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Introduction: With the advancement of RNA-seq technology and machine
learning, training large-scale RNA-seq data from databases with machine
learning models can generally identify genes with important regulatory roles
that were previously missed by standard linear analytic methodologies. Finding
tissue-specific genes could improve our comprehension of the relationship
between tissues and genes. However, few machine learning models for
transcriptome data have been deployed and compared to identify tissue-
specific genes, particularly for plants.

Methods: In this study, an expression matrix was processed with linear models
(Limma), machine learning models (LightGBM), and deep learning models (CNN)
with information gain and the SHAP strategy based on 1,548 maize multi-tissue
RNA-seq data obtained from a public database to identify tissue-specific genes. In
terms of validation, V-measure values were computed based on k-means
clustering of the gene sets to evaluate their technical complementarity.
Furthermore, GO analysis and literature retrieval were used to validate the
functions and research status of these genes.

Results: Based on clustering validation, the convolutional neural network
outperformed others with higher V-measure values as 0.647, indicating that its
gene set could cover as many specific properties of various tissues as possible,
whereas LightGBM discovered key transcription factors. The combination of three
gene sets produced 78 core tissue-specific genes that had previously been shown
in the literature to be biologically significant.

Discussion: Different tissue-specific gene sets were identified due to the distinct
interpretation strategy for machine learning models and researchers may use
multiple methodologies and strategies for tissue-specific gene sets based on their
goals, types of data, and computational resources. This study provided
comparative insight for large-scale data mining of transcriptome datasets,
shedding light on resolving high dimensions and bias difficulties in
bioinformatics data processing.
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1 Introduction

Tissue-specific genes are a class of genes whose expression and
activity are preferential in one or more tissues or cell types (Xiao
et al., 2010). The identification of these genes advances our
understanding of the relationship between tissues and genes, as
well as the discovery of novel tissue-specific molecular targets. One
of the methods for identifying tissue-specific genes is to apply a
linear statistical model, such as Limma (Ritchie et al., 2015) and
edgeR (Robinson et al., 2010), to discover differentially expressed
genes (DEGs) between pairs of tissues through transcriptome data
and subsequently validate their tissue specificity. In addition to the
models described above that are based on empirical Bayesian
estimation, researchers have created novel variable linear
algorithms for expression data. For example, Vasiliu et al. used
penalized Euclidean distance (PED) to analyze data from RNA-seq
and other global expression experiments with small sample sizes and
high dimensionality (Vasiliu et al., 2015).

Meanwhile, RNA-seq (RNA sequencing) has allowed
researchers to validate gene expression across the entire genome
and develop a system-level understanding of biological processes.
More and more RNA-seq data has been generated, and multiple
comprehensive databases of transcriptome data have been created,
providing researchers with an abundance of resources for finding
key tissue-specific genes through gene expression. However,
identifying relevant genes in high dimensionality and variance
transcriptome data remains difficult, limiting the utility of these
tens of thousands of publicly available gene expression datasets
(Kong et al., 2011). Nevertheless, with the application of artificial
intelligence (AI), machine learning models, together with special
explanation methods for model interpretation, have proven
remarkable accuracy and efficiency in training with the full
datasets via a transcriptome database. Based on their different
algorithms and training strategies, machine learning models show
distinct performance and capability, for example, Light Gradient
Boosting Machine (LightGBM) (Ke et al., 2017) is a framework for
machine learning that uses gradient boosting and decision trees,
which aims to be efficient and scalable by using techniques like
Gradient-based One Side Sampling and Exclusive Feature Bundling,
and Convolutional Neural Network (CNN) is a deep learning neural
network designed for processing structured arrays of data (Yap et al.,
2021), containing many convolutional layers that are capable of
recognizing more sophisticated shapes (Deng et al., 2021; Liu and
Zhang, 2022). In this case, researchers used numerous machine
learning models to mine expression datasets beyond traditional
methods. Sun Kim et al. developed an ensemble model that
included network information such as network propagation and
network property to identify DEGs, which rated top in detecting
ground truth (GT) genes in eight datasets obtained from the GEO
database (Moon et al., 2022). Furthermore, Maciej and Nicola et al.
developed a convolutional neural network to predict tissue
classification using Genotype-Tissue Expression (GTEx) RNA-seq
data from 47 tissues. The classifier attained an average F1 score of
96.1% on holdout GTEx data, and the 2,423 most discriminating
genes were identified using SHAP values (Yap et al., 2021). In

particular, the developing methodologies of machine learning and
neural networks outperformed classic statistical models and were
able to manage more extensive and complicated database data.

However, in comparison to human and mouse research, plant
transcriptome data are rather limited. For a variety of reasons,
benchmarking methods have yet to be used to identify tissue-
specific genes in plants. First, there is still noise and batch effects
in transcriptome datasets. In contrast to the common use of single-
cell RNA-seq for human research, the predominant strategy for
plants is still bulk RNA-seq, which involves multi-cell sequencing
and contains a lot of noise and technical variation. Second, the tissue
type distribution in RNA-seq data is unbalanced. Because of the
accessibility and choice for plant tissues in research, the majority of
RNA-seq data is derived from leaves and roots, and many
experiments have focused on mixing tissue sequencing. Because
of the imbalanced tissue types, downstream analyses would be
biased. Third, due to the scarcity of transcriptome data for each
species, techniques and models are limited to identifying tissue-
specific genes. For the complexity and diversity of plant genomes,
tissue-specific genes discovered in restricted studies are not
convincing and universal. As a result, despite the establishment
of many plant transcriptome datasets in recent years, it remains
difficult to use tissue-specific gene identification methodologies,
particularly machine learning models, due to biases, overfitting,
and imbalance (Ma et al., 2014b; Dorneanu et al., 2022). As a
technical gap, unique methodologies for identifying tissue-specific
genes utilizing the whole plant transcriptome database for particular
species have never been implemented, necessitating further
comparison and validation.

Because of the importance of maize in modern crop breeding
and its comparatively extensive transcriptome data, the widely
produced crop maize (Zea mays) was chosen as the target plant
in this study for methodologies comparison on tissue-specific gene
identification (Chen et al., 2020). Implementing a comprehensive
and comparative study on maize transcriptome data was significant
because it would serve as the first example of evaluating different
tissue-specific gene identification methods on plants, contributing to
a better understanding of maize molecular and functional
differences between tissues.

In this study, we aimed to evaluate the performance of the linear
model [Limma (Ritchie et al., 2015)], machine learning model
[LightGBM (Ke et al., 2017)], and the deep learning model
[CNN (Yap et al., 2021)] in identifying tissue-specific genes from
maize transcriptome data. Initially, the importance of identifying
tissue-specific genes and mining transcriptome data with machine
learning algorithms was emphasized. Furthermore, the existing
technique gaps and issues in analyzing plant transcriptome
datasets were investigated (Section 1. Introduction). The following
section presented the training data acquisition, three model training
processes, and biological and statistical evaluation methodologies.
(Section 2. Material and methods; Figure 1). Furthermore, the
performance of the three techniques was compared, and the core
set of tissue-specific genes inmaize was integrated further to uncover
key loci for maize growth and differentiation (Section 3. Results).
Section 4 analyzed the efficacy of further benchmarking machine
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learning models and conducted a thorough discussion of the
elements that contributed to the various tissue-specific gene sets
created by each technique.

2 Materials and methods

2.1 Maize RNA-seq collection and gene
expression calculation

Considering the insufficient RNA-seq collection and inconvenient
processing pipeline for maize expression through multiple distinctive
experiments, a comprehensive set of maize RNA-seq data were
obtained from public databases, using the search terms “Maize
RNA-seq” on NCBI (Barrett et al., 2013) and ENA (Harrison et al.,
2021). Then, standard RNA-seq files processing pipeline (Pertea et al.,
2016) written in Python (3.9), comprised of packages Fastp (0.23.2)
(Chen et al., 2018), Hisat2 (2.2.1) (Kim et al., 2019), Samtools (1.16.1)
(Li et al., 2009), and Stringtie (2.2.1) (Pertea et al., 2015), was
implemented for quality control, alignment, and transcripts per
million (TPM) value calculation across all samples.

In addition, the imbalanced tissue types and redundant genes
were removed. MCScanX (Wang et al., 2012) was used to filter out
the maize genes that were colinear with sorghum for later training.

2.2 Limma for DEGs identification among
tissue pairs

DEG analysis provided the key to discovering tissue-specific
genes using the linear model. First, differentially expressed genes
would be identified by comparing each tissue pair initially. Then the

integration of these genes would be the tissue-specific gene set. In
this stage, the R:Limma (3.54.1) (Ritchie et al., 2015), which was
accessible for TPM values processing, was utilized to control the
variable in later comparison, as opposed to typical methods like
edgeR and DESeq, which require a counts table as input.

Through the process, DEGs were discovered between 6 tissue
pairs, including “Leaf-Root”, “Leaf-Seed”, “Leaf-Seeding”, “Root-
Seed” and “Seed-Seeding”. First, the log2 values of TPM were
transformed. Then the indexes of Fold Change (logFC), Average
Expression (AveExp), and Adjusted p-value (adj.P.Val) for each
gene were calculated using the default parameters of Limma.
Because the goal was to uncover tissue-specific genes, the DEGs
filtering criterion was set to be strict, resulting in the selection of only
genes with adj.P.Val less than 0.01 and an absolute value of logFC
more than 4 (Figure 2). Furthermore, the positive and negative
logFC values were used to categorize the upregulated and
downregulated genes (Supplementary Table S3). Finally, the
DEGs discovered in six tissue pairs were merged to reflect maize
tissue-specific genes in relation to the Limma tissue-specific genes
collection (Supplementary Table S4).

2.3 LightGBM machine learning method

In this stage, the Scikit-learn-based Pycaret (3.0) (Gain and
Hotti, 2021) module was implemented in the Python
3.9 environment for LightGBM (Ke et al., 2017). First, the TPM
values were normalized to obtain unbiased results, and the SMOTE
method (Chawla et al., 2002) was utilized to adjust imbalanced
samples, particularly for the seedling tissue type. Then the
LightGBM ensemble learning model was used to train the input
expression matrix, 70% of which was used as the training set and

FIGURE 1
The overview of the study.

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2023.1190887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1190887


30% as the validation set. In addition, number of folds to be used in
cross validation was set as 10 by the “stratifiedkfold” strategy as
default. The hyperparameters were further updated automatically
using the grid search approach with the function “tune_model” in
Pycaret to generate a robust performance and high accuracy training
model.

The Booster module’s function “feature importance scores” was
imported to extract the LightGBM training model’s features based
on information gain (Silva et al., 2021) (Supplementary Table S5).
Furthermore, the BORUTA method, which is based on information
gain, was used to filter out noisy feature genes in order to estimate
the credible threshold of feature scores in the gene list for further
validation. To implement the BORUTA algorithm, each feature gene
in the original matrix was shuffled. The shuffled shadow
characteristics were combined with the original real features to
create a new training matrix. The new training matrix was then
used as input to train a decision tree model, and feature importance
scores were generated as well. In addition, the Z-scores were
calculated for each real feature and shadow feature respectively,
according to the equation,

Zscore,real �
feature impor tan ce score( )

real

σfeature impor tan ce score,real

Zscore,shadow � feature impor tan ce score( )
shadow

σfeature impor tan ce score,shadow

Z max � max Zscore,shadow( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where Zmax was defined as the largest value among the shadow
features. Real features with Zscore, real larger than Zmax would be kept
while the smaller ones would be regarded as the noise features as
random values and discarded. After filtering, the result was regarded
an LGBM tissue-specific gene set (Supplementary Table S6).

The training and performance of other 13 machine learning
models (Logistic Regression, K Neighbors Classifier, Naive Bayes,
Decision Tree Classifier, SVM-Linear Kernel, Ridge Classifier,
Random Forest Classifier, Quadratic Discriminant Analysis, Ada
Boost Classifier, Gradient Boosting Classifier, Linear Discrimination
Analysis, Extra Trees Classifier and Dummy Classifier) were
implemented by the “compare_models” function in Pycaret with
the same parameters.

FIGURE 2
Volcano plots for the DEGs between tissue pairs. The plot for the “Leaf-Seedling” pair wasn’t shown for only 2 DEGs identified in this situation. (A) The
differentially up-regulated and down-regulated genes between leaf and root. (B) The differentially up-regulated and down-regulated genes between leaf
and seed. (C) The differentially up-regulated and down-regulated genes between seed and root. (D) The differentially up-regulated and down-regulated
genes between seedling and root. (E) The differentially up-regulated and down-regulated genes between seed and seedling.
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2.4 CNN architecture and training

To address the issue of large dimensionality and avoid
overfitting, the training matrix was altered to fit the
convolutional neural network model (CNN) architecture while
the data dimension was extensively recreated. Because CNN
performance was equivalent when using imbalanced and
balanced training data (Yap et al., 2021), all tissues with more
than ten samples in the original expression matrix were retained,
and non-colinear and low expression genes were still removed from
the new matrix. Then the genes left could be zero-padded into a
square vector that appeared as pixelated images to accommodate the
CNN design.

Moreover, the CNN training model was built by TensorFlow
(2.11) in the manner of the previous literature (Yap et al., 2021), as
shown in Figure 3, where a ten-layer CNN model was carefully
created for robust and accurate training. Each convolution block
(ConvBlock) in the architecture was a layer stack that included a
convolution layer with kernel shaped in (3,3), activation layer
(Rectified Linear Unit [ReLU]), and normalization layer (Batch

Normalization [BatchNorm]). Furthermore, MaxPooling was a
downsampling layer, whereas the fully connected (dense) layer
flattened the preceding matrix into a single vector. Finally, the
hidden layer network produced one of 11 classes known as the
most likely tissue type. For the multi-classification task, the
categorical cross entropy was chosen as the loss function, and the
formula was as follows:

loss � −∑N

i�1yi · logŷi (2)

where yi was the ground truth label with 1 as right prediction and 0 as
wrong prediction (Yu et al., 2020). The proportion of the training
matrix and validationmatrix was set as 8:2. During the training, the root
mean square prop algorithm (RMSprop) was used as the optimizer,
while setting the learning rate as 0.0001, the rho value as 0.9 and the
decay as 0.01 for the efficiency and the accuracy of the results.

To get a constant accuracy score and loss value for the validation
set, the model’s hyperparameters were slightly adjusted due to the
total accuracy values and loss. Finally, the model was trained with
64 batches and 50 epochs.

FIGURE 3
The CNNmodel architecture. The 21,111 genes vector for each sample was transferred to the 146*146 vector with zero padding and squaring. Then
the 955 squared vectors were seen as the input data of the CNN architecture. The architecture of the CNN included the convolutional blocks, max
pooling blocks, and fully connected blocks, which were organized as the figure shown. The output of the architecture was the tissue type that obtained
the highest probability in the last layer.
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2.5 SHAP values calculation

To identify the feature genes driving CNN’s learning processes,
the GradientExplainer function from the SHapley Additive
exPlanations (SHAP) package (0.41.0) was employed.

The weight and architecture of the CNNmodel were loaded into
the SHAP explainer to initialize it with the training expression
matrix. Following initialization, the test data set was fed into the
SHAP explainer, yielding an array of SHAP values for each sample.
Only accurately predicted samples were preserved in the SHAP
array, and only the associated SHAP value of the correct class was
chosen, resulting in a single value per gene per sample. To evaluate
global relevance, the median SHAP value for each gene within each
tissue was calculated and ranked from highest to lowest. The 1%
most highly ranked genes per tissue were put into the CNN tissue-
specific gene set (Supplementary Tables S7, S8).

2.6 Comparison of the tissue-specific gene
sets based on clustering and V-measure

Utilizing the Limma gene set, LGBM gene set, SHAP gene set,
complete gene set, and randomly selected gene set as clustering
features, all samples were grouped into 11 groups using the k-means
method (Hartigan and Wong, 1979). The groups were then
visualized with the Uniform Manifold Approximation and
Projection (UMAP) dimension reduction technique (McInnes
and Healy, 2018) (Supplementary Figure S3) and quantitatively
evaluated with V-measure (Rosenberg and Hirschberg, 2007).

The V-measure analysis was carried out in two steps to
statistically compare the three tissue-specific gene identification
approaches. To begin, V-measure values for k-means clustering
were computed. The distribution was illustrated for the Limma,
LGBM, and SHAP gene sets, as well as five randomly selected gene
sets. The harmonic mean of homogeneity (h) and completeness (c)
for the categories division is the V-measure value (v) (Rosenberg and
Hirschberg, 2007), which may be determined as follows:

H C|K( ) � −∑ K| |
k�1∑ C| |

c�1
nc,k
n

log
nc,k
nk

( )

H C( ) � −∑ C| |
c�1

nc
n
log

nc
n

( )

H K|C( ) � −∑ C| |
c�1∑ K| |

k�1
nc,k
n

log
nc,k
nk

( )

H K( ) � −∑ K| |
k�1

nc
n
log

nc
n

( )
h � 1 − H C|K( )

H C( )

c � 1 − H K|C( )
H K( )

v � 2 × h × c

h + c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In the above formula, n represents the total number of samples,
nc represents the number of samples in a specific correct category, nk

represents the number of samples in the corresponding predicting
category and nc,k represents the number of samples in the c category
which are divided to the k predicting category correctly. The greater
the V-measure value, the better the performance of the feature set,
which identifies more traits and distributions between categories.

Furthermore, it was important to assess the likelihood of
randomly selecting gene sets as well as tissue-specific gene
identification procedures, which would demonstrate the resilience
and soundness of specific techniques in another aspect. As a result,
100 random gene samplings were carried out using various random
k-means initializations. The mean of each k-means sample
distribution was used to create a null distribution. The “true” test
statistic would be the mean values from the k-means sampling of
tissue-specific genes identification technique. The probability of
picking SHAP genes at random was then evaluated using a one
tail Student’s t-test.

2.7 Maize genes expression validation

The maize development atlas (Walley et al., 2016), which was
excluded from the training set, was used as a validation set because it
was searchable and the expression could be read with ease using
MaizeGDB (Portwood et al., 2019). Moreover, the chosen genes’
molecular activities were queried in UniProt (Dogan, 2019), and
relevant literature was acquired to demonstrate the gene’s roles and
significance.

2.8 GO analysis

Gene Ontology (GO) enrichment analysis was conducted via the
ShinyGO (v0.76) platform (Ge et al., 2019), with additional data
visualization procedures enabled by R package clusterProfiler
(v4.6.0) (Wimalanathan et al., 2018; Wu et al., 2021). With
respect to the GO dataset, both experimental (EXP) and
phylogenetically inferred (IBA) evidence codes were utilized.
Nevertheless, only biological process (BP) datasets were used
concerning the scope of the study.

2.9 Computational resources

The raw RNA-seq data processing and expression matrixes
generation were applied on the local Linux server with 64 cores
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz. The machine
learning models and CNN tasks were carried out on the online
server with a 12 GB TITAN Xp GPU.

3 Results

3.1 Overview of the maize training matrix

From the public databases, 1,548 fastq format files across
18 maize tissues were obtained (Supplementary Table S1) and an
expression matrix with 1,548 rows (samples) and 44,320 columns
(genes) was constructed totally. Among the processes, the average
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count value of all RNA-seq was 108 with an average Q20 of 95%
(Supplementary Figure S1A). And Hisat2 aligned all sequences to
the B73 v4 reference genome with an average 91% alignment rate
(Supplementary Figure S1B). These consequences showed that the
maize multi-tissue expression matrix was of good quality and
standardization.

The original tissue type labels from public databases were
imbalanced. However, the machine learning model LightGBM
required balanced samples and an appropriate train-test set
splitting. Therefore, the tissues with less than 10 sample
recordings and the ‘mixed’ tissue type were discarded, while
the remaining samples were categorized as “Leaf,” “Seed,”
“Root” and “Seeding” according to their organs. Besides tissue
types, there were also low-expression and biologically
insignificant genes existing among the original genes in the
matrix. According to former literature, only the genes colinear
with sorghum were chosen in this study, for they would reflect
more significant biological functions and reduce the dimensions
of later machine learning model training. After selected by
MCScanX (Wang et al., 2012), only the filtered genes with
TPM larger than one were left, making the training matrix
with 948 rows and 21,091 columns consequently
(Supplementary Table S2).

3.2 Tissue-specific genes set identification
by Limma

Limma discovered the differentially expressed genes in maize
tissue pairs in order to create a collection of tissue-specific gene sets.
Except for the “Leaf-Seeding” pair, which had only two differentially
expressed genes, all tissue pairs had approximately 500 genes each
(Table 1). Because the filtering threshold was set relatively strictly,
the DEGs discovered might be considered tissue-specific genes. As a
result, by taking the intersection of the six DEGs groups, 1,092 genes
were gathered as the Limma tissue-specific gene set. The smaller
number of DEGs in the “Leaf-Seedling” pair may be due to the high
relevance of these two tissues and the limited sample size of
seedlings.

MaizeGDB was then used to retrieve gene information. The
majority of the genes discovered were particularly expressed in
one kind of tissue; for example, the downregulated genes
discovered in the ‘Leaf-Seeding’ pair were both specifically
expressed in mature leaves and had previously been described
in research articles (Figure 4A). Furthermore, the biological

processes involved in the DEGs discovered in each tissue pair
were mostly related to the functions of specific tissues
(Supplementary Table S9). For example, when comparing leaf
and root, Limma discovered DEGs involved in “NADPH
regeneration,” “water transport,” and “PSII associated light-
harvesting complex Il catabolic process,” in addition to some
general functions of “translation” and “protein
autophosphorylation” (Figure 4B).

3.3 Tissue-specific genes identification by
LightGBM

Using maize expression data, 14 kinds of machine learning
model were trained to perform tissue classification (Table 2).
LightGBM got the first rank due to its remarkable accuracy rate
near 0.99 and highest Area Under the Curve (AUC) value,
indicating that it could handle the false positive prediction
properly and evaluated samples reasonably in the case of
unbalanced samples.

As a result, LightGBM was chosen to represent non-neural-
network-based machine learning method to identify tissue-
specific genes. After 10 rounds of cross-validation training, the
mean values of accuracy, AUC, and F1 score were 0.9909, 0.9998,
and 0.9917, respectively (Table 3). The model was shown to be
surprisingly accurate, based on the Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) plots (Figures
4C, D), despite a few mismatches between seedling and leaf
samples in the test set due to their close association
(Figures 4E, F).

Further analysis was conducted for the major feature genes
created by LightGBM, which were chosen to be the nodes of the
classification model to distinguish different tissues, and
1,481 genes were finally identified as LGBM tissue-specific
genes using the Boruta algorithm (Figure 4G). Their biological
processes were clustered using GO analysis (Figure 4H;
Supplementary Table S10). According to the findings, the
majority of LGBM tissue-specific expression genes involved in
pigment biosynthesis, photosynthetic electron transport, and
chloroplast formation.

The high-ranking LGBM genes were queried in MaizeGDB to
see if they were only expressed in one tissue, and supporting
literature was collected to corroborate their significance
(Supplementary Figure S2). As a result, as expected, the
majority of LGBM genes were tissue-specifically expressed,

TABLE 1 Numbers of DEGs among 6 tissue pairs.

Tissue pairs Total DEGs Upregulated DEGs Downregulated DEGs

Leaf-Root 390 313 77

Leaf-Seed 462 281 182

Leaf-Seeding 2 0 2

Root-Seeding 710 68 643

Root-Seed 253 161 93

Seed-Seeding 799 181 619

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2023.1190887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1190887


FIGURE 4
The evaluation plots of Limma and LightGBM models. (A) The expression bar plot of the top-rank Limma genes queried from the maize expression
atlas in MaizeGDB. (B) The biological process of the Limma tissue-specific gene set clustered by the GO analysis. (C) The ROC curve of the LightGBM
model after training on themaizemulti-tissue expression data. (D) The PR curve of the LightGBMmodel. (E) The confusionmatrix of the LightGBMmodel
validation set. It could be seen that a few samples from seed and seedling were mismatched into the leaf set. (F) The boundary plot of the LightGBM
model for classification. It could be seen that the relation between leaf and seedling sampleswas relatively close due to themismatching of themodel. (G)
The expression bar plot of the top 3 rank LGBM genes queried from the maize expression atlas in MaizeGDB. (H) The biological process of the LGBM
tissue-specific gene set clustered by the GO analysis..
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and it was noteworthy that the majority of genes found in the top
rank were transcription factor genes, which have previously been
well studied, indicating that they may be essential elements in
maize gene expression regulation (Table 4).

3.4 Tissue-specific genes identification
by CNN

CNN was used to train the modified training set of maize gene
expression, and the accuracy rate of the test set remained at 1.00 after
the 12th epoch, while the accuracy rate of the validation set
remained at 1.00 after the 32nd epoch (Figure 5A). And the loss
of the test set reached 3.99 × 10−6 in the last epoch, while the loss of
the validation set reached 0.0257 finally (Figure 5B). The macro-
average F1 score for the test set was 0.91, demonstrating the CNN
model’s exceptional robustness and precision. Furthermore, the
SHAP values across samples and tissues were calculated, and the
high-ranking SHAP genes for each tissue were discovered
(Supplementary Table S7).

To assess the biological importance of the high-ranking SHAP
genes chosen for each tissue, 1% of the top genes in each tissue were
assessed using GO biological processes. The processes of
photosynthesis, oxidation-reduction, and epidermal cell
differentiation were clustered in the leaf tissue, which represented
the vegetative organ (Supplementary Figure S4A); similarly, the
processes of stamen development, petal development, and pollen
wall assembly were clustered in the tassel tissue, which represented
the reproductive organ (Supplementary Figure S4B).

The intersection of the top 50% of unique genes was made using
the high-ranking SHAP genes of 11 tissues, yielding a unique
collection of 2116 CNN tissue-specific genes. Additionally, an
examination of expression bar graphs in MaizeGDB revealed
that, as expected, most discovered genes had tissue-specific
differential expression (Figure 5C). The filtered genes were
clustered in the processes of light stimulus-response, oxidative

TABLE 2 The evaluation criteria for 14 machine learning models.

Model Accuracy AUCa Recall Precb F1c Kappad TTe

Light Gradient Boosting Machine 0.9895 0.9998 0.9462 0.9877 0.9878 0.9842 68.718

Logistic Regression 0.991 0.9984 0.9474 0.9891 0.9893 0.9865 3.019

Random Forest Classifier 0.9895 0.9981 0.9349 0.9848 0.9866 0.9842 0.917

Extra Trees Classifier 0.991 0.9976 0.9474 0.9891 0.9893 0.9865 1.065

Gradient Boosting Classifier 0.9789 0.996 0.9268 0.9782 0.9775 0.9685 153.012

K Neighbors Classifier 0.9864 0.9959 0.967 0.9895 0.9871 0.9798 1.086

Naive Bayes 0.9759 0.9814 0.8429 0.967 0.9705 0.9638 0.887

Decision Tree Classifier 0.9698 0.9775 0.8718 0.965 0.9661 0.9547 1.33

Ada Boost Classifier 0.6779 0.966 0.6942 0.7457 0.661 0.5924 8.818

Linear Discriminant Analysis 0.6029 0.7268 0.603 0.6543 0.609 0.4357 1.593

Quadratic Discriminant Analysis 0.565 0.7017 0.4901 0.3913 0.4428 0.3945 1.17

Dummy Classifier 0.4003 0.5 0.25 0.1603 0.2289 0 0.766

SVM - Linear Kernel 0.991 0 0.9474 0.9891 0.9893 0.9865 0.878

Ridge Classifier 0.991 0 0.9474 0.9891 0.9893 0.9865 0.872

aAUC: area under curve, the area under the ROC, curve.
bPrec.: precision.
cF1: F1-score, the harmonic mean of precision and recall value.
dKappa: Kappa-value, measuring model evaluation accuracy in multiple classifications.
eTT: the processing time for the 10-fold training.

TABLE 3 The evaluation criteria for LightGBM in 10 rounds of cross-validation
training.

Accuracy AUCa Recall Precb F1c Kappad

0 0.9851 0.9995 0.9844 0.9888 0.9859 0.9781

1 1 1 1 1 1 1

2 0.9697 0.9994 0.9719 0.9717 0.9698 0.9544

3 1 1 1 1 1 1

4 0.9848 1 0.9844 0.9854 0.9847 0.9772

5 1 1 1 1 1 1

6 0.9697 0.9986 0.8618 0.9711 0.9673 0.9544

7 1 1 1 1 1 1

8 1 1 1 1 1 1

9 1 1 1 1 1 1

Mean 0.9909 0.9998 0.9802 0.9917 0.9908 0.9864

SD 0.0121 0.0004 0.0406 0.0113 0.0125 0.0182

aAUC: area under curve, the area under the ROC, curve.
bPrec.: precision.
cF1: F1-score, the harmonic mean of precision and recall value.
dKappa: Kappa-value, measuring model evaluation accuracy in multiple classifications.
eTT: the processing time for the 10-fold training.
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stress response, pentose-phosphate shunt, and so on using GO
analysis (Figure 5D; Supplementary Table S11). This finding
revealed that photosynthesis and respiration genes were more
likely to be tissue-specific.

3.5 Comparison of the three gene set
generated from three approaches

The gene sets derived from three unique methodologies were
expected to be tissue-specific and capable of differentiating between
different tissues’ features. As a result, the k-means approach and the
V-measure validation method were used to cluster the samples
based on each acquired gene set. SHAP, LGBM, Limma, and
total gene V-measure values were 0.647, 0.637, 0.633, and 0.631,
respectively, indicating that SHAP genes had a higher V-measure
value than other genes (Figure 6A).

Despite the fact that a few randomly chosen gene sets had higher
V-measure values, the likelihood of randomly selecting gene subsets that
perform as well as the SHAP genes was low, according to one-tail
Student’s t-test estimation (Figure 6B). Above all, the SHAP gene set was
more informative in maize transcriptome data and could distinguish
differences between tissues while accurately classifying them.

In the meantime, a number of indices could be used to compare
three tissue-specific gene identification methodologies (Table 5), and the
outcomes could be analyzed by examining their processing strategies.

(A) Limma was a widely used approach for locating DEGs. This
method’s strategy for locating tissue-specific genes was based
on the assumption that tissue-specific genes were
predominantly DEGs. As a result, tissue-specific genes could
be discovered by narrowing the threshold of expression
differences, which reflected the biological functions of
various tissues. The poor V-measure score of 0.633 can be

FIGURE 5
The evaluation plots of CNN model. (A) The accuracy rates of the training set and the validation set during the 50 epochs of training. The rate of
validation set remained 100% after the 32nd epoch. (B) The loss values of the training set and the validation set during the 50 epochs training. The loss
values of the validation set remained near 0.25 after the 39th epoch. (C) The expression bar plot of the top 3 rank CNN genes queried from the maize
expression atlas in MaizeGDB. (D) The biological process of the CNN tissue-specific gene set clustered by the GO analysis.
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attributed to the fact that this method could only compare the
expression between two sets, which necessitated a lengthy
analysis process and failed to account for some non-linear
correlations.

(B) LightGBM was able to identify tissue-specific genes using the
information entropy gain technique. The gene set based on
feature importance scores worked reasonably well in training,
resulting in the identification of several essential TFs as high-
rank tissue-specific genes. Furthermore, despite having a
slightly lower accuracy, the F1 score of LightGBM was
higher than CNN, indicating that this tree-based classifier
could balance the accuracy and recall rate for classification.
However, with an expression matrix of 1,548 rows (samples)
and 44,320 columns (genes) as input, the non-neural-network-
based machine learning model would easily become overfit.

(C) The CNN model solved the problem of high-dimensionality
and overfitting through its structure and was able to precisely
predict the tissue type of samples based on their gene
expression, with an accuracy of 1. Moreover, its V-measure
was predominantly higher than others, indicating that the
interpretation of CNN with SHAP could find the most
comprehensive tissue-specific gene set, which included the

majority of differences between maize tissue expressions and
could discriminate samples from different tissue types.

Aside from the performance of three distinct models, the combined
tissue-specific gene sets were also examined, including 78 genes
(Figure 6C). According to the GO analysis (Figure 6D), the
biological processes of these core set comprehensively show tissue-
specific functions, such as starch biosynthetic process for seeds, primary
root development and maintenance of root meristem identity for roots,
ovule, stamen, petal and sepal development for reproductive organs,
and shade avoidance for leaves.Moreover, all core genes were annotated
using the maize development atlas (Supplementary Table S12), and
their specifically expressing tissues were calculated (Figure 6E),
indicating that the majority of the tissue-specific genes were
expressed in leaf and seed, with a few of them specifically expressed
in two tissues. Furthermore, to assess the dependability of the core set,
related literature once investigating these genes was consulted. The
genes were classified as “soundly study” or “partly study” based on the
number of connected pieces of literature, with genes with no linked
literature classified as “never study”. Statistics revealed that 63% of the
78 genes have previously been researched (Figure 6F), indicating that
the core gene set in our study was worth examining.

TABLE 4 The information of the top 10 genes in the LGBM tissue-specific gene set.

Gene ID Gene Specific expression Related papers (top three)

Zm00001d037498 tar1 - tryptophan aminotransferase related1 Endosperm (Review) Kai et al. (2021)

(Review) Dai et al. (2021)

(Expression) Lu et al. (2019)

Zm00001d037410 Root Elongation Zoom

Zm00001d041173 Root

Zm00001d034207 Root (Expression) Xiang et al. (2022)

Zm00001d033898 hb36 - Homeobox-transcription factor 36 Leaf (general) Yilmaz et al. (2009)

Zm00001d018470 Germination Kernal

Zm00001d041780 zhd21 - ZF-HD-transcription factor 21 Ear (transcriptomics) Leiboff et al. (2020)

(candidate-gene(s)) Liu et al. (2019)

(general) Yilmaz et al. (2009)

Zm00001d002234 hb75 - Homeobox-transcription factor 75 Meristem (gene family) Qiu et al. (2022)

(promoter) Lee et al. (2021)

(regulation of expression) Wu et al. (2020)

Zm00001d013130 bhlh60 - bHLH-transcription factor 60 Leaf (DEG) Zhao et al. (2021)

(Expression) Waititu et al. (2021)

(description) Wu et al. (2019)

Zm00001d042492 ereb53 - AP2-EREBP-transcription factor 53 Root (candidate-gene(s)) Ma et al. (2022)

(gene family) Zhang et al. (2022)

(Review) Chumakov and Mazilov (2022)
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4 Discussion

Using high-throughput sequencing techniques, diverse
databases of plant transcriptomes comprising integrated
sequencing data have been created. The plant databases were
created based on a variety of criteria, such as a focus on certain

sequencing techniques [PlantExp (Liu et al., 2022),
PlantscRNAdb (Chen et al., 2021), etc.] or a focus on
individual plant species [Wildsoydb (Xiao et al., 2022),
CottonMD (Yang et al., 2022), etc.]. These databases supplied
adequate and pertinent data to facilitate machine learning despite
information searches and differential analyses between

FIGURE 6
Technical and biological validation for the three gene sets. (A) The distribution plot of the V-measure values after k-means clustering. The SHAP
tissue-specific gene set performed the best, followed by LGBM and Limma. (B) The one-tail Student’s t-test estimation between the SHAP gene set and
the random gene set. (C) The Venn plot for the three tissue-specific gene sets and 78 genes were found in all sets. (D) The GO analysis plot for the 78 core
genes and most biological processes clustering were tissue-specific. (E) The distribution for the tissue types that were specifically expressed by
78 core genes. (F) The distribution for the categories reflected the related pieces of literature for 78 core genes. The “soundly study” category had more
than three related literature; the “partly study” category had less than three related literature; the “never study” category had no related literature.

TABLE 5 Comparison of three methods in multiple aspects.

Methods Tissue-specific
genes set

Speed V-measure
scores

Prediction
accuracy

Prediction
F1 score

Interpretation
strategy

Limma 1,092 Slow 0.633 None None DEGs

LightGBM 1,481 Mediate 0.637 0.9909 0.9908 Information Entropy Gain

CNN 2,116 Fast 0.647 1 0.91 SHAP Values
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constrained samples. Although researchers have proven that
combining RNA-seq with machine learning improves the
sensitivity of significant gene discovery, such as DEGs (Ma
et al., 2014a), extensive studies to analyze the usefulness and
impact of various machine learning approaches in this field have
yet to be carried out.

This study incorporated all maize RNA-seq data as an example
for comparison analysis with the benchmarking models Limma,
LightGBM, and CNN. Among all the prevalent non-neural-network
based machine learning models, LightGBM displayed exceptional
performance because its AUC values were the highest. Although
certain models, such as logistic regression and SVM, had reasonably
high accuracy, they may have been hampered by overfitting issues
for high-dimensional training matrices and lacked the ability to
explain the biological causes behind statistics through
interpretation. As a result, LightGBM was chosen to represent
the machine learning models, which resulted in a trustworthy
tissue-specific gene collection containing several TFs.

Aside from assessing model performance based on technological
criteria, it was also important to examine the various tissue-specific
gene sets created by different approaches. According to all three gene
sets, about 10% of the genes overlapped, which could be explained by
the diverse strategies for finding tissue-specific genes. This
occurrence was completely consistent with the partially
overlapping results of comparison studies on differential
expression analysis methods Limma, edgeR, and DESeq2, where
Limma utilized a linear model for statistics and the other used the
negative binomial distribution (Liu et al., 2021). Concerning Limma,
its fundamental premise was based on the detection of DEGs, which
were not necessarily tissue-specific and were susceptible to sample
size influences. Additionally, because this linear technique could
only examine tissue pairs, the comprehensive differences among
overall samples were neglected, resulting in lower V-measure scores.

As for LightGBM, it implemented the information entropy
theory, which has been demonstrated to be an informative and
reliable way for identifying biological genes (Fan et al., 2011;Wallace
et al., 2018). The cores of information entropy theory of this model
are as follows:

Ent D( ) � −∑y| |
k�1

pklog2pk

Gain D( ) � Ent D( ) −∑V
v�1

Dv| |
D| | Ent Dv( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4)

, where pk is the proportion of the samples in different classification,
D is the set of the original samples and Dv is the set of samples after a
branching. |Dv|/|D| means the weight of the vth branch and the
Gain(D) indicates the extropy gap before and after splitting.
Through this formula, it could be concluded that the feature
importance genes, as the classification nodes, are selected during
the training period to reach the maximum information gain for
every step of classification. The decision tree method would select
TFs that played a major role in the gene regulatory network for
specific functions as more significant and core nodes to distinguish
samples from tissue performing diverse roles. As a result, the
LightGBM tissue-specific gene set ranked higher for more well-
studied TFs.

Regarding CNN, it avoided the issues of overfitting by
rebuilding the expression matrix as input datasets and using
SHAP values for interpretation. SHAP values were a post-
interpretation method that calculated the marginal
contribution of feature genes to model output, which differed
from LightGBM’s interpreting-in-progress procedure. SHAP
developed an outstanding explanation technique that could
not only rank the feature genes based on their contribution
scores but also quantify their effects (Supplementary Figure
S3); nonetheless, the circumstance where a gene had a high
impact on a small number of outputs but a minor impact
overall would be overlooked, for only the mediate SHAP value
of each gene within each tissue was calculate and ranked. The
CNN tissue-specific gene set performed well in the V-measure
test overall, but it was less precise and biologically relevant than
the LightGBM tissue-specific set. The accuracy of the CNNmodel
would be improved as the increase of the data size and may be
superior to traditional machine learning model with outstanding
performances in larger datasets (Dhaka et al., 2021). Overall,
researchers may use multiple methodologies and strategies for
tissue-specific gene sets based on their goals, types of data, and
computational resources.

Moreover, the machine learning approach can be applied to
linear models as well as classification tasks. Recent advances in
machine learning have enabled the development of genotype-
phenotypic prediction models that combine transcriptome and
phenotype statistics. Cheng et al. used the ensemble learning
framework XGBoost to assess the phenotypic diversity of
Arabidopsis and maize in terms of nitrogen utilization efficiency
and evolutionary conserved transcriptome responses to nitrogen
treatment (Cheng et al., 2021). Furthermore, Yan et al. (2021)
confirmed LightGBM’s utility in genomic selection-assisted
breeding using a large dataset of inbred and hybrid maize lines.
LightGBM not only outperformed competitors in prediction
accuracy, model stability, and processing efficiency, but it also
demonstrated a strong capacity to infer genes that significantly
influence phenotypes. In terms of the transcriptome database
study, they would be able to predict the phenotype based on
expression data and identify significant genes impacting the
variance of phenotypes by using numeric features such as the
100 kernels weight and the starch content to train models
(Supplementary Figure S5). The list of essential genes might be
used with Genome-Wide Association Studies (GWAS) and TFs
research to create a data foundation for evaluating crop potential
molecular breeding targets.

In conclusion, we demonstrate that the linear Limma method,
the machine learning model, and the deep learning model are all
valid for identifying tissue-specific genes in maize RNA-seq data.
We show that using LightGBM and CNN can find tissue-specific
gene sets that perform somewhat better than the linear
methodology, as estimated by biologically insight and
statistical clustering methods. Our findings show that
interpretation models will enable machine learning and deep
learning to be applied to large amounts of biological data,
potentially yielding new findings. Researchers will be able to
fully exploit the plant transcriptome database and get novel
insights into plant development and breeding as a result of the
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ongoing development of high-performance classifiers and
dependable methods to explain feature significance.
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