., .besd), we processed them into this .
besd format. In the following sections, we provide some of the most
relevant details for these datasets (a list of URLs for each dataset is
given in Supplementary Table S1, and more details are given in
Supplementary Material).

2.4.1 eQTL reference datasets
For TWAS, we obtained the blood eQTL data from eQTLGen

(Võsa et al., 2021) and brain eQTL from BrainMeta v2 (Qi et al.,
2022) (Table 2). The eQTLGen consortium meta-analyzed
31,684 samples from 37 different study cohorts. Genotyping and
gene expression levels were assayed mainly from whole blood
(34 out of 37) and part peripheral blood mononuclear cells
(3 out of 37). Most cohorts (25 out of 37) were population
based. The following eQTLGen studies included individuals of
non-European ancestry (e.g., the Singapore Systems Immunology
cohort—n = 115; Morocco—n = 175; Bangladeshi Vitamin E and
Selenium Trial—n = 1,404). eQTLGen inferred cis-eQTL effects for
16,987 expression genes (eGenes). BrainMeta (version 2) provided a
meta-analysis of brain eQTL mapping studies from seven
independent cohorts (Qi et al., 2022). The study consisted of
2,443 unrelated individuals of European ancestry. BrainMeta
v2 detected 1,962,114 eQTL SNPs for 16,744 eGenes.

2.4.2 pQTL reference datasets
For the PWAS, we used the blood pQTL data from deCODE

(Ferkingstad et al., 2021) and brain pQTL from Wingo et al. (2022)
(Table 2). The deCODE proteome study consisted of
35,559 individuals from Iceland. Blood plasma samples were
assayed for 4,907 probes [slow off-rate modified aptamer scan
(SOMAScan) (Gold et al., 2010; 2012) assay version 4 aptamers],
which correspond to 4,719 unique proteins.

The brain pQTL study sampled three regions of the brain,
prefrontal cortex, dorsolateral prefrontal cortex, and
parahippocampal gyrus (Wingo et al., 2022), in 722 samples. It
used the isobaric tandem mass tag method to assay proteins, and
9,363 of them met the quality control criteria. Although the sample
size of the brain pQTL reference data was relatively small, it was still
the largest publicly available such study at the time of completion for
the analyses.

2.4.3 mQTL reference datasets
For MWAS analyses, we used the blood (McRae et al., 2018; Wu

et al., 2018) and brain mQTL datasets (Qi et al., 2018) (Table 2),
which were publicly available for downloading from the SMR web
portal (https://yanglab.westlake.edu.cn/software/smr/

#DataResource, accessed on 28 January 2023). The mQTL data
for the brain are a meta-analysis of the mQTL mapping results from
three major studies (Hannon et al., 2016; Jaffe et al., 2016; Ng et al.,
2017). The methylation assay used in these studies was the Illumina
Infinium HumanMethylation450 K array. We used the annotation
file provided by the manufacturer to map the CpG probe ids (with
“cg” prefix) to the HUGO Gene Nomenclature Committee (HGNC)
gene symbol.

2.5 Gene set enrichment analysis

Our aim was to uncover pathways that were associated with
NPSUDs. For this purpose, we tested for pathway enrichment in
XWAS signals. We performed two separate functional mapping
and annotation (FUMA) (v1.41) (Watanabe et al., 2017) gene set
enrichment using genes with suggestive signals from the i) TWAS
and PWAS combined and ii) MWAS only. We included genes
with suggestive adjusted p-values (PSMR

′ < 1
number ofgenes) in query

gene lists for FUMA analyses that assumed a possible universe of
54,619 coding and non-coding genes (protein coding, long non-
coding RNA, non-coding RNA, and processed transcripts). Due
to the complexity of the MHC region, we chose to exclude genes
from this region in FUMA analyses. To adjust for multiple
testing, we assessed pathway significance using the false
discovery rate (FDR) procedure (q-value <0.05) (Benjamini
and Hochberg, 1995).

2.6 Joint NPSUD concordance analysis of
TWAS and MWAS gene signals

To increase the statistical power for the prioritization of genes in
underpowered NPSUDs and tissues (such as brain), we used a
multitrait and multitissue approach. Therefore, we conducted a
joint trait concordance analysis using Primo (R package for
integrative multi-omics association analysis) (Gleason et al.,
2020) within the more powerful XWAS paradigms (TWAS and
MWAS). We did not jointly analyze the PWAS because the brain
results were too sparse. We used Primo because it was designed to
jointly analyze summary statistics from multiple studies while
adjusting for the correlation between datasets (e.g., due to sample
overlapping). Gene-level-adjusted p-values from SMR analyses were
used as input for the joint trait and tissue concordance analyses. If a
gene had multiple p-values, then the Cauchy method (Liu et al.,
2019) was used to combine these p-values into one p-value for the
gene. Because Primo requires the estimated proportion of statistics
(alt_props) coming from the alternative distribution, we
exhaustively tested different values for this parameter. We also
estimated it directly from the data using a mixture of two
distributions. This parameter was critical because more
significant results were identified when larger values of alt_probs
were used. We finally decided to set alt_probs = 10–3, which was also
suggested in the Primo paper (Gleason et al., 2020). For
prioritization purposes, we considered genes with posterior
probabilities (PP) > 0.95 as significant.

In addition to increasing signal detection in the brain, the joint
analysis might open avenues for further investigations. For instance,
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blood and brain concordant signals might be further studied to be
used as proxies for the brain pathology of NPSUDs. It is possible that
such blood markers might also have an impact on the diagnosis/
prognosis of NPSUDs; i.e., such concordant XWAS signals might
have translational implications.

3 Results

In this section, we provided a selection of the common and
shared XWAS results. Because the strong signals in the MHC
region made the visualization of other findings difficult, we
omitted this region from the plots of results from univariate
TWAS and PWAS analyses (Figure 1 and Figure 2). Details on
the MHC signals for these two paradigms are provided in
Supplementary Figures S1, S2. All univariate XWAS results
collated by paradigm are available (please see the data
availability statement for all results).

3.1 TWAS results

Blood and brain TWAS for BIP, SCZ, and MDD yielded the
highest number of significant TWAS signals (Figure 2 and
Supplementary Figure S1). These disorders share many common
signals, especially in the major histocompatibility complex (MHC)
region on chromosome 6 (25–35 Mbps), e.g., BTN3A2 and C4A,
which were concordant (i.e., significant and with the same sign for
effect size) between blood and the brain. Other shared signals
between three disorders were ATF6B, C4A, FLOT1, IER3,
LINC00243, TRIM10, TUBB, TNXA, ZNF602P, and ZSCAN12P1,
in blood, and, OR2B8P, ZKSCAN8P1, and ZSCAN16-AS1, in brain.

Among substance use disorders (SUDs), AUD showed
significant signals in blood (NRBP1, PPP4C, and YPEL3) and
brain (LINC01833). For CUD, HYAL3 and NAA80 on
chromosome 3 were significant signals and with a concordant
direction of effect between blood and brain. CUD also had
significant blood-only signals on chromosome 10 for ENO4 and

FIGURE 2
Miami plot [Manhattan blood (above)–brain (below) bi-plot] of TWAS-adjusted p-values (PSMR

′) for the investigated neuropsychiatric and substance
use disorders. The upper part of the plot is for the blood, and the lower part is for the brain. The red horizontal line denotes the Bonferroni significance
threshold. For visualization, we labeled the signals by their affiliated HUGO gene name and the direction of the SMR effect estimate on the trait shown in
parentheses. AUD: alcohol use disorder; BIP: bipolar disorder; OD: opioid dependence/use disorder; ASD: autism spectrum disorder; SCZ:
schizophrenia; ADHD: attention-deficit and hyperactivity disorder; CUD: cannabis use disorder; MDD:major depression; and PTSD: post-traumatic stress
disorder.
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SHTN1. Probably due to the low sample size, no robust signal was
detected for OD.

For ADHD, there were three significant signals from blood
(AL139289.1, AP006621.1, and MED8-AS1) and two from brain
(MED8 and TIE1). For ASD, there were two significant signals on
chromosome 22 (KIZ and XRN2), with KIZ also being suggestive in
the brain. For PTSD, there is a cluster of signals on chromosome 17,
some of which had a concordant direction of effect between blood
and brain (e.g., AC005829.23 and KANSL1-AS1). PTSD also yielded
a blood–brain concordant signal for KYAT3.

3.2 PWAS results

The number of PWAS significant signals was lower than that of
TWAS signals (Figure 3 and Supplementary Figure S2). This was
expected because PWAS had a lower number of probes tested and
lower sample size for reference panels, especially for brain tissue. For
instance, we did not identify any significant blood or brain PWAS
signals for OD, ASD, or CUD. Similar to TWAS, BIP, SCZ, and
MDD yielded common signals in the MHC region for blood
(BTN3A3, BTN3A1, and MICB—see also Supplementary Figure

S2 for more details). NEK4 was a brain-only signal shared
between SCZ and BIP.

For PTSD, significant brain signals were in KYAT3 (also
detected in TWAS), CTNND1, GPX1, KHK, and MICB (that was
also a common signal with SCZ and MDD). Among these, only
KYAT3was blood–brain concordant for the direction of effect. Some
notable disease-specific signals were for ADH1C and ADH1B in
AUD blood and TIE1 in ADHD blood PWAS (which was also
significant in brain TWAS).

3.3 MWAS results

Notably, MWAS detected biologically significant signals, e.g.,
ADH1C for AUD in blood. Similar to TWAS and PWAS, we found
that BIP, SCZ, andMDDhadmore significant signals than the remaining
disorders (Figure 4 and Supplementary Material). Again, the largest
blood–brain concordant signals that were shared between BIP, SCZ, and
MDDwere in theMHC region, such asBTN3A2, H2AC13, ZNF389, and
ZSCAN12L1 for the brain and BTN3A2, DDR1, DPCR1, GTF2H4,
H2AC13, HCG9, HIST1H4D, HLA-B, MSH5, PBX2, SFTA2, TRIM15,
TRIM26, TRIM27, TRIM31, TRIM40, TUBB, and VARS2 for blood.

FIGURE 3
Miami plot [Manhattan blood (above)–brain (below) bi-plot] of PWAS-adjusted p-values (PSMR

′) for investigated neuropsychiatric and substance use
disorders. Details and background are given in Figure 2 legend.
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As for PWAS, there were no significant signals for OD or ASD.
For CUD, SLC38A3 was a blood–brain concordant signal. ADHD
yielded two significant signals on chromosome 1 (C1orf84 in blood
and KDM4A in the brain). For PTSD, there were significant blood
signals for C11orf31, FURIN, GMPPB, MAPT, and SCAND3.
Among these, MAPT and C11orf31 were also concordant
between blood and the brain. Other strong PTSD brain signals
were AMIGO3, cg05913906, and FES.

3.4 Gene set enrichment analysis results

In this section, we highlighted some selected significant signals
from FUMA gene set enrichment. More detailed results are provided
in Supplementary Figures S2–S33 and Supplementary Tables S2–S5.
Consistent with most other XWAS results, there were no significant
findings for OD and CUD. As expected, i) SCZ yielded the highest
number of signals (due to its larger sample size in GWAS) and ii)
alcohol metabolism pathways showed significant enrichments
for AUD.

In the combined TWAS and PWAS signal analysis, BIP-
prioritized genes were significantly enriched in non-genomic
actions of the 1,25 dihydroxyvitamin D3 gene set (PLCB3,
PRKCB, PRKCA, and CD40) (q-value = 3.81 × 10−2)
(Supplementary Figure S10). Another BIP signal was GWAS
catalog gene enrichment for plasma omega-3 polyunsaturated
fatty acid levels (alpha-linolenic acid) in brain (MYRF,
TMEM258, and FADS1) (q-value = 1.00 × 10−3) (Supplementary
Figure S12). For the same disorder, GO_HYALURONAN_
METABOLIC_PROCESS (ITIH1, ITIH3, and ITIH4) (q-value =
5.67 × 10−3) was the most significant Gene Ontology (GO) term in
the Biological Process category (Supplementary Figure S13) (more
details are given in Supplementary Tables S2, S3.) Peptidase-related
GO terms were shared signals between BIP and SCZ
(Supplementary Figures S34, S35). Also, neuron-related pathways
(GO_SYNAPSE_PART, GO_PRESYNAPSE, and GO_POST_
SYNANSE) were significantly enriched for MDD (Supplementary
Figures S34, S35).

In the MWAS analysis, SCZ again yielded the most signals.
Metabolism of alpha-linolenic acid (omega-3) was one of the

FIGURE 4
Miami plot [Manhattan blood (above)–brain (below) bi-plot] of MWAS-adjusted p-values (PSMR

′) for the investigatedNPSUDs. Details and background
are given in Figure 2 legend.
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significant gene sets for BIP bloodMWAS (FADS2, FADS1, andMIR
1908) (q-value = 3.24 × 10−4) (Supplementary Figure S33). BIP and
SCZ shared a signal for cation ion transport-related gene sets (GO_
CATION_TRANSPORT and GO_DIVALENT_INORGANIC_
CATION_TRANSPORT) (Supplementary Figure S37). Details are
given in Supplementary Tables S4, S5.

3.5 Joint analysis for all NPSUD cross-tissues
(blood and brain)

TWAS/MWAS results were jointly analyzed for seven NPSUDs
(Figure 5), excluding the underpowered OD and CUD due to poor
distributions of XWAS p-values vs. Primo PPs. We observed gene
signals (PP > 0.95) that were shared between many NPSUDs and
between blood and the brain (Figure 5). ZDHHC5 was the most
shared signal between blood and the brain for five NPSUDs (ADHD,
AUD, MDD, PTSD, and SCZ). There was a cluster of genes that was
also shared only between ASD, PTSD, and SCZ, e.g., AC005829.1,
KANSL1-AS1, LRRC37A2, MAPK8IP1P1, and MAPK8IP1P2. BIP
and SCZ also shared a number of signals (AC006252.1, GLYCTK,
GNL3, GOLGA2P7, NMB, and NEK4). However, there were also
disease-specific signals, e.g., i)AP006621.3 and PIDD1 for ADHD; ii)
ADD3, LMAN2L, and PLEC for BIP; iii) KYAT3 and PLEKHM1 for
PTSD; iv) PCCB and GATAD2A for SCZ; and v) LINC02803 for
MDD (details are given in Supplementary Table S6).

While often there were very similar patterns of shared TWAS
signals between blood and the brain, there were also brain-specific

signals. For instance, BRD2, FURIN, and ZSCAN16-AS1 were such
brain-only signals that were shared among many disorders [note
that FURINwas successfully tested via the CRISPR/Cas9 experiment
on isogenic human-induced pluripotent cells for the allelic effect on
its gene expression of the SNP with the largest SCZ signal in the
region (Schrode et al., 2019)]. There were also both disease- and
brain-specific signals, e.g., FTCDNL1 for SCZ observed only in the
brain. More disease/tissue-specific signals are given in
Supplementary Table S6.

For MWAS, we often observed the same pattern of shared
signals between blood and the brain. Among the largest signals
(ranked by the sum of PP in the brain) were C11orf31, FURIN, and
MED19 that were shared among ADHD, AUD, BIP, MDD, PTSD,
and SCZ (Figure 6). GATAD2A stood out as a shared brain-specific
signal that was shared by ADHD, ASD, BIP, PTSD, and SCZ. RERE
was shared among AUD, MDD, PTSD, and SCZ, which was one of
the eGenes for a cis-eQTL associated with SCZ that showed an allele-
specific effect via the chromatin interaction (Zhang et al., 2020).
More details about the results are given in Supplementary Table S7.

3.6 Sensitivity analysis for XWAS findings

To assess the sensitivity of XWAS results to xQTL reference data
changes, we performed replication XWAS where such a reference
change was possible, i.e., for blood eQTL, blood pQTL, and brain
eQTL (Supplementary Table S8). The replication results showed that
the majority of signals highlighted in the primary analysis were also

FIGURE 5
Results of the joint trait concordance analysis for TWAS. The top 25 genes are shown as ranked by the sum of the posterior probabilities (PPs) within
brain tissue for disorders: ADHD: attention-deficit and hyperactivity disorder; ASD: autism spectrum disorder; AUD: alcohol use disorder; BIP: bipolar
disorder; MDD: major depressive disorder; PTSD: post-traumatic stress disorder; and SCZ: schizophrenia.
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replicated for ADHD, AUD, CUD, and PTSD. Overall, the
replication results showed a similar pattern to the original
findings, i.e., the higher-powered PD GWAS (e.g., BIP, MDD,
and SCZ) yielded more XWAS signals than others. For SCZ,
between the primary and replication analyses we fully replicated
59 brain TWAS, 36 blood TWAS, and 11 blood PWAS signals. We
also provided overlapping XWAS signals between the primary and
replication analyses for BIP, MDD, and PTSD, which have a greater
number of signals (Supplementary Table S9) (please see data
availability statement for all replication results). In conclusion,
xQTL replication analysis detected most of the important signals.

4 Discussion

To prioritize putative PD risk genes, we performed XWAS
analyses by applying the SMR method to GWAS summary
statistics of these disorders. These analyses uncovered putative
risk genes by inferring the association between the
transcriptome/proteome/methylome and NPSUDs. We
subsequently identified molecular pathways associated with
NPSUDs via gene set enrichment analyses of genes with XWAS
suggestive signals. To improve signal detection power for
underpowered traits and brain tissue, we also performed a joint
concordance analysis of all the traits and tissues within the two
adequately powered XWAS paradigms (TWAS and MWAS). The

results of this work suggested possible components of the treatment
regimen for certain NPSUDs, e.g., the possible implication of
vitamins (B6 and D) and omega-3 pathways for some of these
disorders.

Our analyses replicated biologically relevant and previous
significant findings. Among the biologically relevant ones, we
note that the common signal in AUD between blood PWAS and
MWAS was ADH1C, which codes for the alcohol dehydrogenase
enzyme that metabolizes alcohol. It was also implicated as significant
loci in various GWAS of alcohol-related phenotypes (Gelernter
et al., 2014; Clarke et al., 2017; Kranzler et al., 2019). We also
replicated the findings of Dall’Aglio et al. (2021) regarding MDD
NEGR1 as it was the secondmost significant gene in ourMDD blood
TWAS. Similar to our TWAS results, BTN3A2 and RPL31P12 were
significant findings in a previous MDD brain TWAS conducted by
Yang H. et al. (2021).

In our joint TWAS concordance analyses, ZDHHC5 was the
shared signal between all NPSUDs except for ASD and BIP
(Figure 5). This gene was previously found to be a shared blood
TWAS signal between MDD and SCZ (Reay and Cairns, 2020). In
the same paper, some of our other XWAS signals shared between
BIP and SCZ (e.g., NEK4, GNL3, and NMB) were also reported as
shared TWAS signals in blood. Another shared signal between SCZ,
BIP, and AUDwas INO80E,which was previously found to be one of
the top 10 shared signals between SCZ and AUD (Johnson et al.,
2021). A common blood–brain MWAS signal for AUD, MDD,

FIGURE 6
Results of joint trait concordance analysis for MWAS. The top 25 genes (excluding probes notmapped to a gene name as per Illumina annotation) are
shown and ranked by the sum of brain PPs for all disorders.
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PTSD, and SCZ from the Primo joint analyses was RERE. It was one
of the eGenes for a cis-eQTL showing an allele-specific effect via the
chromatin interaction (Zhang et al., 2020). The same gene was also
implicated as a significant gene in SMR analysis in the recent PGC
SCZ GWAS (Trubetskoy et al., 2022).

We compared our joint trait concordance analysis findings for
SCZ (brain TWAS + MWAS or brain TWAS only) with PGC3 SCZ
GWAS findings. There were common genes identified as significant
(PP > 0.95) in our brain tissue results (TWAS + MWAS) and those
found in the list of significant replication and discovery loci
(Supplementary Table S10) in PGC3 SCZ GWAS, such as
BTN3A2, FURIN, GATAD2A, GNL3, INO80E, KANSL1-AS1, and
NEK4. However, we found significant signals forAC005829.1, BRD2,
C11orf31, C6orf15, DND1P1, MAPK8IP1P1, and ZNF602P, which
were not found to be significant in the aforementioned PGC3 SCZ
gene list. There were also common genes between our brain TWAS
results (from the joint analysis) and the list of genes in PGC SCZ that
were prioritized based on the SMR analysis only. Those genes were
INO80E, GATAD2A, PCCB, and FURIN. However, our brain results
include significant findings that were not identified in PGC3 SCZ,
such as BRD2, GNL3, KANSL1-AS1, NEK4, and ZDHHC5 (for
details see Supplementary Table S10).

TheMHC region is a well-known region associated with some of
the NPSUDs, e.g., SCZ (Corvin and Morris, 2014). Our joint XWAS
analyses strongly support this assertion for SCZ, BIP, PTSD, and
MDD. For instance, BTN3A2 was the leading TWAS signal for BIP,
MDD, and SCZ. Also, C4A, thought to be implicated in synaptic
pruning (Sekar et al., 2016), was a shared brain TWAS signal for BIP,
MDD, PTSD, and SCZ (Figure 5). Similarly, MICB was shared
between AUD, BIP, MDD, PTSD, and SCZ in brain MWAS
(Figure 6). Its possible involvement in NPSUDs was also
supported in empirical research, which showed that MICB is part
of a molecular network interacting with the differentially expressed
genes in the Brodmann area 9 region of individuals with MDD
(Scarr et al., 2019).

In addition to many common signals between NPSUDs, there
are also some that are disease specific. For PTSD, we observed
specific signals for TWAS/PWAS in a cluster of genes on
chromosome 17 and KYAT3 on chromosome 1. KYAT3 was the
strongest signal for PTSD brain PWAS. It was reported as a TWAS
signal for reexperiencing a PTSD symptom cluster (Pathak et al.,
2022). A GWAS on social anxiety also found a SNP that is
downstream of KYAT3 to be significant (Stein et al., 2017).

AUD-specific TWAS signals were found on chromosome
2 for NRBP1 and SNX17. A meta-analysis of the Alcohol Use
Disorders Identification Test (AUDIT) showed that the index
SNP for GCKR overlaps also with the SNX17 (Sanchez-Roige
et al., 2019). This same gene was also found significant (p-value =
1.18 × 10−6; brain caudate basal ganglia) in TWAS of substance
use disorder (Hatoum et al., 2022). For ADHD, TIE1
(chromosome 1) is a TWAS/PWAS signal that was not found
in other NPSUDs. This gene codes for tyrosine kinase, and it was
found as significant in ADHD TWAS (Liao et al., 2019; Chen
et al., 2022). For CUD, we also identified concordant blood–brain
TWAS signals on chromosome 3, e.g., HYAL3 and NAA80. In
another TWAS analysis using the same CUD GWAS (Table 1),
another research group also found HYAL3 to be significant
(Johnson et al., 2020). Previously, the expression of NAA80 in

the brain (anterior cingulate cortex) was associated with the
genome-wide significant variant rs2777888 in meta-analyzed
European ancestry PTSD GWAS (Gelernter et al., 2019).

Since blood and brain cis-xQTLs were known to overlap, this
was used to improve the detection power for brain XWAS analyses
through the joint analysis of both tissues. The joint analyses found
many candidate risk genes that were concordant in the direction of
effect for both tissues. The blood XWAS of these concordant genes
could be useful for future development of NPSUD multivariate
blood biomarkers that might be used for diagnosis, prognosis, and
possible treatment of these disorders.

Supplements such as vitamins and omega-3 have been tested
(with varying success rates) as treatment for NPSUDs (Firth et al.,
2019). Previous investigations in blood indicated that the deficiency
(Anglin et al., 2013) and supplementation (Sarris et al., 2016) of
vitamin D might increase/decrease the risk for MDD. Other studies
did not find any effect of vitamin D supplementation on MDD
(Marsh et al., 2017) and depression in older adults (Okereke et al.,
2020). Research implicated reduced depression symptoms with
taking vitamin D as a supplement for BIP patients (Cereda et al.,
2021). Also, vitamin D-binding protein levels were increased in
plasma from adolescents with BIP, which might be associated with
the pathology of BIP (Petrov et al., 2018). Omega-3 was also found to
likely lower MDD risk (Mocking et al., 2016). A most recent GWAS
of polyunsaturated and monounsaturated fatty acids showed
significant gene set enrichment of GWAS catalog genes in BIP-I
and II (Francis et al., 2022). More recently, a randomized controlled
study demonstrated that dietary modifications of increasing the
intake of omega-3 fatty acids and decreasing the intake of omega-6
could have an impact on the daily fluctuations of BIP symptoms
(Saunders et al., 2022). Nonetheless, it is not clear if these non-
genetic/non-MR studies managed to eliminate most possible
confounders. However, our analyses eliminated most confounders
by using Mendelian randomization methods, such as SMR.

While we did not uncover any vitamin-associated pathway or
gene signal for MDD, our analyses indicated a possible link between
such supplements and BIP/PTSD. For instance, BIP TWAS and
PWAS-prioritized genes showed significant enrichment in a vitamin
D3 gene set (Supplementary Figure S10). For BIP, we also found
significant enrichment in omega-3-associated gene sets for the
combined T/PWAS (Supplementary Figure S11) and MWAS-
only (Supplementary Figure S36) FUMA analyses. These gene
sets included FADS1 and FADS2. These enzymes were shown to
take part in the metabolism of essential fatty acids (Lattka et al.,
2010). Previous findings from functional (Yamamoto et al., 2023)
and genetic association studies (Ikeda et al., 2018; Zhao et al., 2018;
Mullins et al., 2021) implicated FADS1 as possible risk loci in BIP.
The KYAT3 signal found in PTSD T/PWAS suggests a possible
etiological role of vitamin B6 (a cofactor of KYAT3) in this disease.
Based on these findings, more clinical research evidence is required
to test these molecules as a secondary component of the treatment
regimen: i) vitamin D and omega-3 supplementation for BIP and ii)
vitamin B6 (or B complex) for PTSD.

The importance of this study is five-fold. First, this was the most
powerful XWAS study of NPSUDs because we integrated the largest
available xQTL reference data and NPSUD GWAS. Second, we
extended these most powerful gene-level XWAS inferences to the
pathway level, which suggested some novel avenues for treatment.
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Third, we further increased the detection power for underpowered
traits and tissues via multitrait multitissue joint analyses. Fourth, the
joint analyses uncovered blood–brain concordant XWAS signals
that, in the future, might form the basis for the development of
(multivariate) blood biomarkers for diagnosis/prognosis. Fifth, these
joint analyses were the first formal attempt to uncover common
signals for multiple disorders and those specific to a single one.

5 Limitations of the study

1. Although we applied the HEIDI test, it is not likely that SMR
completely eliminates the horizontal pleiotropy. For instance, an
SNP might be xQTL for multiple genes, which violates the
assumption that the SNP effect on the trait is mediated only
through the tested gene. However, we believe that gene set/
pathway inferences are likely to mitigate the confounding
effect of this phenomenon from gene-level analysis.

2. While Primo can adjust for the correlations between multiple
different studies, it does not correct for the correlation between
genes (e.g., which can happen due to the LD of variants or a
gene–gene co-expression network). Thus, future studies need to
validate the identified genes.

3. Reference brain pQTL has lower sample sizes than the blood pQTL
data. This resulted in fewer significant signals for brain PWAS.

4. Some reference xQTL data (e.g., brain proteome) are enriched in
individuals with certain neurological disorders.

5. We used 1000 Genomes Project phase three as a reference LD
panel that might not be an exact match for the LD patterns from
the GWAS cohort. By adjusting PSMR, we eliminated the inflation
of PHEIDI signals due to any cohort–panel LD mismatch.

6. Due to extended and irregular LD patterns, findings in certain
regions (e.g., MHC) should be interpreted with care.

7. Since we only included xQTL reference data obtained from bulk
tissue, any cell type-specific information was not presented in our
findings.
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