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Background: Type 2 (T2)-low asthma can be severe and corticosteroid-resistant.
Airway epithelial cells play a pivotal role in the development of asthma, and
mitochondria dysfunction is involved in the pathogenesis of asthma. However,
the role of epithelial mitochondria dysfunction in T2-low asthma remains
unknown.

Methods: Differentially expressed genes (DEGs) were identified using gene
expression omnibus (GEO) dataset GSE4302, which is originated from airway
epithelial brushings from T2-high (n = 22) and T2-low asthma patients (n = 20).
Gene set enrichment analysis (GSEA) was implemented to analyze the potential
biological pathway involved between T2-low and T2-high asthma. T2-low asthma
related genes were identified using weighted gene co-expression network
analysis (WGCNA). The mitochondria-related genes (Mito-RGs) were referred
to the Molecular Signatures Database (MSigDB). T2-low asthma related
mitochondria (T2-low-Mito) DEGs were obtained by intersecting the DEGs,
T2-low asthma related genes, and Mito-RGs. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) was performed to further explore
the potential function of the T2-low-Mito DEGs. In addition, the hub genes were
further identified by protein-protein interaction (PPI), and the expressions of hub
genes were verified in another GEO dataset GSE67472 and bronchial brushings
from patients recruited at Tongji Hospital.

Results: Six hundred and ninety-two DEGs, including 107 downregulated genes
and 585 upregulated genes were identified in airway epithelial brushings from T2-
high and T2-low asthma patients included in GSE4302 dataset. GSEA showed that
mitochondrial ATP synthesis coupled electron transport is involved in T2-low
asthma. Nine hundred and four T2-low asthma related genes were identified using
WGCNA. Twenty-two T2-low-Mito DEGswere obtained by intersecting theDEGs,
T2-low asthma and Mito-RGs. The GO enrichment analysis of the T2-low-Mito
DEGs showed significant enrichment of mitochondrial respiratory chain complex
assembly, and respiratory electron transport chain. PPI network was constructed
using 22 T2-low-Mito DEGs, and five hub genes, ATP5G1, UQCR10, NDUFA3,
TIMM10, and NDUFAB1, were identified. Moreover, the expression of these hub
genes was validated in another GEO dataset, and our cohort of asthma patients.

Conclusion: This study suggests thatmitochondria dysfunction contributes to T2-
low asthma.
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1 Introduction

Asthma is a chronic complicated airway disease characterized by
airway hyperresponsiveness, eosinophilic inflammation, mucus
hypersecretion, and airway remodeling (Prakash et al., 2017; Durack
et al., 2020). More than 300million people suffer from asthma today and
this number is still on the rise (Halayko et al., 2021). The increasing
mortality andmorbidity rates of asthma leads to the urgent need for new
anti-asthma drug development which requires deeper understanding of
the molecular mechanisms underlying asthma. Airway inflammation in
asthma can be subdivided in T2-high and T2-low subsets (Woodruff
et al., 2009; Bhakta et al., 2013; Halayko et al., 2021; Maggi et al., 2022).
Clinical biomarkers for T2-high include IgE ≥100 IU/ml, eosinophils
count≥300/μl, and FeNO≥30 ppb (Busse et al., 2015). In contrast to T2-
high asthma, T2-low asthma respond poorly to inhaled corticosteroids
(Coverstone et al., 2020). The mechanism underlying T2-low asthma
remains largely unknown.

Mitochondria, as fundamental organelles for cellular and
systemic metabolism, are critical in the fundamental biological
processes including cellular differentiation, apoptosis, autophagy
and hypoxic stress responses (AghapourRAPS et al., 2020; Larson-
Casey et al., 2020; Zhang et al., 2022). Mitochondria dysfunction has
been linked to a variety of disorders including cardiovascular disease,
and cancer (Zhang et al., 2021; Vikramdeo et al., 2022; Liu et al., 2023).
Moreover, mitochondria play essential roles in various lung diseases.
High burden of mitochondrial reactive oxygen species in COPD
patients could result in increased mutagenesis (AghapourRAPS
et al., 2020). Defects of the mitochondria play an essential role in
the apoptosis of airway cells and lung fibrosis (Larson-Casey et al.,
2020). Mitochondrial dysfunction has been associated with the
pathogenesis of asthma (Chellappan et al., 2022). Airway epithelial
cells play a pivotal role in the initiation and development of asthma
(Coverstone et al., 2020). However, the role of mitochondria
dysfunction in airway epithelial cells in T2-low asthma remains
unclear.

Bioinformatics analysis is becoming an important tool in the
analysis of the function of genes or proteins in diseases (Dai et al.,
2018; Kong et al., 2020; Yang et al., 2020; Wang et al., 2021; Yang
et al., 2022). Based on Gene Expression datasets, bioinformatics
analysis could potentially reveal the mechanism in asthma. In the
present study, bioinformatics analysis using GEO datasets
originated from airway brushings were performed and clinical
data were verified to investigate the role of epithelial
mitochondria dysfunction in T2-low asthma.

2 Methods

2.1 Data source

The mRNA expression profiles of the airway epithelial brushings
were acquired from the GSE4302, GSE67472 datasets. The
GSE4302 dataset had 42 asthma subjects and 28 healthy
subjects, and Dataset GSE67472 had 62 patients (T2-high: T2-low =
40: 22). According to the Molecular Signatures Database (MSigDB)

(http://software.Broadinstitute.org/gsea/msigdb), 1576 mitochondria-
related genes (Mito-RGs) were identified (Zhang et al., 2021).

2.2 DEGs detection in the airway epithelial
brushings from T2-low and T2-high asthma
patients

Asthma patients in the GSE4302 dataset were classified as T2-low
(n = 20) and T2-high (n = 22) based on the expression levels of signature
genes, SERPINB2, POSTN and CLCA1 (Coverstone et al., 2020).

Differential analysis was performed to identify DEGs in T2-low
and T2-high patients from the GSE4302 dataset with the empirical
Bayes method using the package “limma” R package (4.2.1), with p <
0.05 and | log2 (fold change, FC) | > 0.4 as criteria. The volcano map
and heat map were also implemented by R package “ggplot2”
(version 3.3.6) and “pheatmap” (version 1.0.12), respectively, to
graphically display the expression of DEGs.

2.3 Gene set enrichment analysis (GSEA)

All genes were ranked according to the degree of expression in
T2-low and T2-high asthma patients in the GSEA. Gene Ontology
(GO) analysis, in terms of biological processes (BP), molecular
function (MF), cell component (CC), was performed to
determine if the genes were enriched using the clusterProfiler
and R package fgsea (version 1.22.0). According to enrichment
scores, top 10 terms were acquired from the above subtypes of
GO terms (p < 0.05) for the visualized Ridge plots, which were
generated using Seurat’s RidgePlot function. Top 5 representative
gene sets were shown using the dotplot function.

2.4 Identification of T2-low asthma related
genes by weighted gene co-expression
network analysis (WGCNA)

WGCNA were used to find modules of highly correlated genes.
A gene co-expression network was constructed using “WGCNA” R
package (version 1.71). Patients was clustered using hclust function
to exclude outliers, and the optimal soft-threshold power was set as
6 for further gene clustering. Modules were clustered with more than
300 genes using dynamic tree cut algorithm, and T2-low related
modules were recognized using correlation analysis. Relationship
between Gene Significance (GS) and Module Membership (MM)
was evaluated in the main T2-low related module.

2.5 Identification of T2-low-mito DEGs

T2-low-Mito DEGs were identified by intersecting the Mito-
RGs, T2-low asthma related genes, and the DEGs obtained from the
GSE4302 dataset. The expression of T2-low-Mito DEGs in both T2-
low and T2-high groups was analyzed using the Wilcoxon test
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method. Then, GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were carried out using R package “clusterProfiler” for
signaling pathway analyses of T2-low-Mito DEGs, and the top
10 terms for both GO and KEGG were displayed.

2.6 Identification of hub genes

A protein-protein interaction (PPI) network of T2-low-Mito
DEGs were constructed in STRING (https://string-db.org/) with a
threshold of medium confidence = 0.4. T2-low-Mito DEGs were
imported into Cytoscape software (3.9.0) and analyzed by
molecular complex detection (MCODE). MCODE was used to
identify highly interconnected clusters in a network. Setting the
cutoff value as 2, node score as 2, k-score as 2, and max depth as
100, the hub genes were identified in the aimed network cluster.
The pROC R package was used for the Receiver operating
characteristics (ROC) analyses.

2.7 Validation of hub gene levels

The expression of hub genes was confirmed by another dataset
GSE67472 withWilcoxon test method. The box line plots of the hub
gene expression in T2-low and T2-high asthma were displayed using
Prism 9.0.

2.8 Patient recruitment

19 control subjects and 22 asthma patients were collected
from Tongji Hospital. Asthma and control subjects were
distinguished according to spirometry value and respiratory
symptoms. None of the subjects had smoking history or intake
of leukotriene antagonist or corticosteroid. For each subject, the
demographic information, spirometry as well as fraction of
exhaled nitric oxide (FeNO) were measured at the beginning
of the study. The diagnosis of asthma and methods for
pulmonary function testing and FeNO measurement have
been described previously (Wu et al., 2022). The research
had been approved by the ethics committee of Tongji
Hospital, Huazhong University of Science and Technology.

2.9 RNA extraction and real-time
quantitative PCR

Total RNA was extracted from human bronchial brushings
using TRIzol (Invitrogen, United States), which were further used
to generate cDNA with PrimeScript RT reagent kit (Takara,
Japan). Primer sequences were designed in Primer-BLAST
website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/),
and provided by Sangon Biotech, Wuhan, China. The
transcript levels were measured on a CFX Connect PCR
Platform (Bio-Rad Laboratories, United States) using Takara
SYBR Premix ExTaq polymerase. Fold differences were
postprocessed using the 2−ΔΔCT method (Wu et al., 2022). The
primers used are listed in Table1.

2.10 Statistical analysis

For normally distributed data and non-normally distributed data, we
used themeans ± standard deviation (SD) andmedians (with interquartile
ranges) to describe the data, and used unpaired t-test and non-parametric
test to compare the groups respectively. All the above were performed
using Prism 9.0. p-value <0.05 was of statistical significance.

3 Results

3.1 Identification of the epithelial DEGs
between T2-low and T2-high asthma

There were 70 subjects including 42 asthma and 28 control
subjects in dataset GSE4302. The asthma patients were classified
into T2-high asthma (n = 22), and T2-low asthma (n = 20)
(Figure 1A) according to the relative expressions of type
2 signature genes, SERPINB2, CLCA1 and POSTN (Coverstone
et al., 2020). A total of 692 DEGs, including 107 upregulated
genes and 585 downregulated genes, were identified between T2-
low and T2-high asthma with | log2 FC | > 0.4 and p < 0.05. The
volcano plot showed upregulated and downregulated and the heat
map of the top 50 upregulated and downregulated DEGs results of
the DEGs were shown in Figures 1B, C, respectively.

3.2 Gene set enrichment analysis (GSEA) of
airway epithelial cells from T2-low and T2-
high asthma

To analyze the potential biological pathway involved in T2-low
and T2-high asthma in GSE4302, GSEA was performed using GO
term enrichment with BP, MF, and CC. With the implementation of
ridgeplots, the most significantly biased ridges in each ontology were
demonstrated according to the adjusted p-value. Top 10 up- and
downregulated GO terms are shown in Figures 2A, C ,E. The top
5 were further showed with gseaplot2 in Figures 2B, D, F. We found
that the top 3/10 GO terms in BP ontology including: mitochondrial
ATP synthesis coupled electron transport the mitochondrial,
mitochondrial electron transport NADH to ubiquinone, and
mitochondrial respiratory chain complex assembly. Of note, the
top 4/10 GO terms in CC ontology including mitochondrial
respirasome, inner mitochondrial membrane protein complex,
mitochondrial protein-containing complex and mitochondrial
inner membrane, are also significantly associated with T2-low
asthma. Likewise, NADH dehydrogenase and oxidoreductase
involved in regulating the MF progression related to mitochondrial
respiratory electron chain complex. These data suggests that
mitochondria related pathway play a key role in T2-low asthma.

3.3 Identification of T2-low asthma related
genes by weighted gene co-expression
network analysis (WGCNA)

One outlier sample (GSM98201) was excluded from the
GSE4302 dataset using the hierarchical agglomerative
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clustering method with the cutoff value as 80 (Figure 3A). The
remaining 41 cases were clustered according to their relative
Euclidean distance for further gene analyses (Figure 3B).
Performing WGCNA, and selecting the scale-free fitting
index as 0.85, we got the optimal soft threshold power value,
which was 6 and led to the mean connectivity being around 100
(Figure 3C). Eight modules were obtained using the dynamic
shear tree algorithm with the minimum 300 genes (Figure 3D).
Module-trait relationship analyses showed that the turquoise
module strongly correlated with T2-low Asthma, and the
904 genes in the turquoise module were regarded as T2-low
Asthma related genes (Figure 3E). The genes in the turquoise

module showed high correlation between MM and GS
(Figure 3F).

3.4 Identification of T2-low-mito DEGs

A total of 22 T2-low-Mito DEGs were identified by intersection, as
shown in the Venn diagram (Figure 4A). A comparison analysis
revealed that COX6C, ROMO1, TUSC2, MCEE, UQCR10, TIMM10,
NDUFAB1, HSPE1, ATP5G1, RAB38, COX14, GPX4, NDUFA3,
MRPL22, CYP24A1, MRPS17, NDUFAF2, ENDOG, MRPL54, MR21,
FAM210B, and IFI27were significantly less expressed in T2-low asthma

TABLE 1 Primers for quantitative PCR.

Symbol Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)

ATP5G1 TTCCAGACCAGTGTTGTCTCC GACGGGTTCCTGGCATAGC

NDUFAB1 ATGGCGTCTCGTGTCCTTTC AACCTGCGCGAGCACTAAG

TIMM10 TCCAAGGGCGAGTCTGTGT AACTTTTTGCCCATCCGCTCA

UQCR10 ATCGTGGGCGTCATGTTCTTC ATGTGGTCGTAGATAGCGTCC

NDUFA3 GGGGCCTCGCTGTAATTCTG GACGGGCACTGGGTAGTTG

FIGURE 1
Identification of the epithelial DEGs between T2-low and T2-high asthma. (A) Heatmap showing unsupervised hierarchical clustering of POSTN,
SERPINB2, and CLCA1 expression levels in bronchial epithelium (red represents a high expression level, and blue represents a low expression level); (B)
Volcano plot showing DEGs in T2-low vs. T2-high asthma; (C)Heatmap of Top 50 increased and decreased DEGs (red represents a high expression level,
and blue represents a low expression level).
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than in T2-high asthma (Figure 4B). The top 10 enriched signaling
pathways in both GO andKEGG analyses were shown in Figures 4C–F.
Mitochondrial respiratory chain complex assembly, and respiratory
electron transport chain were enriched prominently in GO analyses.
Similarly, the KEGG pathway enrichment also covered thermogenesis
and oxidative phosphorylation.

3.5 Identification of hub genes

The interaction of 22 T2-low-Mito DEGs were predicted by PPI
network using the STRING website (Figure 5A). We next performed
subnetwork analysis of the PPI network to identify significant cluster
enriched in T2-low-Mito DEGs by MCODE cluster analysis in

FIGURE 2
GSEA in T2-low and T2-high asthma. Ridge plots showingGSEA enriched in (A)BP, (C)CC, (E)MF; Top 5 pathways of GSEA enriched in (B)BP, (D)CC,
(F) MF.
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Cytoscape. Of note, all 22 DEGs in PPI network were used to select
hub genes, and five hub genes were identified, including ATP5G1,
UQCR10, NDUFA3, TIMM10, and NDUFAB1 (Figure 5B). In

addition, the significant diagnostic value for T2-low asthma of
these hub genes in dataset GSE4302 were validated by the ROC
curve (Figure 5C).

FIGURE 3
WGCNA performed for identifying gene modules significantly related to T2-low asthma. (A) Sample clustering; (B) Heat map of sample clustering
and its characteristics; (C) Filtering of soft thresholds; (D) Clustering dendrogram of differentially expressed genes; (E) Heatmap of the correlation
between module and clinical traits (each cell contained the correlation coefficient and corresponding p-value); (F) The gene significance for T2-low
asthma in the turquoise module (one dot represents one gene in the turquoise module).
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3.6 Validation of the hub genes

The expressions of the five hub genes, ATP5G1, UQCR10,
NDUFA3, TIMM10, and NDUFAB1, between the T2-low and T2-
high group were validated in another dataset GSE67472, as shown in

Figure 6. These genes were also poorly expressed in the T2-low
group with Wilcoxon test, consistent with the results of GSE4302.

We recruited 19 healthy control subjects and 22 asthma
patients to further validate the expression of the hub genes.
Subject characteristics of the healthy control subjects and

FIGURE 4
Identification and enrichment analysis of T2-low-Mito DEGs. (A) Venn diagramof DEGs, turquoisemodule, andMito-RGs; (B)Dot plot of 22 T2-low-
Mito DEGs in T2-low vs. T2-high asthma; Go enrichment results (Top 10) enriched in (C) BP, (D) CC, (E) MF; (F) KEGG enrichment results (Top 10). *p <
0.05, **p < 0.01.
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asthma patients are summarized in Table 2. Furthermore, we
classified the asthma patients into T2-high asthma (n = 15), and
T2-low asthma (n = 7) (Figures 7A, B). The characteristics in the
two subsets of asthma patients are summarized in Table 3. The
expression levels of the five hub genes were determined by qRT-
PCR and the expression levels were relative to T2-low asthma,
which was shown in heatmap (Figure 7C) and bar chart (Figures
8A–E). The experimental results of ATP5G1, UQCR10, NDUFA3,
and TIMM10 were consistent with the bioinformatics analysis
results with highly diagnostic value (Figure 8F).

4 Discussion

Asthma is a chronic complicated airway disease, and presents a
high prevalence throughout the world (Naumova et al., 2022).
Airway inflammation in asthma can be subdivided in T2-high and

T2-low subsets based on molecular mechanism (Halayko et al.,
2021; Maggi et al., 2022). T2-low asthma can be severe and
corticosteroid resistant, and targeted interventions for T2-low
asthma have been mostly unsuccessful (Durack et al., 2020).
The understanding of the mechanism underlying T2-low
asthma is relatively limited.

Severe asthma is associated with energymetabolism dysfunction (Xu
et al., 2022), and mitochondria play an important role in energy
metabolism (Zhang et al., 2022). Bronchial epithelial cells play an
essential role in asthma and mitochondrial dysfunction is implicated
in asthmatic bronchial epithelial cells (AghapourRAPS et al., 2020). Drugs
that improve mitochondrial dysfunction can be used for the treatment of
asthma (Chellappan et al., 2022). However, the role of epithelial
mitochondrial dysfunction in T2-low asthma remains unknown.

Our analysis showed that mitochondrial ATP synthesis coupled
electron transport the mitochondrial is involved in T2-low asthma
by analyzing all the gene expression. GSEA revealed that the

FIGURE 5
Identification of hub genes. (A) PPI network predicting highly potential interactions with 22 T2-low-Mito DEGs based on SRTING database; (B)
Identification of hub genes from the PPI network with Cytoscape plug-in MCODE; (C) ROC curve of hub genes in dataset GSE4302.
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FIGURE 6
Validation of the hub gene levels. (A–E) GSE67472 data set was used to verify the hub gene levels of ATP5G1, UQCR10, NDUFA3, TIMM10, and
NDUFAB1; (F) ROC curve of hub genes in dataset GSE67472. *p < 0.05, **p < 0.01, ****p < 0.0001.

TABLE 2 Overall subject characteristics.

Healthy control subjects Subjects with asthma p-value

Number 19 22

Age, y 40.58 ± 11.02 45.95 ± 12.94 0.1638

Sex, M: F, %F 7:12 (63.16) 8:14 (63.64) 0.9999

Body mass index 21.57 ± 2.741 22.26 ± 2.332 0.3854

FEV1, %predicted 97.40 (73.90–115.2) 80.25 (34.20–97.50) <0.0001

FeNO, ppb 14 (3.7–38); n = 15 67.50 (9–196); n = 22 <0.0001

Data are shown as frequencies (percentages), means ± SDs, or medians (ranges).

FEV1, Forced expiratory volume in the first second; FeNO, Fraction of exhaled nitric oxide.
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significantly enriched pathways focusing on mitochondrial
dysfunction. This suggests that mitochondrial dysfunction plays
an important role in T2-low asthma. To further investigate the core
mechanism and hub genes, T2-low asthma related genes were
obtained by WGCNA, and gene networks were constructed to
find the potential pathways underlying T2-low asthma.

Furthermore, GO enrichment analysis on T2-low-Mito DEGs
showed that mitochondrial dysfunction was strongly related to T2-
low asthma. T2-low-Mito DEGs mainly focused on mitochondrial
inner membrane, mitochondrial ribosome, and mitochondrial
matrix in Cell Component, which cooperate with each other to
exert NADH dehydrogenase activity, oxidoreductase activity, and
electron transfer activity in Molecular Function, . In the category of
Biological Processes, T2-low-Mito DEGs were mainly focused on
mitochondrial respiratory chain complex assembly, respiratory
electron transport chain, oxidative phosphorylation, electron
transport chain. The mitochondrial respiratory chain, also known

as the electron transport chain, lies in the inner mitochondrial
membrane where oxidative phosphorylation takes place (Zhang
et al., 2022). The oxidative phosphorylation system (OXPHOS)
consists of multiple respiratory chain complexes (I-V)
(Vikramdeo et al., 2022). Besides, superoxide and other reactive
oxygen species (ROS) generated by the mitochondrial respiratory
chain during oxidative phosphorylation, play an essential role in
asthma (Sharma et al., 2021).

We identified five hub genes (ATP5G1, UQCR10, NDUFA3,
TIMM10, and NDUFAB1) from T2-low-Mito DEGs using MCODE
in the Cytoscape. ATP5G1, a key element of OXPHOS, encodes
mitochondrial ATP synthase and promotes ATP synthesis (Sun
et al., 2021). During ATP synthesis through oxidative
phosphorylation in mitochondria, decreased ATP5G1 lead to that
the mitochondrial respiratory chain created a lower electrochemical
gradient and generates mitochondrial membrane potential (MMP)
declined. Decreased MMP indicates mitochondrial dysfunction and
apoptosis (Prakash et al., 2017). In clear cell renal cell carcinoma, and
the deficiency of ATP5G1 contribute to mitochondrial disorders
(Brüggemann et al., 2017). Therefore, we speculate that decreased
MMP may be the mechanism of T2-low asthma.

UQCR10, a subunit of complex III of the electron transport
chain, takes part in the oxidative phosphorylation of the inner
mitochondrial membrane (Páleníková et al., 2021). Recently, the
function of NDUFA3 in mitochondrial electron transport chain
complex I gains academic attention (Rak and Rustin, 2014). One
study has demonstrated NDUFA3 are downregulated in Clear-Cell
Renal-Cell Carcinoma (Brüggemann et al., 2017). However, the
existing evidence on the role of NDUFA3 in asthma is
insufficient, so further investigations are needed. Taken together,
downregulation of ATP5G1, UQCR10 and NDUFA3 contribute to
the decreased ATP production, while decreased ATP production
was accompanied with the increase of mitochondrial ROS

FIGURE 7
Identification of DEGs between T2-low and T2-high asthma in clinical samples. (A) Heatmap showing unsupervised hierarchical clustering of
POSTN, SERPINB2, and CLCA1 expression levels in bronchial epithelium (red represents a high expression level, and blue represents a low expression
level); (B) Dot plot of three-gene mean of POSTN, SERPINB2, and CLCA1 expression levels in control, T2-low and T2-high asthma; (C) Heat map of the
five hub gene levels (red represents a high expression level, and blue represents a low expression level).

TABLE 3 Subject characteristics and bronchoscopic features by asthma
phenotype

T2-low T2-high p-value

Number 7 15

Age, y 47.43 ± 10.20 45.27 ± 14.33 0.7247

Sex, M: F, %F 2:5 (71.43) 7:8 (53.33) 0.6478

Body mass index 20.91 ± 2.355 22.33 ± 2.207 0.1839

FEV1, %predicted 81.89 ± 7.120 75.57 ± 17.98 0.2530

FeNO, ppb 22.63 ± 18.22 104.2 ± 52.31 <0.0001

Data are shown as frequencies (percentages), means ± SDs.

FEV1, Forced expiratory volume in the first second; FeNO, Fraction of exhaled nitric oxide.
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generation. This indicates that dysregulation of ATP and ROS
production contributes to the pathogenesis of T2-low asthma.

TIMM10 is implicated in the entry of essential proteins into
inner membranes of mitochondria (Ma et al., 2013). Another hub
gene identified in our study, NDUFAB1, contributes to
mitochondrial activities and ROS metabolism through regulating
the complexes of the electron transport chain. However, the role of
TIMM10 and NDUFAB1 in asthma requires further investigation.

There are several limitations of our study. First, the sample
size of the datasets from GEO and our own cohort are relatively
small. Second, although we validated the aberrant expression of
the hub genes in another dataset and our cohort of asthma
patients, the role of the hub genes in T2-low asthma requires
further study.

5 Conclusion

In this study, we identified aberrant mitochondrial pathways in T2-
low asthma and five novel hub genes related to both of T2-low asthma
and mitochondria dysfunction. This suggests that mitochondria
dysfunction contributes to T2-low asthma, providing new clues for
the diagnosis and therapy for T2-low asthma.
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the article/supplementary material, further inquiries can be directed
to the corresponding authors.

FIGURE 8
Validation of the hub gene levels in clinical samples. (A–E) qRT-PCRwas used to verify the hub gene levels of ATP5G1, NDUFAB1, UQCR10, NDUFA3,
and TIMM10 in bronchial brushings from T2-high asthma patients (n = 15) and T2-low asthma patients (n = 7). *p < 0.05, ***p < 0.001. (F) ROC curve of
hub genes in clinical samples.
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