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Background: Phenotype similarity calculation should be used to help improve
drug repurposing. In this study, based on the MeSH terms describing the
phenotypes deposited in OMIM, we proposed a method, namely, PheSom
(Phenotype Similarity On MeSH), to measure the similarity between
phenotypes. PheSom counted the number of overlapping MeSH terms
between two phenotypes and then took the weight of every MeSH term within
each phenotype into account according to the term frequency-inverse document
frequency (FIDC). Phenotype-related genes were used for the evaluation of our
method.

Results: A 7,739 × 7,739 similarity score matrix was finally obtained and the
number of phenotype pairs was dramatically decreased with the increase of
similarity score. Besides, the overlapping rates of phenotype-related genes
were remarkably increased with the increase of similarity score between
phenotypes, which supports the reliability of our method.

Conclusion: We anticipate our method can be applied to identifying novel
therapeutic methods for complex diseases.
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Background

The rapid development of high-throughput technologies in the past decades, such as
gene microarray, RNA Sequencing (RNA-Seq), and whole exome sequencing (WES), has
revolutionized the evolution of biological studies. Those technologies allow the simultaneous
measurement of expression values, as well as the sequence mutation and structural variation
of thousands of genes, all of which greatly improve our understanding of the underlying
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mechanisms of complex diseases. Identification of mutated or
differentially expressed genes is the beginning in the progress of
the exploration of a disease in that most diseases are caused by the
interplay of multiple biological processes (Menche et al., 2015).
However, false positives or negatives of high-throughput
experiments were one of their most common defects in the
screening of valuable disease-associated information, so
exploration of disease initiation and progression in other aspects
is urgently needed.

Phenotypes are the observable characteristics of organisms
arising from their response to stimuli in vivo or in vitro (Collier
et al., 2015; Hoehndorf et al., 2015), and similar phenotypes might be
induced by similar factors (van Driel et al., 2006; Kohler et al., 2008).
In recent years, lots of effort has been paid toward the management
of emerging scientific or clinical phenotypes in the literature. The
Human Phenotype Ontology (HPO) (Kohler et al., 2014) is one of
the most prevalent databases that applies standardized hierarchical
terms for the description of human phenotypes through a directed
acyclic graph. Based on the managed phenotypes, some algorithms
were developed for their comparison and one of the approaches was
to group phenotypes into clusters based on semantic similarity or
other information (Groth et al., 2010; Westbury et al., 2015). In the
study of Menche et al. (2015), based on the incomplete interactome
of proteins, a mathematical method was proposed for the
identification of disease modules and it was thought
perturbations in one module could disrupt pathways of other
disease modules. Groth et al. (2010) developed Phenoclustering,
an online tool for the mining of cross-species phenotypes which
could not only provide phenotypes clusters but phenotype
descriptions, their similar Gene Ontology (GO) annotations,
amino acid sequence similarity, and so on. Those methods may
be of value for the study of diseases with less known or unknown
pathophysiology.

Online Mendelian Inheritance in Man (OMIM) is a catalog of
human phenotypes and their associated genes which is maintained
by Johns Hopkins University (Amberger et al., 2011). A unique
OMIM ID was assigned to every entry and different prefixes stand
for different types of entries, such as "#" represents a descriptive
entry, usually of a phenotype, "+" indicates the entry contains the
description of a gene of known sequence and a phenotype. For
phenotypes, OMIM provides us with their clinical symptoms, text
description from literature which was curated by specialists, as well
as their references, etc. This abundant information permits in-depth
mining for the comparison between phenotypes and screening of
association between phenotypes and genes. The HPO provides
controlled terms for all of the phenotypic abnormalities in
OMIM, which promotes the development of large-scale
computational analysis and databases of the human phenome,
e.g., DECIPHER (Firth et al., 2009) and ECARUCA (Vulto-van
Silfhout et al., 2013), which are comprehensive databases of
organized phenotype description and their potential associated
chromosomal imbalance. Through applying normalized pointwise
mutual information (NPMI) to co-occurrences of phenotypes and
diseases in OMIM and Orphanet (Hoehndorf et al., 2013),
Hoehndorf et al. (2015) developed a method for the calculation
of similarity between diseases and constructed a human disease
network, in which closely related diseases were clustered together.
There are also some tools for the calculation of similarity between

phenotypes based on semantic similarities, such as Phenomizer
(Kohler et al., 2009), OWLSim (Washington et al., 2009),
PhenoDigm (Smedley et al., 2013), etc., but most of them
obtained the information from HPO, which might cause them to
miss valuable resources in other databases. Phenomizer uses mainly
the information from the directed acyclic graph of HPO, which first
assigns information content (IC) to a term as the negative natural
logarithm of its frequency, and then calculates the similarity between
two terms as the IC of their most informative common ancestor. The
similarity between two phenotypes is defined by Phenomizer as the
average similarity between terms used to annotate them. OWLSim is
primarily applied for cross-species phenotype comparison by using
varieties of ontology-based annotation to record the affected
phenotype and how it is affected. PhenoDigm is built on the top
of the OWLSim algorithm, which is used for linking human diseases
to model organisms for elucidating potential novel disease-gene
associations, and adds zebrafish as a compared model organism in
addition to mouse.

In this study, we extracted all of the phenotype entries from
OMIM and retrieved their Medical Subject Headings (MeSH, a
comprehensive universal controlled vocabulary for the purpose of
indexing journal articles and books in the life sciences) terms within
those entries. Based on those MeSH terms, PheSom (Phenotype
Similarity On MeSH), a method to calculate the similarity between
phenotypes, was developed. Through our method, a similarity score
was assigned to phenotype-phenotype pairs and a higher score
indicated higher similarity. This study would be helpful for the
identification of novel candidate genes of phenotypes of interest.

Methods

Phenotype entries and their MeSH terms in
OMIM

The entire OMIM database (http://www.ncbi.nlm.nih.gov/
omim/) was downloaded, which consisted of 24,010 entries
including 7,739 phenotype items. MeSH (Medical Subject
Heading) terms were downloaded from the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov/mesh/
meshhome.html), and in total, 56,341 terms were obtained.
Similar to HPO, MeSH terms also have a hierarchical structure
with general information represented by the terms at the top level
while terms at the lower level represent more detailed information.
To exemplify, in Table 1, “Breast” holds more detailed information
than “Body Regions”, but less detailed information than “Mammary

TABLE 1 Example of MeSH vocabularies’ level.

Vocabulary Level Vocabulary Level

Body Regions 1 Extremities 2

Anatomic Landmarks 2 Amputation Stumps 3

Breast 2 Lower Extremity 3

Mammary Glands 3 Buttocks 4

Nipples 3 Foot 4
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Glands”, which indicated their different information content (IC) in
describing a phenotype.

Measuring phenotype similarity based on
common MeSH terms

For each phenotype, the MeSH terms included in its OMIM
entry were fetched. Briefly, MeSH terms were one-by-one searched
from the text description of every OMIM entry, and the term that
occurs in an entry along with those terms contained in its upper level
in the MeSH hierarchical structure was assigned to the entry. The
number of overlapping MeSH terms between every two phenotypes
can be counted to initially measure the similarity between two
phenotypes, which is referred to as VOR (vocabulary overlapping
rate-based) method hereafter. Generally, two phenotypes would be
more similar if they were annotated by more common terms.

Measuring phenotype similarity based on
weighted common MeSH terms

Commonly, a MeSH term occurs a different number of times
(“hits”) in different phenotype entries, so it would contribute
differently to those phenotypes according to the Term Frequency
(TF) theory, which was first proposed by Luhn in 1957 based on the
assumption that the weight of a term occurs in a document is simply
proportional to the term frequency (Luhn, 1957). So, the weight of a
MeSH term in a specific phenotype item could be preliminarily
obtained as follows:

TF t( ) � freqtj (1)

In Eq. (1), freqtj is the hits of a MeSH term tj in a specific OMIM
phenotype item.

While, by using the TF method alone, some common MeSH
termsmight be incorrectly assigned a high weight in phenotypes, such
as the terms “mutation” and “patients”, and meanwhile the
importance of some meaningful but low-frequency MeSH terms,
such as “osteocytes” and “oogonia”, are largely overlooked. Given
that point, the Inverse Document Frequency (IDF) theory, which was
developed by Karen Spärck Jones based on the idea of the specificity of
a term can be quantified as an inverse function of the number of
documents in which it occurs (Jones, 1972), was therefore applied to
overcome excessively large or small weight in TF. The weight of a
MeSH term in the scenario of the total OMIM phenotype document
according to IDF was calculated by the following equation:

IDF tj( ) � log 2
N

DFj + L
( ) (2)

In Eq (2), L was set to 0.01 to avoid error in the condition of DFj
just is 0, N was the total number of OMIM phenotype entries, and
here was 7,739, DFj was the number of OMIM phenotype items
which contained tj, i.e., Document Frequency.

By combining TF and IDF, i.e., TF-IDF, a numerical statistic that
is used to reflect how important a word is to a document in a corpus,
the weight of a MeSH term in a specific OMIM phenotype item in
this study could be obtained via Eq (3):

Wi,j �
TF tj( ) × IDF tj( )���������������������∑n

j�1 TF tj( ) × IDF tj( )( )2√ (3)

In Eq. (3), Wi,j was the weight of MeSH term tj in OMIM
phenotype item di, and n was the number of MeSH terms in di.

According to Eq (3), a weight matrix could be obtained as follows:

A � Wij( )
m×n

�
W11,W12, . . .W1n

W21,W22, . . .W2n
. . .
W m1

,
. . .
W m2

,
. . .

. . .Wmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Wij � Eq 3, if tj is contained in di

0, if tj is not contained in di
{

In Eq. (4), Wij was the weight of MeSH term tj in OMIM
phenotype item di, m was the total number of OMIM phenotype
records, n was the number of MeSH terms contained in all of the
OMIM phenotype items.

In this study, cosine similarity (CS), a measurement of similarity
between two vectors of an inner product space that measures the
cosine of the angle between them, was used for the calculation of the
similarity score between every two OMIM phenotype items. The
similarity score between phenotype di = (Wi1, Wi2, . . . . . . , Win) and
dj = (Wj1, Wj2, . . . . . . , Wjn) could be calculated as follows:

Sim di, dj( ) � cos θij � didj
T

di‖ ‖ dj

���� ���� � ∑n
k�1WikWjk��������∑n

k�1Wik
2

√ ��������∑n
k�1Wjk

2
√ (5)

In Eq (5), i, j ∈ (1, 2, 3 . . .m), larger cos θ represented higher
similarity and the similarity score between the same phenotype record
was 1. The method that takes the weight of MeSH terms into account
was referred to as VW, i.e., vocabulary weighted-based method.

Evaluation of the phenotype similarity
calculation method

Similar phenotypes tend to be caused by functionally related genes
or neighbors of disease genes in a network (Wu et al., 2015; Xuan et al.,
2015). Here, the number of overlapping genes between the
phenotype-associated genes retrieved from every OMIM phenotype
item was used for the evaluation of the VOR and VW methods.

Overlap X, Y( ) � X ∩ Y| |
min X| |, Y| |( ) (6)

In Eq (6), |X ∩ Y| was the number of overlapping phenotype-
associated genes between two phenotype items, min (|X|,|Y|) was the
number of associated genes of the phenotype from which fewer
genes were fetched.

As a point of comparison, a randomprocess was performed, in detail.

(i). Genes contained in all of the 7,739 OMIM phenotype items
were fetched which obtained a total of 6,181 genes that were
referred to as OMIMGene;
(ii). The number of genes contained in phenotype di and dj (i,j =
1, 2, 3, . . . , m) was counted, and the same number of random
genes from OMIMGene as their real associated gene number was
used as the random genes of di and dj;
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(iii). The overlapping rate of random genes of di and dj was
calculated through Eq (6);
(iv). Steps (i)–(iii) were repeated 100 times and the average
overlapping rate between any two phenotype items was calculated.

Overlapping rates of both phenotype-associated and random
genes were calculated between each phenotype item pair.Wilcoxon’s
Sign Rank Test was used for the comparison between the
distribution of the two types of overlapping rates.

For the comprehensive understanding of our method, we
provided a flow chart in Figure 1.

Results

Similarity score distribution

A 7,739 × 7,739 similarity score matrix was obtained via the
VOR and VWmethod in this study, and the lowest and highest score
were 0 and 1, respectively. To exemplify, two 8 × 8 similarity score

matrices extracted from the full matrix for the VOR and VW
methods are provided in Table 2 and Table 3, respectively.
Furthermore, the distribution of similarity scores across all of the
7,739 phenotype pairs was calculated based on the bin of 0.1 as
shown in Figure 2. Most of the phenotype pairs had relatively low
similarity scores, and only a few phenotype pairs could reach a
similarity score above 0.9 through both VOR and VW methods.

Evaluation of VOR and VW methods

The associated genes of every phenotype were fetched from the
corresponding phenotype item, and the gene overlapping rate between
any two phenotype items was obtained via Eq (6). The overlapping rates
within different similarity score bins in VOR and VW methods were
shown in Figure 3 from which we observe that the overlapping rates
were gradually increased with the increase of similarity score.

The average overlapping rates of the 100 random gene
assignment processes within different similarity score bins (red
line in Figure 3) were also obtained, and there was no significant

FIGURE 1
Flow chart of this study.
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difference in overlapping rates across the similarity score bins.
Besides, the p-value of Wilcoxon’s Sign Rank Test (Wilcoxon,
1946) between the overlapping rates obtained through the
random gene assignment process and the VOR method, as well

as the random gene assignment process and the VWmethod were all
less than 0.05, which indicated that the overlapping rates were
significantly different between our methods and the random gene
assignment process.

TABLE 2 An 8 × 8 table from the similarity matrix obtained via VOR method.

Phenotype 100050 100070 100100 100200 100300 100600 100675 100700

ID

100050 1

100070 0.152 1

100100 0.155 0.226 1

100200 0.110 0.175 0.088 1

100300 0.210 0.273 0.284 0.087 1

100600 0.188 0.293 0.192 0.189 0.287 1

100675 0.058 0.035 0.036 0.115 0.035 0.043 1

100700 0.060 0.037 0.038 0.117 0.148 0.045 0.065 1

TABLE 3 An 8 × 8 table from the similarity matrix obtained via VW based method.

Phenotype ID 100050 100070 100100 100200 100300 100600 100675 100700

100050 1

100070 0 1

100100 0 0.008 1

100200 0 0 0 1

100300 0 0.014 0.015 0 1

100600 0 0.017 0 0 0.005 1

100675 0 0 0 0 0 0.043 1

100700 0 0 0 0 0.051 0.045 0 1

FIGURE 2
Number of phenotype pairs within different similarity score bins in VOR (A) and VW (B) methods.
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Comparisons between our own phenotype
comparison methods and three others

We used breast cancer as a specific example to compare the
performance of our methods and three other common phenotype
comparison methods, i.e., Phenosim, Jiang and Conrath (1997) and
Resnik (1995). Similarity scores between breast cancer and the
remaining phenotypes were calculated by the VW method, and a
total of 658 phenotypes had similarity scores greater than 0. Similarity
scores between breast cancer and each of those 658 phenotypes were
then calculated by VOR, Phenosim, Jiang and Conrath (1997) and
Resnik (1995). Jiang and Conrath (1997) and Resnik (1995) mainly
used the combination of information content and lexical taxonomy to
evaluate semantic similarity. Phenosim was primarily designed for
simulating phenotypes, by which phenotypic similarity could also be
obtained based on the genetic and epidemiology information. As a
result, the distribution of similarity scores between breast cancer and
other phenotypes calculated by all five methods were comparable
except for Jiang and Conrath (1997), which obtained relatively higher
similarity scores than the other four methods as shown in Figure 4A.
Besides, there were 86 (Figure 4B; Supplementary Table S1) and
4 phenotypes (Figure 4C; Table 4) that had similarity scores greater
than 0 and 0.2 in the results of all five methods, respectively. Those
data indicate that our methods have reliable performance in
calculating phenotype similarity and should be complementary
with other methods.

Phenotypes similar to nicotine addiction

Nicotine addiction is one of the most common substance-abuse
diseases whose development is associated with many genes and
pathways (De Palma et al., 2010; Quik et al., 2011; Durazzo et al.,
2015). In our previous study, 220 genes were identified as the optimal
nicotine addiction-related genes through a multi-source-based
approach (Liu X. et al., 2015). Besides, biochemical pathways

related to neurodevelopment, the immune system, and metabolism
were found to be enriched in those 220 genes in another study of ours
(Liu et al., 2015b). Here, based on VOR and VW methods, some
phenotypes similar to nicotine addiction were obtained and the top
5 phenotypes according to the similarity score were provided in
Table 5, all of which were closely associated with substance abuse
and immune deficiency or tobacco-use related lung cancer.
Additionally, a total of 27 nicotine addiction-related genes
(Supplementary Table S2) were fetched from its OMIM phenotype
item, and 19 out of which were found to be overlapped with the
220 prioritized genes in our previous study (Liu et al., 2015b). A total
of 29 and 15 phenotype-related genes were fetched for the top
5 phenotypes obtained through VOR and VW methods, and there
were 11 and 9 overlapping genes between the 29 and 15 phenotype-
related genes and the 220 previously prioritized genes (Liu et al.,
2015b), respectively. The remaining genes of those similar phenotypes
might provide novel candidate genes for nicotine addiction.

Discussion

In the post-genomic era, screening of candidate genes becomes a
more and more prevalent method for the study of complex genetic
diseases (Botstein and Risch, 2003; McCarthy et al., 2003; Oti and
Brunner, 2007) and it is important for the improvement of medical
care (Luo and Liang, 2015). Lots of methods have been proposed for
this purpose, including Genome-wide association studies (GWAS)
(Lewis et al., 2011; Martelle et al., 2016; Smith et al., 2016), whole
exome sequencing (Friedman et al., 2014; Butler et al., 2015;
Chapman et al., 2015; Bruse et al., 2016), as well as network-
based methods (Yao et al., 2011; Luo and Liang, 2015), etc. Some
disease-gene/protein, as well as gene-protein relationships, were
uncovered, while little effort has been applied to the relationships
at the phenotype level, which would be of benefit for the biological
interpretation of complex diseases with similar phenotypes that
might be caused by functionally related genes. Here, we developed a

FIGURE 3
The overlapping rates of phenotypes-related genes within different similarity score bins in VOR (A) and VM (B) methods. Blue histograms and red
lines represented VOR/VW methods and random gene assignment processes, respectively.
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FIGURE 4
Phenotype comparison results of breast cancer. (A) Distribution of similarity scores calculated by VW, VOR, Phenosim, Renisk, et al., and Jiang and
Conrath (1997), between breast cancer and the 658 phenotypes that had similarity scores greater than 0 obtained through the VW method. (B) Venn
diagram depicting overlaps of phenotypes that had similarity scores with breast cancer greater than 0 in all the five methods. (C) Venn diagram depicting
overlaps of phenotypes that had similarity scores with breast cancer greater than 0.2 in all the five methods.
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novel method that could robustly estimate the similarity among
phenotypes deposited in the OMIM database. This study finally
obtained a matrix containing pairwise similarities among
7,739 phenotypes and there are more overlaps between
phenotype-related genes among phenotypes that exhibit higher
similarity than those exhibit lower similarity.

Most of the humanMendelian syndromes have been deposited in the
OMIM database and described in detail, while the lack of a controlled
term to consistently annotate them has limited the development of
computational tools at the phenotype level in the past. For this purpose,
HPOwas developed for the improvement of annotation of phenotypes in
OMIM with controlled terms in the form of a directed acyclic graph,
which could also be used to calculate phenotypic similarities between
diseases (Robinson et al., 2008). Some methods or tools have been
proposed for the measurement of phenotypic similarity of diseases
based on HPO. Through semantic similarity metrics and taking the
interrelationships between terms in HPO into account, Kohler et al.
(2009) developed a web-based application for the human Mendelian
disorders, fromwhich a similarity score and p-value could be obtained for
the rank of similar diseases. Deng et al. (2015) even developed an HPO-
based R package, HPOSim, for the calculation of phenotypic similarity
through seven commonly used semantic similarity measures: Resnik
measure (Resnik, 1995), Linmeasure (Lin, 1998), Jiang-Conrathmeasure
(Jiang and Conrath, 1997), relevance measure (Schlicker et al., 2006),
information coefficient measure (Li et al., 2010), graph IC measure
(Pesquita et al., 2007) and Wang measure (Wang et al., 2007). Besides,
hypergeometric enrichment analysis and network ontology analysis could
also be conducted via HPOSim While, few studies employed the MeSH
terms on the calculation of phenotype similarity, which is a valuable
medical controlled vocabulary similar to HPO.

In this study, the PheSom (VOR and VW) method was developed
for the comparison of phenotypes in OMIM, and two 7,739 ×
7,739 similarity score matrices were obtained. The overlapping rates
of phenotypes-related genes in different similarity score bins indicated
ourmethod is reliable in identifying similar phenotypes whichwould be
helpful in the collection of novel candidate genes for complex diseases.
Sarkar IN (Sarkar, 2012) proposed a vector space model-based method,
which implicates two vectors including gene vector, i.e., genes that are
associated with queried genes that are directly related to a disease
retrieved through BLAST+ from GeneBank, and a disease vector that is
the quantification of relative relationships between candidate diseases
and the related genes, to identify genetically related diseases.
Resemblances indeed exist between Sarkar’s and this study, such as
vector-based representation for phenotype and cosine similarity for
quantification of the relationship between phenotypes. However,
differences in the materials used in the two studies, i.e., genetic
information for diseases in Sarkar’s study and MeSH term
annotation for diseases in this study, differentiate the two studies
and suggest they may complement each other.

The number of phenotype pairs decreased with the increase of
similarity score in both of the two methods and there were only 0.501%
and 1.048% out of all phenotype pairs with a similarity score >0.6 in
VOR and VW methods, respectively. Our results were consistent with
the study of Driel et al., which compared the similarity between
phenotypes in OMIM based on the text mining analysis of MeSH
terms inside the phenotypes records (van Driel et al., 2006). This might
indicate the low similarity between most of the phenotypes. While, we
should pay attention to some conditions which would influence the
calculation of the similarity score, such as if tj, aMeSH term, is important
for the description of di, an OMIM phenotype item, but the hits of tj are

TABLE 4 The 4 overlapping phenotypes that had similarity score with breast cancer greater than 0.2 in all the five methods.

Phenotype title VOR VW Phenosim Resnik Jiang

Li-fraumeni syndrome 0.333 0.253 0.205 0.306 0.528

Ovarian cancer 0.318 0.313 0.263 0.321 0.649

Breast-ovarian cancer, familial, susceptibility to, 1 0.455 0.954 0.329 0.326 0.748

Breast-ovarian cancer, familial, susceptibility to, 2 0.500 0.950 0.329 0.326 0.748

TABLE 5 The top 5 similar phenotypes of nicotine addiction obtained by VOR and VM methods.

Phenotype ID Phenotype title Similar score

VOR method

183100 spinocerebellar atrophy with pupillary paralysis 0.422

610065 systemic lupus erythematosus, susceptibility to, 7 0.422

610066 systemic lupus erythematosus, susceptibility to, 8 0.422

612253 systemic lupus erythematosus, susceptibility to, 11 0.421

103780 alcohol dependence;alcoholism 0.416

VW method

611003 Smoking as a quantitative trait locus 1 0.685

606581 Polysubstance abuse, susceptibility to; psab; drug addiction, susceptibility to 0.449

611004 Smoking as a quantitative trait locus 2 0.441

613778 Macular degeneration, age-related, 8 0.368

608935 Lung cancer susceptibility 1 0.304
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low in di, its weight in di would be lower than expected according to Eq.
(2), and the similarity score might become lower between di and the
other phenotypes contained more tj. Xue et al. also presented a study for
estimating phenotype similarity based on HPO terms by incorporating
not only HPO structure but terms’ definition. Several similarities exist
between Xue’s and our study, e.g., TF-IDFmethod, and cosine similarity,
while phenotype annotations used in our study are standardized MeSH
terms fetched from every OMIM entry, which were manually reviewed
and should be reliable and comprehensive.

For nicotine addiction, the two methods obtained some phenotypes
with high similarity scores. Table 5 indicated that the similar phenotypes
obtained through VOR and VW were mainly involved in immune- and
substance-abuse-related processes respectively. Nicotine addiction is a
substance-abuse disease that could also reduce the immune response
(Schumacher, 2013; Alving et al., 2014; Liu et al., 2015b; Mishra et al.,
2015) and pose similar mechanisms to the addiction to other substances,
such as drugs (Motlagh et al., 2016; van Wel et al., 2016). Besides,
comparedwith the prioritized genes of nicotine addiction obtained in our
previous study, many overlapping genes were identified and the overlap
rates were 38% and 60% in VOR and VW methods respectively, which
indicated the reliability of our two methods and VW might outperform
than VOR. Some discrepancies also existed between nicotine addiction-
related genes that were prioritized in our previous study and genes that
were contained in the top 5 most similar phenotype entries. An example
is FAAH, which is recorded as a related gene for the second most similar
phenotype, i.e., “POLYSUBSTANCE ABUSE, SUSCEPTIBILITY TO;
PSAB”, for nicotine addiction by VWmethod, was not prioritized by our
previous method. However, the association between FAAH and nicotine
addiction is supported by some other studies (Simonnet et al., 2017;
Pavon et al., 2018). STAT4 represents another gene that is included in the
top five most similar phenotype items but was not identified by our
previous study. STAT4 is a transcriptional factor encoding gene that is
phenotypically associated with immune-related diseases, such as systemic
lupus erythematosus and rheumatoid arthritis (Salmaninejad et al., 2017;
Ebrahimiyan et al., 2019). Nicotine addiction has been previously
reported to be immune dysregulation-related (Wang et al., 2011; Liu
et al., 2015c), so STAT4 might serve as a potential candidate for nicotine
addiction.

This study provides the most comprehensive OMIM-based
comparisons among different phenotypes so far. Our method
directly quantifies the similarity among phenotypes, which would
be helpful for the drug repurposing in the scenario of the existence of
well-known drugs for one phenotype but the candidate drug is
lacking in highly similar phenotypes. Besides, this study should also
be helpful for identifying novel candidate genes for some diseases in
similar phenotypes that might share causal genes. Limitations of this
study do exist, such as the similarity matrix should be manually
updated with the constant expansion of vocabulary describing the
physiological or pathological states. Additionally, it would be better
to add the laboratory-based validation for the novel related genes of
specific diseases identified through our method.

Conclusion

In conclusion, we developed two methods for the calculation of
similarity scores between phenotypes in OMIM through the
semantic similarity of MeSH terms. The overlapping rates of

phenotype-related genes in different similarity score bins indicate
the reliability of our methods and suggest they would be helpful for
the identification of novel candidate genes of complex genetic
diseases.
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