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Introduction: Metabolic syndrome (MetS) increases the risk of cardiovascular
disease and death. Previous ‘-omics’ studies have identified dysregulated serum
metabolites and aberrant DNA methylation in the setting of MetS. However, the
relationship between the metabolome and epigenome have not been elucidated.
In this study, we identified serum metabolites associated with MetS and DNA
methylation, and we conducted bidirectional Mendelian randomization (MR) to
assess causal relationships between metabolites and methylation.

Methods: We leveraged metabolomic and genomic data from a national
United States cohort of older adults (REGARDS), as well as metabolomic,
epigenomic, and genomic data from a family-based study of hypertension
(HyperGEN). We conducted metabolite profiling for MetS in REGARDS using
weighted logistic regression models and validated them in HyperGEN.
Validated metabolites were selected for methylation studies which fit linear
mixed models between metabolites and six CpG sites previously linked to
MetS. Statistically significant metabolite-CpG pairs were selected for two-
sample, bidirectional MR.

Results: ForwardMR indicated that glucose and serinemetabolites were causal on
CpG methylation near CPT1A [B(SE): −0.003 (0.002), p = 0.028 and B(SE): 0.029
(0.011), p = 0.030, respectively] and that serinemetabolites were causal on ABCG1
[B(SE): −0.008(0.003), p = 0.006] and SREBF1 [B(SE): −0.009(0.004), p = 0.018]
methylation, which suggested a protective effect of serine. Reverse MR showed a
bidirectional relationship between cg06500161 (ABCG1) and serine [B(SE): −1.534
(0.668), p = 0.023].

Discussion: The metabolome may contribute to the relationship between MetS
and epigenetic modifications.
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Introduction

Metabolic syndrome (MetS), defined by a cluster of cardiometabolic
risk factors (hypertension, elevated blood glucose, abnormal lipid levels,
and abdominal obesity), is described as “more than the sum of its parts”
(Reilly and Rader, 2003; Huang, 2009). In the last 4 decades, the
prevalence of MetS has risen by 35% overall, with consistent increases
across all sociodemographic groups; further, more than one-third of all
United States adults has MetS (Moore et al., 2017). MetS increases the
risk of cardiovascular diseases more than the risk of these traits
individually (Fahed et al., 2022). Previous metabolomics studies have
discovered dysregulated serum metabolite concentrations in the setting
ofMetS, but mechanisms of how the metabolome confers MetS risk are
unclear (Roberts et al., 2014; Azab et al., 2021; Carioca et al., 2021;
Comte et al., 2021; Jialal et al., 2021; Wu et al., 2021; Zhang et al., 2021;
Lind et al., 2022). Similarly, epigenome-wide association studies
(EWAS) have identified, with consistent validation, alterations in
DNA methylation of cytosine-phosphate-guanine (CpG) sites near
genes that contribute to lipid metabolism, inflammation pathways,
and hormone signaling inMetS. Importantly, the epigenome is sensitive
to the environment (which may include the metabolome). Few studies
have integrated the metabolome with MetS-related epigenomic sites,
which could provide additional information on how the metabolome
may alter individual risk for MetS.

Longitudinal data on ‘-omics’ are generally unavailable to understand
causal relationships, particularly between -omic measurements (e.g.,
epigenomics and metabolomics). When only cross-sectional data are
available,Mendelian randomization (MR) analyses provide an alternative.
Importantly, past MR analyses have suggested that cardiometabolic traits
are causal onmethylation changes (Akinyemiju et al., 2018; Hidalgo et al.,
2021; Jones et al., 2021). Also, metabolite reactions, such as the
methionine cycle, may contribute to DNA methylation as methyl
donors via DNA methyltransferase reactions (Zhang, 2018; Maddocks
et al., 2016; Y et al., 2016). Yet, pathways of howMetS-related traits drive
methylation variations have not been fully elucidated (Zaghlool et al.,
2018). Methylation patterns associated with MetS that have been
observed via EWAS could be downstream of dysregulated metabolite
levels. Therefore, understanding the relationship between the
metabolome and epigenome may help identify potential mechanisms
ofDNAmethylation in cardiometabolic dysfunction. The objective of this
study was to utilize genomic andmetabolomic data from the Reasons for
Geographic and Racial Differences in Stroke (REGARDS) Study, as well
as genomic, epigenomic, and metabolomic data from the Hypertension
Genetic Epidemiology Network (HyperGEN) to, first, conduct a multi-
omics analysis of MetS and second, establish the directionality of the
observed associations through bidirectional MR analyses.

Materials and methods

Study populations

We leveraged data from a subset of participants from the
REGARDS Study. The REGARDS objectives and design have

previously been described (Howard et al., 2005). Briefly,
30,239 community-dwelling, non-Hispanic Black and White
adults aged 45 and older were recruited between 2003 and
2007 across the contiguous United States with oversampling from
the Southeast region. Metabolomics were conducted in a subset of
individuals who were part of a case-cohort study for incident strokes
(N = 2,165) (Ament et al., 2022). A subset of these participants also
had available genotype data (N = 1,865). Metabolite profiling,
genotyping, and quality control metrics are detailed in the
Supplementary Methods.

We also utilized available genomic (N = 1,898), epigenomic (N =
614), and metabolomic data (N = 300) from the Hypertension
Genetic Epidemiology Network (HyperGEN). Recruitment
methods for HyperGEN have been previously described
(Williams et al., 2000). Briefly, HyperGEN—coordinated under
the National Heart, Lung, and Blood Institute (NHLBI) Family
Blood Pressure Program (FBPP)—was enriched for hypertensive
adults and their siblings and/or adult offspring to evaluate genetic
contributors to hypertension and target organ damage. Later,
African American (AA) participants’ samples underwent deep
coverage, whole genome sequencing (WGS) through the NLHBI
Trans-Omics in Precision Medicine (TOPMed) Consortium. In
separate ancillary studies, AA participant samples were selected
for epigenotyping and metabolite measurements for studies of left
ventricular hypertrophy (under an extreme phenotype design) and
chronic kidney disease, respectively. Complete descriptions of data
collection in HyperGEN are available in the Supplementary
Methods. The different datasets used for this analysis are
summarized in Supplementary Figure S1.

MetS phenotyping

MetS was defined as having at least 3 of the following at the
baseline visit according the United States National Cholesterol
Education Program Adult Treatment Panel III (NCEP-ATP III)
2005 criteria: hypertension (SBP ≥ 130 mmHg or DBP ≥ 85 or self-
reported use of anti-hypertensive medications);
hypertriglyceridemia (triglyceride ≥ 150 mg/dL or self-reported
use of lipid-lowering medication); hypoalphalipoproteinemia
(HDL cholesterol <40 mg/dL for males or <50 mg/dL for females
or self-reported use of lipid-lowering medication); elevated blood
sugar (fasting blood glucose ≥ 100 mg/dL) or self-reported use of
glucose-lowering medication or insulin); and abdominal obesity
(waist circumference >40 cm for males or >35 cm for females
(Huang, 2009).

Statistical analyses

MetS-metabolite association and validation
All analyses are summarized in Figure 1. In the REGARDS case-

cohort (N = 2,039), weighted logistic regression models were fit to
test the association between prevalent MetS (outcome) and a panel
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of 162 serum metabolites (exposure). Models were adjusted for age,
gender, race, cigarette smoking, alcohol use, and stroke case status.
In sensitivity analyses, we also adjusted models for fasting status and
restricted the analysis to the randomly selected controls (N = 872).
Metabolites with association p-values less than the Bonferroni-
corrected significance threshold of p = 0.05/162 = 3.09e-04 were
selected for validation in HyperGEN participants with
metabolomics data (N = 300). We also selected 12 metabolites
that were upstream of DNA methylation pathways irrespective of
statistical significance in REGARDS for validation. HyperGEN
metabolite models were similarly adjusted for age, gender,
smoking status, alcohol use, and recruitment center. Race was
not included as a covariate, as all HyperGEN metabolomics
participants were AA. Validated MetS metabolites (p <0.05) were
selected for further analyses among HyperGEN participants who
also had both metabolomic and methylation data (N = 134); none of
these individuals were related. Logistic regression modeling was
completed in SAS version 9.4.

Methylation studies
We evaluated the relationship between HyperGEN-validated

metabolites and six CpG sites that have previously been linked to
MetS (Table 1): cg06500161, annotated to ATP-Binding Cassette
Subfamily G Member 1 (ABCG1); cg00574958, annotated to
Carnitine Palmitoyltransferase 1A (CPT1A); cg02650017,
annotated to Phosphoethanolamine/Phosphocholine Phosphatase
1 (PHOSPHO1); cg11024682, annotated to Sterol Regulatory
Element-Binding Protein 1 (SREBF1); cg18181703, annotated to
Suppressor Of Cytokine Signaling 3 (SOCS3); and cg19693031,
annotated to Thioredoxin-Interacting Protein (TXNIP) (Hidalgo
et al., 2021). We fit linear mixed models for the CpG beta score
(outcome) and metabolite (predictor), adjusted for age, gender,
recruitment center, left ventricular mass index, principal
components of ancestry (PCs), Houseman-estimated cell counts,
and family relatedness (random effect). For the linear mixed models,
we used the lme4 package in R (version 4.2.0). CpG-metabolite pairs
with association p <0.05 were eligible for MR studies.

FIGURE 1
(A) Study Overview, (B) Summary of MR analyses.

TABLE 1 CpG sites associated with MetS and related traits in the literature.

CpG Gene Location Chr:BP Function MetS direction

cg06500161 ABCG1 shore 21:43,656,587 lipid transport +

cg00574958 CPT1A shore 11:68,607,622 fatty acid oxidation -

cg02650017 PHOSPHO1 island 17:47,301,614 lipid biosynthesis and metabolism -

cg18181703 SOCS3 shore 17:76,354,621 regulates cytokine activation -

cg11024682 SREBF1 shelf 17:17,730,094 lipid metabolism and homeostasis +

cg19693031 TXNIP 3′ UTR 1:145,441,552 mediates oxidative stress -

Chr: chromosome, UTR: untranslated region. BP: base pair location corresponds to build GRCh37/hg19. ‘+’ indicates that increasingmethylation at the CpG site is associated with a higher odds

of MetS, whereas ‘-’ denotes that decreasing methylation at the CpG sites is associated with a higher odds of MetS in Hidalgo et al. (Hidalgo et al., 2021).
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Two-sample, bidirectional Mendelian
randomization

We conducted bidirectional MR using the TwoSampleMR
package (version 0.5.6) in R (version 4.2.0) for statistically
significant CpG-metabolite associations (Hemani et al., 2018).
We hypothesized that metabolite levels were causal on CpG
methylation (Figure 2). This MR approach uses single nucleotide
polymorphisms (SNPs) associated with the trait of interest as the
instrumental variables (IVs). Under the assumptions of the MR, if
the SNPs that are strongly associated with the exposure are also
associated with the outcome, then there is evidence to suggest a
causal relationship. To obtain the exposure instruments (metabolite
quantitative trait loci SNPs or mQTL SNPs), we conducted genome-
wide association studies (GWAS) in PLINK 2.0 among participants
with both metabolite and genetic data in REGARDS for selected
metabolites, adjusted for age, sex, and the first ten PCs. We similarly
conducted GWAS for selected CpG sites and corresponding WGS
data in HyperGEN (N = 557) to obtain the outcome instruments
(methylation quantitative loci SNPs or meQTL SNPs). HyperGEN
meQTL models were adjusted for left ventricular mass index.
Because the HyperGEN sample was all African American, we
restricted the REGARDS GWAS to African American
participants (N = 846) for SNP IV selection.

There were few SNPs in REGARDS with association p <5.00e-
08, which corresponds to the traditional Bonferroni-corrected
threshold for GWAS; thus, we considered a lower p-value
threshold in order to increase the available IVs for forward MR
analyses. Summary statistics for SNPs with association p <1.00e-
06 in REGARDS metabolite GWAS (exposure IVs) and their
corresponding estimates in HyperGEN (outcome IVs) served as
the inputs for the MR in TwoSampleMR. We then harmonized allele
orientation and effect estimates across the two cohorts. For CpG-
metabolite pairs in which there was evidence to suggest a causal
relationship in the forward direction (metabolite causal on the CpG,
MR p <0.05), we investigated reverse causation as well. In reverse
MR, the exposure IVs were SNPs that were strongly associated with
the respective CpG in HyperGEN with p <1.00e-06 (methylation
quantitative trait loci SNPs or meQTL SNPs), and the corresponding
SNP associations from the metabolite GWAS were the outcome IVs.

We obtained MR estimates via multiple methods: Egger,
weighted median, inverse variance-weighted (IVW), simple, and
weighted. Generally, the IVW method provides the greatest
statistical power, but it assumes balanced pleiotropy. Thus, when
there was significant pleiotropy (Egger regression intercept p <0.05),

we assessed the Egger estimate; otherwise, we considered the IVW
estimate. We also conducted multiple sensitivity analyses for each
CpG-metabolite pair in both forward and reverse MR (Burgess et al.,
2017). These included tests for heterogeneity, single SNPMR (which
computes MR estimates using each SNP as an individual IV instead
of a combined effect of all the SNPs selected as IVs), and leave-one-
out analyses—which computes MR estimates multiple times while
leaving out each SNP from the set of exposure IVs to determine
whether an individual SNP is the primary driver of the observed
effect. We also conducted the Steiger test for causal direction, which
determined whether the proportion of the variance in the exposure
explained by the exposure IVs was significantly greater than the
proportion of the variance in the outcome explained by those same
IVs. In all analyses, two-sided p-values are assessed.

Results

Baseline characteristics of the REGARDS and HyperGEN sub-
study cohorts are presented in Table 2. In discovery models,
28 metabolites were significantly associated with prevalent MetS
in REGARDS after correcting for multiple comparisons
(Supplementary Figure S2). Of these, two metabolites
(cystathionine and S-adenosylhomocysteine (SAH)) were known
to be upstream of DNA methylation pathways. Of the 10 remaining
methylation-related metabolites, the following were marginally
associated with MetS (p <0.05): cystine, S-adenosylmethionine
(SAM), sarcosine, serine. Unlike other methylation metabolites,
higher serine levels were associated with a lower odds of MetS in
REGARDS.

Moreover, associations were robust when we restricted the
analysis to the controls in the stroke case-cohort and when we
accounted for fasting status (Supplementary Table S1). Of the
38 total metabolites that were either statistically significant and/
or are involved in DNA methylation pathways, 31 metabolites were
available for analysis in HyperGEN. In validation models,
D-gluconic acid (DGA), glucose, isoleucine, and leucine were
strongly associated with MetS (p <1.00e-05). Additionally, 2-
aminoadipic acid (2-AAA), alanine, glutamate, serine, and
taurine were modestly associated with MetS (p <0.05).
Associations for MetS metabolites in REGARDS and HyperGEN
are presented in Supplementary Table S2.

In HyperGEN, 44.7% of participants in the metabolomics cohort
also had available methylation data. The prevalence of MetS in this

FIGURE 2
Directed acyclic graph (DAG) of forward (blue) and reverse (red) MR.
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subset (74.6%) was concordant with the full metabolomics cohort
(71.7%). In the methylation analysis, we assessed the relationships
between the 9 validatedMetS metabolites and the selected CpG sites.
In the fully adjusted models, DGA, glucose, glutamate, isoleucine,
serine, and taurine were associated with methylation of at least one
CpG site. However, 2-AAA, alanine, and leucine, were not
associated with any CpG site. Furthermore, cg18181703 (SOCS3)
was not associated with any metabolite.

CpG-metabolite pairs that were statistically significant in linear
mixed modeling were eligible for MR analysis (Table 3). All CpG-
metabolite associations are presented in Supplementary Table S3. Of
the 13 statistically significant CpG-metabolite associations, only
glucose (CPT1A) and serine (ABCG1, CPT1A, SREBF1)
metabolites showed causal effects on methylation in the forward
MR (Table 4). Glucose SNPs were inversely associated methylation
of cg00574958 (CPT1A). And serine-associated SNPs were inversely
associated with methylation of CpG sites at ABCG1 and SREBF1,
though positively associated with CpG sites at CPT1A and TXNIP.

Metabolite effects on methylation were robust in sensitivity
analyses for the selection of SNPs as IVs, including leave-one-out
analyses and single SNP MR (Figure 3). Moreover, tests for
heterogeneity were not statistically significant for any CpG-
metabolite pair, indicating that the SNPs that were used as IVs
did not violate MR assumptions. And the Steiger tests confirmed the
causal directionality of metabolite influence on methylation.

For metabolites with significant causal effects on methylation in
the forward MR, reverse MR showed that CpG methylation was not

causal on metabolites, apart from cg06500161 (ABCG1) on serine (B
[SE]: −1.534 [0.668], p = 0.023). Results were consistent in leave-
one-out and single SNP MR estimations. Because there were more
than 700 IVs for ABCG1 in reverse MR, we considered a p-value
threshold of p <5.00e-08 to reduce the number of SNPs that were
potentially in linkage disequilibrium (LD) with causal IVs. Complete
reverse MR results are presented in Supplementary Table S4.

Discussion

In this study, we leveraged individual-level metabolomic,
epigenomic, and genomic data to, first, identify metabolites
associated with MetS and, second, evaluate the relationship between
these metabolites and CpG sites that have been linked to MetS in prior
studies. We determined that serine and glucose may causally affect
DNA methylation and that there may be a bidirectional relationship
between serine and methylation of the ABCG1 gene region. Notably,
serine is also upstream of DNA methyltransferase reactions, unlike the
metabolites (e.g., DGA) that were strongly associated with MetS and
methylation but were null in MR analyses.

Previous metabolome-wide association studies (MWAS) for
MetS have identified metabolites of statistical significance
(Roberts et al., 2020; Azab et al., 2021; Carioca et al., 2021; Sun
et al., 2021; Lind et al., 2022). However, replication of these
metabolites across cohorts is lacking, and integration of
additional ‘-omics’ data has been recommended to further

TABLE 2 Baseline characteristics of REGARDS and HyperGEN participants with metabolite measurements.

Trait N (%)/Mean (SD) REGARDS (n = 2,039) HyperGEN (n = 300)

Age 68.2 (10.4) 54.5 (9.5)

Gender, Male 1033 (50.7%) 124 (41.3%)

Race, Black 894 (43.8%) 300 (100%)

Current Smoker 306 (15.0%) 92 (30.7%)

Alcohol Use, None 1329 (65.2%) 221 (73.7%)

Prevalent MetS 1451 (71.2%) 215 (71.7%)

TABLE 3 CpG-metabolite associations in HyperGEN.

Metabolite cg06500161
(ABCG1)

cg00574958
(CPT1A)

cg11024682 (SREBF1) cg02650017
(PHOSPHO1)

cg19693031 (TXNIP)

B(SE) p B(SE) p B(SE) p B(SE) p B(SE) p

DGA -- -- -- -- -- -- −0.003 (0.002) 0.047 −0.017 (0.007) 0.020

Glucose 0.007 (0.003) 0.033 −0.007 (0.002) 0.005 0.012 (0.004) 0.003 -- -- −0.033 (0.007) 5.05e-06

Glutamate −0.007 (0.003) 0.039 -- -- 0.009 (0.004) 0.034 -- -- -- --

Isoleucine -- -- -- -- -- -- -- -- −0.019 (0.008) 0.016

Serine −0.009 (0.003) 0.002 0.007 (0.002) 0.002 −0.015 (0.004) 6.64e-05 -- -- -- --

Taurine -- -- -- -- -- -- -- -- 0.030 (0.007) 1.43e-05

Beta estimates (B) and standard errors (SE) presented for CpG-metabolite associations with p <0.05. ‘--’ denotes that CpG-metabolite pair were not significantly associated (p ≥0.05). Linear
mixed regression models were adjusted for age, gender, recruitment center, left ventricular mass index, principal components of ancestry, Houseman-estimated immune cell counts, and family

relatedness (random effect).
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explicate the pathophysiology of these variations in metabolite levels
(Monnerie et al., 2020; Comte et al., 2021). For example, an
integrative proteomics-metabolomics analysis identified metabolic
pathways that were perturbed in the setting ofMetS, including serine
metabolism (Chen et al., 2022). Another study that combined
metabolomic, proteomic, and transcriptomic data showed that
mitochondrial respiratory chain dysfunction alters serine
biosynthesis pathways (Bao et al., 2016). Although mechanisms
are not fully understood, multi-omics approaches may illuminate
biochemical pathways that contribute to MetS.

In this analysis, we detected causal relationships between serine
and methylation of multiple MetS CpG sites. The inverse

associations with CpG sites at ABCG1 and SREBF1, as well as
positive associations cg00574958 at CPT1A, suggest a protective
relationship (e.g., increased CPT1A methylation is associated with
less risk for MetS). Serine contributes to epigenetic modifications, as
its metabolism supports the methionine cycle and subsequent
methylation of DNA, RNA, and histones via methyltransferase
reactions (Kadayifci et al., 2018; Gadecka and Bielak-Zmijewska,
2019; Lin et al., 2022; Pardo et al., 2022). The effect of serine
metabolism on epigenetic variations has primarily been weighed
in the context of cancer, but this metabolite could similarly affect
cardiometabolic health via these same methylation pathways. For
example, animal studies suggest that dietary supplementation with

TABLE 4 Summary of forward MR of metabolite levels on CpG methylation.

Metabolite CpG (gene) Forward MR Sensitivity analyses

Method n
SNPs

B(SE) p Pleiotropy p Heterogeneity p Steiger test

R2

metabolite
R2

CpG

DGA cg02650017
(PHOSPHO1)

IVW 7 −0.003 (0.002) 0.12 0.21 0.90 0.152 0.008

Egger −0.018 (0.011) 0.15

cg19693031 (TXNIP) IVW 0.005 (0.006) 0.43 0.67 0.97 0.003

Egger −0.011 (0.036) 0.77

Glucose cg06500161 (ABCG1) IVW 21 0.001 (0.002) 0.71 0.14 0.99 0.679 0.024

Egger −0.008 (0.006) 0.19

cg00574958 (CPT1A) IVW −0.003(0.002) 0.028 0.25 0.81 0.049

Egger −0.009 (0.005) 0.08

cg11024682 (SREBF1) IVW 0.002 (0.002) 0.32 0.11 0.73 0.038

Egger 0.014 (0.007) 0.07

cg19693031 (TXNIP) IVW 0.005 (0.004) 0.18 0.91 0.70 0.048

Egger 0.004 (0.011) 0.76

Glutamate cg06500161 (ABCG1) IVW 4 0.001 (0.005) 0.83 0.73 0.94 0.083 0.001

Egger 0.004 (0.008) 0.70

cg11024682 (SREBF1) IVW 0.004 (0.006) 0.55 0.27 0.34 0.007

Egger 0.016 (0.010) 0.25

Isoleucine cg19693031 (TXNIP) IVW 8 0.006 (0.006) 0.33 0.98 1.00 0.171 0.003

Egger 0.006 (0.017) 0.72

Serine cg06500161 (ABCG1) IVW 9 −0.008(0.003) 0.006 0.28 0.55 0.227 0.028

Egger −0.024 (0.014) 0.13

cg00574958 (CPT1A) IVW −0.001 (0.003) 0.62 0.022 0.91 0.024

Egger 0.029(0.011) 0.030

cg11024682 (SREBF1) IVW −0.009(0.004) 0.018 0.39 0.87 0.022

Egger 0.006 (0.017) 0.72

Taurine cg19693031 (TXNIP) IVW 17 −0.001 (0.004) 0.72 0.91 1.00 0.442 0.007

Egger −0.004 (0.018) 0.85

IVW: inverse variance weighted; SNP: single nucleotide polymorphism. Boldface indicates statistical significance (p <0.05).
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serine and taurine may prevent MetS (Ji et al., 2016; Rafiee et al.,
2022; Wang et al., 2022). And a recent study in REGARDS found
that serine levels were positively associated with a plant-based
dietary pattern (Bhave et al., 2022). While mechanistic studies
linking serine to DNA methylation and cardiometabolic
dysfunction are lacking, current evidence provides a theoretical
framework for the observed associations in this study.

EWAS for MetS and related traits have shown, with consistent
validation across diverse populations, associations with the CpG
sites we selected for this analysis (Akinyemiju et al., 2018; Hidalgo
et al., 2021). Although this study was not able to link methylation to
gene expression, previous studies have demonstrated this, as well as
identified causal relationships with cardiometabolic traits in
Mendelian randomization analyses (Cameron et al., 2023).
Previously, Hidalgo et al. demonstrated that the selected CpG
sites could be combined to form a methylation risk score for
MetS in the HyperGEN (African ancestry) and GOLDN
(European ancestry) cohorts (Hidalgo et al., 2021). Further,
across multiple studies, cg00574958 (CPT1A) has demonstrated

inverse associations with triglycerides and very low-density
lipoprotein (VLDL) cholesterol (Irvin et al., 2014; Lai et al., 2016;
Braun et al., 2017; Zheng et al., 2022). Similarly, inverse relationships
between cg19693031 (TXNIP) and diabetes have been observed
(Nuotio et al., 2020; Miller et al., 2023). These sites are located at
or near CpG islands and other regulatory regions (Table 1). Thus,
variations in their methylationmay be linked to altered expression of
genes that contribute to lipid metabolism, hyperglycemia, and
inflammation (Jones et al., 2021; Lu et al., 2022). While studies
are limited, MR for methylation and cardiometabolic traits suggest
that altered methylation is the consequence, not the cause, of
metabolic dysfunction (Dekkers et al., 2016; Sayols-Baixeras
et al., 2018; Zaghlool et al., 2018). It is possible that, in the
setting of MetS, the catabolism of certain metabolites (e.g.,
serine) is altered and may induce methylation changes; and as
such, DNA methylation functions as a biomarker of an existing
metabolic disturbance. At the same time, the bidirectional influence
of methylation on metabolic traits cannot be fully ruled out. For
example, a nested case-control study found that methylation of

FIGURE 3
MR sensitivity analyses for serine and glucose metabolites. Single SNP MR (left) and leave-one-out MR (right) for (A) serine-ABCG1 and (B) glucose-
CPT1A.
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cg06500161 at ABCG1 was associated with incident diabetes in a
population of adults in rural China (Qie et al., 2021). In our
intermediate analyses of methylation and metabolites, we
observed significant associations in the expected direction of
effect based on prior studies, as well as a significant causal
relationship of ABCG1 methylation on serine. Thus, there may
be biological plausibility for bidirectional relationships between
the environment, metabolome, methylation, and MetS.

While this study was neither the first MWAS of MetS nor the
MR of metabolites and methylation, it is one of the few to validate
MetS-associated metabolites in an external cohort. And, to our
knowledge, it is the first to evaluate bidirectional causality. In a
multi-omics analysis, Zaghlool et al. detected a causal, inverse
relationship of VLDL-A on cg00574958 at CPT1A (Zaghlool et al.,
2018). In our findings, glucose was also inversely associated with
this CpG site, whereas there was a positive causal association of
serine. Furthermore, ABCG1 methylation was causal on serine
levels in reverse MR, whereas Zaghlool et al. were unable to
investigate reverse causation. Overall, a lack of individual-level
metabolite, methylation, and SNP data within a single cohort has
limited investigators to one-sample and/or unidirectional MR
approaches (Zaghlool et al., 2018; Wu et al., 2021). The former
can lead to instrument bias, and in the latter, one cannot assess
bidirectionality (Hartwig et al., 2016). We conducted MR with data
from separate studies—thereby reducing the likelihood of
instrument bias—and assessed reverse causation, unlike prior
MR for DNA methylation and metabolites. Still, the number of
participants in HyperGEN with available methylation and
metabolite measurements were limited (N<150). This lack of
power, coupled with the conservative Bonferroni-corrected
significance threshold, may have led to false negatives.
However, we also selected a group of metabolites with
biological plausibility (i.e., potential methyl donors via DNA
methyltransferase reactions) for causal testing even if they did
not meet the corrected p-value threshold. Other limitations include
between-study comparability, as REGARDS is a study of older
adults (>45 years at baseline), and HyperGEN was enriched for
hypertension. However, the robustness of our findings despite
these cohort differences may suggest good generalizability.

In conclusion, we 1) conducted metabolite profiling for MetS; 2)
evaluated the relationship between MetS metabolites and
methylation of known MetS CpG sites; and 3) determined the
causal direction of these relationships. Not only did we apply
metabolite profiling in one of the largest and most diverse
studies of MetS to date, but we also validated our findings in an
external cohort for a total sample size of more than
2,000 individuals. The results showed that metabolites were
causal on methylation, and one CpG-metabolite pair (cg00650161
(ABCG1)-serine) may also exhibit bidirectional influence. Our top
findings suggested protective effects of serine in MetS, as well as
causal relationships between serine and methylation of CpG sites
linked to MetS. These findings were robust to multiple sensitivity
analyses.

Longitudinal and mechanistic studies are needed to confirm
these findings and further elucidate biological pathways. Further
validation in more populations is also needed, as these relationships
may vary in the context of different environments. Expanding our
understanding of these relationships could potentially lead to the

identification of precise biomarkers of MetS risk and
cardiometabolic health overall.
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