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Long noncoding RNAs (lncRNAs) were important regulators affecting the cellular
reprogramming process. Previous studies from our group have demonstrated that
small molecule compounds can induce goat ear fibroblasts to reprogram into
mammary epithelial cells with lactation function. In this study, we used lncRNA-
Sequencing (lncRNA-seq) to analyze the lncRNA expression profile of cells before
and after reprogramming (CK vs. 5i8 d). The results showed that a total of
3,970 candidate differential lncRNAs were detected, 1,170 annotated and
2,800 new lncRNAs. Compared to 0 d cells, 738 lncRNAs were significantly
upregulated and 550 were significantly downregulated in 8 d cells. Heat maps
of lncrnas and target genes with significant differences showed that the fate of cell
lineages changed. Functional enrichment analysis revealed that these differently
expressed (DE) lncRNAs target genes were mainly involved in signaling pathways
related to reprogramming and mammary gland development, such as the Wnt
signaling pathway, PI3K-Akt signaling pathway, arginine and proline metabolism,
ECM-receptor interaction, and MAPK signaling pathway. The accuracy of
sequencing was verified by real-time fluorescence quantification (RT-qPCR) of
lncRNAs and key candidate genes, and it was also demonstrated that the
phenotype and genes of the cells were changed. Therefore, this study offers a
foundation for explaining the molecular mechanisms of lncRNAs in chemically
induced mammary epithelial cells.
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1 Introduction

1.1 Background

LncRNA is an RNA molecule greater than 200 nucleotides in length that does not have
coding potential (Okazaki et al., 2002). Based on the location of lncRNAs on the genome
relative to protein-coding genes, lncRNAs were broadly classified as positive, antisense,
intragenic, intergenic, bidirectional, and overlapping lncRNAs (Kopp and Mendell, 2018).
LncRNAs were initially considered to be genomic transcriptional “noise,” a byproduct of
RNA polymerase II transcription. Compared with mRNAs, lncRNAs do not have typical
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start codons, promoter conserved regions, stop codons or open
reading frames (Ulitsky et al., 2011; Guttman and Rinn, 2012).
However, in recent years, an increasing number of lncRNAs with
biological functions have been identified, and lncRNAs play
important roles in many biological activities, such as
participating in cell proliferation (Liu et al., 2018; Qin et al.,
2018), differentiation (Song et al., 2016; Touat Todeschini et al.,
2017) and apoptosis (Liu et al., 2017; Nan et al., 2017) and
promoting myogenic cell differentiation and injury-induced
muscle regeneration (Wang et al., 2015), fat deposition (Wang
et al., 2017), lactation (Yu et al., 2017), reproduction (Wang
et al., 2014) and immunity (Zhou et al., 2017). lncRNAs have
also become a hot spot for research in different scientific
directions. LncRNAs are important regulatory molecules of gene
expression and have highly diverse biological functions. Their
modes of action are broadly divided into three categories: one is
at the chromatin level, which regulates gene expression through
epistatic modification of chromatin; the second is at the
transcriptional level, which regulates gene expression by altering
the functions of factors and enzymes that mediate the regulation of
gene expression; and the third is at the post transcriptional level,
which regulates mRNA by binding to coding genes or miRNAs,
thereby regulating the expression levels of mRNAs and miRNAs (Lu
et al., 2017).

Studies in humans andmodel animals have shown that lncRNAs
were involved in mammary gland development and the regulation of
lactation in mammals (Standaert et al., 2014; Yu et al., 2017). Zhang
et al. (Zhang et al., 2014) found that overexpression of lncRNAROR
increased the self-renewal of mammary stem cells, and further
studies of its function showed that lncRNAROR plays a key role
in maintaining a normal stem cell subpopulation in mammary
epithelial cells. These findings provide a basis for the biological
function of lincRNAs in regulating mammary gland development
and susceptibility to mastitis in dairy cows (Tong et al., 2017). It has
been found that there are specific lncRNAs in the reprogramming
process and in mouse and human embryonic stem cells, and these
lncRNAs were strongly correlated with the expression of the
important reprogramming factors OCT4, NANOG, and SOX2
(Dinger et al., 2008). LncRNAs affect the cell reprogramming
process, and lncRNAROR is one of these regulators, and
inhibition of their expression decreases the efficiency of cellular
reprogramming (Loewer et al., 2010; Guttman et al., 2011). However,
less is known about goat lncRNAs, and the regulatory relationship
between cell reprogramming and mammary gland development and
lncRNA expression is unclear.

1.2 Objective

The aim of this study was to analyze the expression profile of
lncRNAs after small molecule compound-induced reprogramming
of goat fibroblasts into mammary epithelial cells, to explore the
relationship between lncRNAs and mammary gland development
and cell reprogramming regulation in goats and to provide a
molecular mechanism to explain the role of lncRNAs in
mammary gland development and cell reprogramming regulation
in goats on a theoretical basis.

2 Materials and methods

2.1 Sample collection and RNA extraction

2.1.1 Sample collection
Goat ear margin fibroblasts were extracted and purified by

isolation and pre-digestion of ear tissue from 2 to 3 months old
Guanzhong dairy goats, provided by the Guangxi Institute of
Animal Science. The test samples used were obtained from
laboratory-induced goat fibroblasts. Goat mammary epithelial
cells were obtained after 8 days of induction of goat fibroblasts
using the 5i system (Induction medium composed of Forskolin,
TTNPB, VPA, Repsox, Tranyl-cypromine, five small molecule
compounds) (Zhang et al., 2021), and cell precipitates were
collected from goat fibroblasts (0 day cells, CK group) and
induced goat mammary epithelial cells (8 day cells, 5i8d group),
with two biological replicates from each group. Samples were
collected and stored at −80°C.

2.1.2 RNA extraction and detection
Total RNA was extracted from goat fibroblasts and goat

mammary epithelial cells using the TRIzol method. One percent
agarose electrophoresis was used to detect the presence of
degradation and impurities in the RNA samples, and the purity
of the samples was measured by a Kaio K5500 spectrophotometer.
The integrity and purity of the RNA samples were measured by an
Agilent 2100 RNA Nano 6000 Assay Kit (Agilent Technologies, CA,
United States) to detect the integrity and concentration of the RNA
samples.

2.2 Library construction, sequencing and
transcript assembly

Goat fibroblasts and induced goat mammary epithelial cells were
each sampled with 3 μg of total RNA as a starting amount to
construct the lncRNA libraries. Ribo-Zero™ GoldKits were used
to remove rRNA from the samples, and different index tags were
selected for library construction according to the operating
instructions of the NEB Next Ultra Directional RNA LibraryPrep
Kit for Illumina (NEB, Ipswich, United States).

The specific steps of library construction were as follows: first,
a kit was used to remove ribosomal rRNA, fragmentation buffer
was added to the reaction system to fragment the RNA into short
fragments, the fragmented RNA was used as a template to
synthesize the first strand of cDNA with six-base random
primers (random hexamers), and buffer, dNTPs, RNase H and
DNA polymerase I were added to synthesize the second strand of
cDNA. The cDNA second strand was purified by a QiaQuick PCR
kit and eluted with EB buffer, end-repair, base A, sequencing
junction, agarose gel electrophoresis to recover the target size
fragment, digestion of cDNA second strand with UNG enzyme,
PCR amplification, and finally agarose gel electrophoresis to
recover the target size fragment. The whole library
preparation was completed by agarose gel electrophoresis.
Finally, the constructed libraries were used for Illumina
sequencing.
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2.3 Screening of differentially expressed
lncRNAs and target gene prediction

LncRNAs were classified into intergenic RNAs (lincRNAs),
introinc lncRNAs, anti-sense lncRNAs, sense lncRNAs,
bidirectional lncRNAs and other types according to their position
in relation to the coding sequence. Among them, the proportion of
lincRNAs was the highest, and the screening of novel lncRNAs was
mainly for lincRNAs, intronic lncRNAs and antisense lncRNAs. A
series of screening conditions were set, and the resulting lncRNAs
were used as the final candidate novel lncRNAs for subsequent
analysis. The basic screening conditions were as follows: the
transcript length was greater than or equal to 200 bp, the number
of exons was greater than or equal to 2, the read coverage of each
transcript was calculated, transcripts with less than 5 in all samples
were screened out, and the known mRNAs and other noncoding
RNAs (rRNA, tRNA, snoRNA, snRNA, etc.) in the species were
screened out by comparison with the annotation file of the species
using gffcompare. Whether the new transcripts have coding potential
is the key condition to determine whether the new transcripts were
lncRNAs. By using the lncRNA information from the previous step of
the initial screening, a variety of coding potential analysis software
programs were integrated for screening, mainly CNCI analysis, CPC
analysis, PFAM protein structural domain analysis, and CPAT
analysis (animal only). Several analysis methods discriminated
noncoding transcripts as the final novel lncRNA data set.
Differential expression analysis was performed from candidate
lncRNAs using DEseq to compare the treatment group with the
reference group, and genes with |log2Ratio|≥2 and p < 0.05 were
selected as significant differential expression screening conditions to
obtain the number of up and downregulated genes. For differentially
expressed lncRNA target genes, cis and trans target analyses were
performed to indirectly predict their functions by target genes.

2.4 GO (Gene ontology) enrichment and
KEGG (Kyoto encyclopedia of genes and
genomes) pathway analysis

DAVID was used online for GO analysis and KEGG pathway
analysis of the predicted target genes (Sherman et al., 2022).

2.5 RT-qPCR validation of lncRNA and target
genes

Six lncRNAs were randomly selected and subjected to RT-qPCR.
U6 was selected as the internal reference gene, and the primers were
all synthesized by Janus Biological Engineering Co. The total
fluorescence PCR system was 20 μL: 0.5 μL of each upstream and
downstream primer (20 μmol/L), 1 μL of cDNA, 8 μL of ddH2O,
and 10 μL of 2X lncRNA PreMix. The PCR conditions were as
follows: 95°C for 3 min; 40 cycles of 95°C for 5 s and 60°C for 15 s;
and 3 replicates. The relative expression of lncRNAs in induced goat
mammary epithelial cells was calculated by the 2−ΔΔCT method and
verified by comparison with the transcriptome sequencing results.
The target gene qRT-PCR method was consistent. The lncRNA and
target gene primer sequence informations were shown in Table 1.

3 Results

3.1 Raw data analysis and quality control

The original downstream sequences were filtered to obtain high-
quality clean reads, and then the subsequent analysis was performed. As
shown in Table 2, the sizes of the total clean reads of the four groups of
sampleswere 94.02 G, 94.85 G, 93.66 G and 97.66 G. TheQ30 ratioswere
all higher than 90%, indicating that the sequencing quality was reliable.

TABLE 1 lncRNA primer sequence information.

lncRNAs Primer sequence (5′-3′) Product size/bp

MSTRG12675 F:AGGCAAAGAACAGTCAGGCA 136

R:TGCTGGTAATTGAGGGTCGG

LOC102172108 F:AGGTGTGTGTTACTGCGAGG 113

R:CTTCCACTAACTTGCCGGGT

LOC106503513 F:GACCTTGACTGTGAAGCGGA 121

R:TTCCTCAAATCACCGGGGTG

MSTRG25656 F:CATGGCAAGCCGCTATTGAC 127

R:AGAACCCAGCCACCATTCTG

MSTRG29368 F:CCTGAGGCCTCCGTGAAAAT 127

R:GAAACTCTGTGCCGGACTGA

MSTRG15634 F:GAGACCCAGTGCAACCAAGA 140

R:TGCCCTCTGCCCTGAATTTT

U6 F:CGCACAGACATACGTCCCC 156

R:TGGTCGGCAGTAAAGCAGAAT

FGF9 F:AACTGGTACAACACGTACTCC 123

R:TTTCTGGTGCCGCTTAGTCC

PDGFRA F:TCACGGAGATCACCACTGACA 86

R:GTCTTCTTCCTTTGCTCGGAT

HGF F:TGCCATTCCAAATCGTCCTG 92

R:ATTGTGGTGCCTTATACGTT

MAPK10 F:ATGAGCCTCCATTTATTGTAC 148

R:TTTGAGAACCGTAAACGTTG

Note: F, forward primer; R, reverse primer.

TABLE 2 Quality of data output.

Group Raw reads Clean Clean Q30/%

Group Reads/G Bases/G

CK1 128,700,068 121,003,698 94.02 92.24

CK2 130,917,490 124,177,272 94.85 92.58

5i8d1 154,055,668 144,290,922 93.66 92.48

5i8d2 125,726,024 122,785,186 97.66 92.14

CK and 5i8d represent goat ear fibroblasts and reprogrammed mammary epithelial cells.
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3.2 Sequence matching and splicing

The results of the quality-controlled clean reads compared to
the goat reference genome were shown in Table 3. The results
show that more than 96% of the clean reads in the control
samples could locate sequenced sequences on the genome,
2.08%–2.17% had multiple alignment positions on the
reference sequence, and the number of reads with unique
alignment positions on the reference sequence accounted for
more than 94% of the reads. The percentages of clean reads in

the 5i8d samples that were compared to the genome were all
greater than 95%, the percentage of reads that were compared to
the reference sequence with multiple comparison positions was

TABLE 3 Comparison of reads and reference genome.

Group Total number of
filtered reads

Number of reads that
can be localized to the

genome

Number of reads with multiple
comparison positions on the

reference sequence

Number of reads that have a unique
comparison position on the

reference sequence

Group Total reads Total mapped reads Multiple mapped reads Uniquely mapped reads

CK1 121,003,698 116,779,050 (96.51%) 2,631,155 (2.17%) 114,147,895 (94.34%)

CK2 124,177,272 120,090,486 (96.71%) 2,587,299 (2.08%) 117,503,187 (94.63%)

5i8d1 144,290,922 138,150,865 (95.74%) 4,248,247 (2.94%) 133,902,618 (92.80%)

5i8d2 122,785,186 118,813,067 (96.76%) 2,742,768 (2.23%) 116,070,299 (94.53%)

FIGURE 1
Identification of lncRNA transcripts. (A) Venn diagram showing
different coding potential prediction methods to obtain subsequent
lncRNA analysis data sets. (B) Identification of lncRNA transcripts.

FIGURE 2
Comparative analysis of structural features of lncRNA andmRNA.
(A) Comparison of lncRNA and mRNA length distribution. (B)
Comparison of lncRNA and mRNA exon number. (C) Comparison of
lncRNA and mRNA transcript expression in CK group. (D)
Comparison of lncRNA andmRNA transcript expression in 5i8d group.
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2.23%–2.94%, and the percentage of reads with unique
comparison positions was 92.80%–94.53%.

3.3 Identification of lncRNA transcripts

Whether a new transcript has coding potential is the key
condition to determine whether it is an lncRNA. The lncRNA
information from the previous step was screened by combining
various coding potential analysis software, mainly coding-
noncoding index (CNCI) analysis, coding potential calculator
(CPC) analysis, Pfam-scan protein structural domain analysis,
and Coding Potential Assessment Tool (CPAT) analysis
(animal only). The noncoding transcripts identified by the
above coding potential prediction methods were counted,
and the common and unique numbers of each method were
displayed as Venn diagrams. The intersection of the predicted
results was taken as the subsequent data set for novel lncRNA
analysis (Figure 1A). Upon further classification of unknown
lncRNAs, as shown in Figure 1B, lincRNAs accounted for
70.57%, intronic lncRNAs accounted for 29.43%, and no
antisense lncRNAs were found.

3.4 Structure and characterization of
lncRNAs

To investigate the basic characteristics of lncRNAs in
fibroblasts and induced mammary epithelial cells of dairy goats
in Guanzhong, the transcript length, exon number and transcript
expression levels of lncRNAs and mRNAs were compared after
bioinformatics analysis. The results showed that compared with
mRNA, the lncRNA length interval was concentrated between
200–3,000 bp (Figure 2A), and the number of lncRNA exons was
between 1 and 11, mostly between 1 and 3 (Figure 2B). The
expression of lncRNAs obtained from 0 d to 8 d sequencing
was compared with that of mRNAs, and the overall expression
of mRNAs was found to be significantly higher than that of
lncRNAs (Figures 2 C, D).

3.5 Differential expression analysis of
lncRNAs

DEseq was used for differential expression analysis, and genes
with |log2Fold Change|≥2 and p < 0.05 were selected as significant

FIGURE 3
Differentially expressed lncRNA analysis. (A) Differentially expressed lncRNA expression type, green indicates total differentially expressed lncRNA
number, red indicates known differentially expressed lncRNA number, blue indicates unknown differentially expressed lncRNA number. (B) Significant
differentially expressed lncRNA volcano plot, green indicates downregulated, red upregulated expression. (C) Heatmap of differentially expressed (DE)
lncRNAs.
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differential expression screening conditions. The screening results
were shown in Figure 3. The results showed that 3,970 candidate
differential lncRNAs were obtained in the 5i8d group and the CK
group, which included 1,170 known lncRNAs and 2,800 novel
lncRNAs (Figure 3A). Further differential expression analysis of
the goat fibroblast group and induced mammary epithelial cell
group resulted in 1,288 significantly differentially expressed
lncRNAs, of which 738 were upregulated and 550 were
downregulated (Figure 3B). The heat maps of DE lncRNAs
revealed different expression patterns between the 5i8d group
and the CK group (Figure 3C).

3.6 Differentially expressed lncRNA-
targeted mRNA prediction

To further investigate the role of DE lncRNAs in the
reprogramming process of mammary epithelial cells, the possible
target genes of DE lncRNAs were predicted by target analysis
through cis and trans methods, and their functions were
indirectly predicted through target genes. The target gene
prediction results showed that there were 3,970 different
lncRNAs, of which 2,800 were unknown and 1,170 were known,
corresponding to 5,003 target genes. Among them, there were
multiple significantly different lncRNAs with common target
genes, such as MSTRG. 100417, MSTRG. 10063, and MSTRG.
10088 all correspond to the target gene MAPK10, and there were
also lncRNAs with multiple variable shears targeting multiple
coding genes, such as the coding genes FLT1, FGF9, HGF, and
PDGFRA, which were potential targets of MSTRG.100336, and
these lncRNAs exhibited regulatory effects in different directions.
The heat maps of differently expressed target genes revealed
different expression patterns between the 5i8d group and the CK
group (Figure 4).

3.7 Validation of lncRNAs and target genes
expression by RT-PCR

To further validate the sequencing results and detect their expression
in induced goat mammary epithelial cells, six differentially expressed
lncRNAs were randomly selected, in which MSTRG12675,
LOC102172108, and LOC106503513 were upregulated in the
transcriptome data, MSTRG25656, MSTRG29368, and
MSTRG15634 were downregulated in the transcriptomic data Four
candidate target genes were selected at the same time, among which
MAPK10 and FGF9 were upregulated in transcriptome data, and
PDGFRA and HGF were downregulated in transcriptome data. Its
expression in goat fibroblasts and induced goat mammary epithelial
cells was measured by RT-qPCR. As shown, the RT-qPCR results
showed that the expression of MSTRG12675, LOC102172108, and
LOC106503513 was upregulated and that of MSTRG25656,
MSTRG29368, and MSTRG15634 was downregulated (Figure 5A),
which were all consistent with the results of lncRNA-seq. The RT-
qPCR results showed that the expression of MAPK10 and FGF9 was
upregulated, and the expressionof PDGFRAandHGFwas downregulated
(Figure 5B), which were all consistent with the sequencing results. This
result demonstrated that the RT-qPCR results were consistent with the
expression trend of the transcriptome sequencing results.

FIGURE 4
Heatmap of differentially expressed target genes.

FIGURE 5
Comparison of the results of lncRNA-seq and RT-qPCR analysis
of DE lncRNAs and target genes in CK group vs. 5i8d group. (A)
Relative expression of DE lncRNAs expressed differently in different
groups. (B) Relative expression of target genes expressed
differently in different groups.
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3.8 Functional annotation analysis of target
genes: GOand KEGG

3.8.1 GO enrichment analysis
These neighboring |log2Ratio|≥2 and p < 0.05 differentially

significant target genes were analyzed for functional annotation,
and the GO results were classified into three entries: biological
process (BP), cellular component (CC) and molecular function
(MF). The GO results were classified by three entries, namely,
biological process (BP), cellular component (CC) and molecular
function (MF). The results were shown in Figure 6A. These target

genes were involved in the regulation of a variety of biological
processes, including the regulation of metabolic processes, protein
synthesis, receptor binding and regulation of tyrosine kinase activity.

3.8.2 KEGG enrichment analysis
KEGG enrichment results showed that these target genes were

mainly involved in the Wnt signaling pathway, PI3K-Akt signaling
pathway, arginine and proline metabolism, ECM-receptor
interaction, and MAPK signaling pathway (Figure 6B). These
genes were significantly enriched in pathways that are associated
with reprogramming and mammary gland development, while

FIGURE 6
Functional annotation analysis of target genes. (A) GO enrichment analysis of differential lncRNA target genes. (B) KEGG enrichment analysis of
differential lncRNA target genes.
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lncRNAs target these genes, thus suggesting that lncRNAs play a key
role in reprogramming and mammary gland development.

3.9 Interaction network of lncRNA and
mRNA

The regulatory network analysis of differential lncRNAs with
target genes was plotted based on the relationship of the identified
differentially expressed lncRNA genes with mRNA genes and genes
predicted by the cis and trans targets of lncRNAs (Figure 7). Yellow
and green were target genes, and orange were lncRNAs. The results
show that MSTRG.15634, MSTRG.25656, MSTRG.121896, and
MSTRG.29368 were the differential lncRNAs that simultaneously
target the most genes related to signaling pathways of mammary
gland development and reprogramming, with MSTRG.15634 and
MSTRG.25656 in MSTRG.15634 andMSTRG.25656 being the most
upregulated differential lncRNAs that simultaneously targeted the
above genes, and MSTRG.121896 and MSTRG.29368 being the
most downregulated differential lncRNAs that targeted the above
genes. The network plot results showed that MSTRG.15634 and
MSTRG.25656 targeted MAPK10, FGF9, HGF, FGF18, EFNA5,
PDGFRA, NGF, and MSTRG.121896 and MSTRG.29368 targeted
FGF1, FGFR1, FGF5, FGFR2, PDGFRB, VEGFA, and EFNA4, while
the above four lncRNAs targeted 7 transporter RNAs.

4 Discussion

lncRNAs play important roles in many biological activities, such as
the dosage compensation effect, epigenetic regulation, cell cycle
regulation, and cell differentiation regulation (Xiao et al., 2009), which
has become a research hotspot in different scientific directions. In this
study, transcriptome sequencing analysis of lncRNAs in Guanzhong
dairy goat fibroblasts and induced mammary epithelial cells was

performed, and then the target genes of lncRNAs were further
predicted to reveal their functions. This study provides a theoretical
basis for exploring the role of lncRNAs in reprogramming and lactation.

A total of 4,317 lncRNAs and 3,970 DElncRNAs were detected
before and after the induction of the small molecule compounds. A total
of 1,288 of these lncRNAs were significantly differentially expressed. In
the present study, transcriptome sequencing analysis of lncRNAs in
fibroblasts and induced mammary epithelial cells of dairy goats in
Guanzhong was performed, and then the target genes of lncRNAs were
further predicted to reveal their functions. The sequencing analysis
results were consistent with those of (Li et al., 2019). These similarities
suggest that the lncRNAs analyzed in this study were more reliable.

The expression level was verified by qRT‒PCR, and the trend was
consistent with the lncRNA-Seq data. We enriched for differentially
expressed lncRNA target genes, and GO enrichment revealed that the
tyrosine kinase activity and WNT pathway involved in significantly
enriched GO term entries were associated with mammary gland
development and reprogramming; for example, tyrosine kinase
influences mammary gland differentiation through prolactin receptors
(Xie et al., 2002). Analysis and quantification of pluripotent pluripotency
reprogramming showed that the WNT pathway undergoes extensive
reprogramming and regulates various cellular and developmental
processes (Hu et al., 2020). Therefore, these lncRNAs may play an
important regulatory role in the process ofmammary glanddevelopment.

KEGG enrichment significantly contains the MAPK signaling
pathway, PI3K-Akt signaling pathway, Wnt signaling pathway, and
relaxin signaling pathway related to mammary gland development;
arginine and proline metabolism is a related pathway affecting milk
protein synthesis by influencing the amino acid metabolism of milk
proteins (Manni et al., 1998; Xie et al., 2002; HSU et al., 2005; Dinger
et al., 2008; Xiao et al., 2009; Loewer et al., 2010; Guttman et al., 2011;
Jardé and Dale, 2011; Meng et al., 2018; Li et al., 2019; Hu et al., 2020;
Zhang et al., 2021; Sherman et al., 2022). There were also signaling
pathways related to reprogramming ECM-receptor interactions, the
Rap1 signaling pathway, the MAPK pathway, and the Ras signaling

FIGURE 7
The regulatory network of differentially expressed lncRNAs and target genes.
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pathway (Mezl and Knox, 1977; Zwartkruis and Bos, 1999; Dickinson
et al., 2010; Lopez-Vicente et al., 2011; Zhang et al., 2016; Xu et al., 2019;
Dillon et al., 2021). Several genes exist in these pathways that were
simultaneously involved in subprocesses, including MAPK10, FGF9,
HGF, FGF18, EFNA5, PDGFRA, NGF, FGF1, FGFR1, FGF5, FGFR2,
PDGFRB, VEGFA, and EFNA4. MAPK10 is a member of the MAPK
signaling pathway, which is an important pathway for cell
differentiation and proliferation. It has been shown that Fgf
signaling affects the induction and development of the embryonic
mammary gland by binding to a class of cell surface enzymes
belonging to the family of receptor tyrosine kinases (FgfRs) (Dillon
et al., 2004), that Fgf signaling has a role in normal mammary gland
lobular alveolar development (Jackson et al., 1997a) and that Fgf
signaling is also required for pregnancy-dependent lobular alveolar
development in the mammary gland (Jackson et al., 1997b). HGF has
mitogenic effects on human and mouse mammary epithelial cells, as
well as kinetic and morphological effects, including the induction of
extensive ductal branching and the formation of good lumens (Niranjan
et al., 1995). HGF plays a key role in the estrogen-induced proliferation
of mammary epithelial cells in vivo (Zhang et al., 2002). Efna5, a
member of the ephrin gene family, has receptors whose spatiotemporal
expression patterns are important for the morphogenesis and function
of mammary epithelial tissue, and the Eph receptor acts as a signaling
factor mediating hormones that are critical for the process of mammary
gland expansion and regression (Perez White and Getsios, 2014).
PDGF-BB expression upregulation affects mammary tissue fibrosis
after Staphylococcus aureus infection, and PDGF-BB was found to
be associated with breast fibrosis (Bi et al., 2020). Stromal PDGFRα
signaling disrupts ECM homeostasis during mammary gland
development, leading to increased mammary gland stiffness and
increased tumor growth potential (Hammer et al., 2017). NGF and
its high-affinity receptors are expressed during mammary gland
development and lactation in sheep, and this expression is
dependent on the stage of mammary gland development and
lactation. NGF and its cognate receptors are expressed during
mammary gland development, lactation, and degeneration in sheep
through phosphatidylinositol 3-kinase (PI3K), and protein kinase B
(AKT) plays a central role in promoting mammary cell survival during
mammary gland development, lactation and degeneration (Colitti,
2015). Under the influence of hormonal and epithelial-stromal
interactions, VEGF has multiple roles in the development and
function of mammary glands, such as contributing to vascular
development and supporting fat pads within the mammary gland
(Hovey et al., 2001). Vascular endothelial growth factor affects
mammary gland development by regulating mammary angiogenesis
(Dangat et al., 2020).

In conclusion, all of the above target genes showed their role
in reprogramming and mammary gland development
relationships in previous studies, while the functional
enrichment analysis of the present sequencing results showed
that these target genes were also involved in reprogramming and
mammary gland development-related pathways, among which
two lncRNAs, MSTRG.15634 and MSTRG.25656, target both
MAPK10, FGF9, HGF, MSTRG.25656, MSTRG.29368, and
MSTRG.121896. The four lncRNAs involved in the above
mentioned signaling pathways, through the regulation of their
target genes, allowed fibroblasts to undergo fate transformation
and obtain functional mammary epithelial cells.

5 Conclusion

We used lncRNA-Seq data of the transdifferentiation process to
understand the expression profile of lncRNAs in the reprogramming of
Guanzhong dairy goat fibroblasts into mammary epithelial cells, while
analysis of the data revealed that four lncRNAs, MSTRG.15634,
MSTRG.25656, MSTRG.29368, and MSTRG.121896, may have a key
role in mammary gland development and lactation. Our findings can
provide new ideas for further study of lncRNAs and mRNAs associated
with mammary gland development and reprogramming and provide a
theoretical basis for further elaboration of the reprogramming process
from dairy goat fibroblasts to mammary epithelial cells in Guanzhong
and the molecular mechanism of mammary gland development.
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