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Introduction: Drug-target interaction (DTI) prediction is a key step in drug
function discovery and repositioning. The emergence of large-scale
heterogeneous biological networks provides an opportunity to identify drug-
related target genes, which led to the development of several computational
methods for DTI prediction.

Methods: Considering the limitations of conventional computational methods, a
novel tool named LM-DTI based on integrated information related to lncRNAs and
miRNAs was proposed, which adopted the graph embedding (node2vec) and the
network path score methods. First, LM-DTI innovatively constructed a
heterogeneous information network containing eight networks composed of
four types of nodes (drug, target, lncRNA, and miRNA). Next, the node2vec
method was used to obtain feature vectors of drug as well as target nodes,
and the path score vector of each drug-target pair was calculated using the
DASPfindmethod. Finally, the feature vectors and path score vectors weremerged
and input into the XGBoost classifier to predict potential drug-target interactions.

Results and Discussion: The 10-fold cross validations evaluate the classification
accuracies of the LM-DTI. The prediction performance of LM-DTI in AUPR
reached 0.96, which showed a significant improvement compared with those
of conventional tools. The validity of LM-DTI has also been verified by manually
searching literature and various databases. LM-DTI is scalable and computing
efficient; thus representing a powerful drug relocation tool that can be accessed
for free at http://www.lirmed.com:5038/lm_dti.
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1 Introduction

Identifying new drug-target interactions (DTIs) is a crucial step in a variety of biomedical
and multi-pharmacological applications, such as drug discovery, drug relocation (Jarada
et al., 2020), drug resistance, and side effect prediction (Masoudi-Nejad et al., 2013). Drug
research and development is comprehensive, complex, and time-consuming, and the high
experimental validation costs of the research and development processes of new drugs have
plagued their success (Swinney and Anthony, 2011). Moreover, most small-molecule drugs
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have been approved by the FDA although they have multi-
pharmacological properties and can interact with multiple target
genes, which are not the main therapeutic target genes (i.e., the drugs
have off-target effects) (Cichonska et al., 2015). A new trend caused
by the off-target effect was to connect known drugs with the
treatment of different diseases from those for which the drugs
were originally developed for. With the continuous increase in
official biomedical databases and the evolution of computational
methods, it is more achievable to develop novel tools for predicting
potential DTIs which would overcome the limitations of
conventional experimental methods with respect to time and cost
and help researchers find new, potentially beneficial, off-target
effects of existing drugs. High probability DTIs of known drugs
were predicted using computational methods which could be widely
used in the field investigating their potential functions and
underlying regulatory mechanisms, which can be a significant
strategy for drug reusing (Chen et al., 2016).

According to recent reviews, several computational models have
been proposed to predict DTIs. Early prediction methods for DTIs
can be broadly classified into two categories: docking-based methods
(Alonso et al., 2006; Cummings et al., 2007; Ma et al., 2013) and
ligand-based methods (Lam et al., 2019). The docking methods
consider the 3D structures of the target genes, which is extremely
time-consuming, and the 3D structure information of all target
proteins is difficult to obtain. In ligand-based methods, known
ligands are compared with target proteins. However, the number
of known ligands is reduced; thus, limiting the application of ligand-
based methods.

The emergence of a large number of biological data sources, such
as omics data, phenotypic groups, pharmaceutical chemical
structures, and biological interactions, has promoted the
development of various drug strategies for drug reuse,
contributing to the development of new methods for discovering
new DTIs according to the information of different target genes and
drugs in the biological data sources. These methods utilise chemical
and genomic information regarding target genes and drugs to
construct computational models based on information networks,
machine learning algorithms, and deep learning algorithms.
Methods based on machine learning algorithms utilise feature
engineering to represent drug-target pairs based on feature
vectors (FV) which are extracted from structured data (Rayhan
et al., 2017; Sachdev and Gupta, 2019). Methods based on deep
learning algorithms construct a hierarchical representation of the
data through multiple level layers of abstraction which has been
proven effective in DTI prediction (Lee et al., 2019; Berrar and
Dubitzky, 2021).

Conventional network-based methods for DTI prediction
include the network-based inference (NBI) model (Cheng
et al., 2012; Wu et al., 2016), path score model (PSM)
(Olayan et al., 2018; Xuan et al., 2019; Thafar et al., 2020),
and bipartite local model (BLM) (Bleakley and Yamanishi,
2009). For example, DDR (Olayan et al., 2018), a method
based on the path score model, constructs a heterogeneous
network composed of known drug target interactions, drug-
drug similarities, and target-target similarities, whereas the
path scores of different drug-target paths are fed into the
random forest classifier to predict novel drug-target
interactions. This method requires extensive network analysis

and path scores between nodes, which are not always readily
accessible or even unavailable. Therefore, more methods based
on network embedding (Luo et al., 2017; Mohamed et al., 2020;
Zeng et al., 2020; Alshahrani et al., 2021) have been proposed to
overcome the limitations of conventional network analysis.
Among these newly proposed methods, the nodes in the
network embedding methods are represented by low-
dimensional vectors which best preserve the structures and
topology information of the networks. Neighbourhood
regularised logistic matrix factorisation (NRLMF) (Liu et al.,
2016) is a typical computational model based on matrix
factorisation. NRLMF calculate the probability of each drug-
target pair by applying logical matrix factorisation.
Furthermore, logical matrix factorisation was combined with
neighbourhood regularisation. The potential feature vectors
representing the drugs and target genes were first extracted.
Then, NRLMF uses the nearest neighbour of drug-drug
similarity and target-target similarity to eliminate the noise
of all similar neighbours. DTiGEMS+ (Thafar et al., 2020),
which can be used to construct the same heterogeneous
network as with DDR, generates the characteristics of drugs
and targets using node embedding technology. Finally, these
characteristics are input into a random forest classifier.
DTi2Vec (Thafar et al., 2021) can be used to identify DTIs
by using network representation learning algorithm and
ensemble learning. It constructed a heterogeneous network
and utilised the node2vec algorithm to gain the
characteristics of each drug-target pair. TriModel (Mohamed
et al., 2020) uses a knowledge graph (KG) to obtain KG
embedding of the nodes and edges in a network by
integrating multi-information sources. In this case, the DTI
scores are calculated using the decomposition of the training
tensor in the KG embedded in the TriModel. DNILMF (Hao
et al., 2017) is a method based on similar network fusion (SNF)
(Wang et al., 2014). It combines the similarity between drugs
and targets with SNF, and DTIs are predicted according to the
graph nearest neighbour of the drug-target pairs. Ro-
DNILMF(Li et al., 2022) combines KG embeddings and
DNILMF, and it achieves a better prediction performance
than TriModel and DNILMF. MHSADTI (Cheng et al.,
2022), an end-to-end deep learning method, predicts DTIs
based on the graph attention network and multi-head self-
attention mechanism. Supplementary Table S1 summarizes
the aforementioned models in a tabular form.

However, conventional DTI prediction methods usually have a
high false-positive rate which greatly limits their application. The
main reason for this phenomenon is that the heterogeneous network
adopted by these methods does not contain comprehensive
information related to drugs and their targets, which makes
graph-embedding methods unable to gain feature vectors with
sufficient node information. Moreover, methods for extracting
feature vectors should be further improved using advanced
merging methods.

In this study, we proposed a novel model, LM-DTI, which
constructs heterogeneous networks using related lncRNA and
miRNA information and adopts a graph embedding algorithm,
path scoring model, and ensemble learning technology to predict
potential DTIs. The development of LM-DTI was primarily
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motivated by improving the prediction and avoiding the limitations
of conventional methods. Four standard datasets and a large-scale
DrugBank dataset were used, and the prediction performance of
LM-DTI was verified using several network-based methods. The
effectiveness of LM-DTI was confirmed using area under the
precision-recall curve (AUPR) and area under the curve (AUC),
and the novel DTIs were confirmed using reliable databases and
scientific literature.

2 Materials and methods

2.1 Datasets

In this study, we utilised five datasets (Table 1) to evaluate the
prediction performance of LM-DTI during the experimental phase.
Four of these datasets were Yamanishi_08 (Yamanishi et al., 2008)
which are generally recognised as ‘gold standard’ datasets containing
three categories of information: known Human DTIs, drug-drug
similarity, and target-target similarity. The DTIs data of these
datasets were downloaded from KEGG BRITE (Kanehisa et al.,
2006; Kanehisa et al., 2017), BRENDA (Schomburg et al., 2004),
SUPERTARGET (Günther et al., 2008), and DrugBank (Wishart
et al., 2008). The chemical structures of the KEGG ligands and drugs
in the KEGG drug database were collected to calculate drug
similarity (Hattori et al., 2010). The target amino acid sequences
were obtained from the KEGG gene database, and the sequence
similarities of the target genes used standardised Smith-Waterman
(Smith et al., 2012) scores which calculated by the comparisons of
related protein sequences. In Yamanishi_08 dataset, DTI
information has often been categorised into the following four
categories according to the target proteins, including nuclear
receptor (NR) dataset, enzyme (E) dataset, ion channel (IC)
dataset and G protein coupled receptor (GPCR) dataset.

The FDA_DrugBank dataset includes the known DTIs data
obtained from the DrugBank database, which consists of five
types of data: the interaction data of lncRNA-target from
lncRNA2Target (Cheng et al., 2019), miRNA-target data from
miRTarBase (Huang et al., 2020), miRNA-drug association data
from NRDTD (Chen et al., 2017) and SM2Mir3 (Liu et al., 2013),
lncRNA-miRNA association data from NPInter v4.0 (Teng et al.,
2020) and lncRNA-drug interaction data from D-lnc (Jiang et al.,
2019), and NRDTD (Chen et al., 2017).

2.2 Similarity calculation

Drug-drug and target-target similarities were calculated and
standardised into ranges (0, 1) in our study. For the four
standard datasets in the Yamanishi_08 dataset, drug and target
gene similarities were calculated based on the data from Nascimento
et al. (2016). To calculate drug similarities, different chemical
structure fingerprints, drug related gene ontology annotations,
side effect spectra, and anatomical therapeutic chemical codes
were used. Similar to drug-drug similarities, target-target
similarities were calculated using different amino acid sequence
maps of the targets, target protein function annotation of gene
ontology terms, and protein-protein interaction networks.

For the FDA_DrugBank, we utilised the similarity data proposed
by Olayan et al. (2018) who utilised the FDA_DrugBank to evaluate
the effectiveness of DDR and calculated drug-drug similarities based
on molecular fingerprints, drug interaction spectra, drug side effect
spectra, drug spectra of anatomical therapy coding (ATC) system,
drug-induced gene expression spectrum, and drug disease spectrum.
The target-target similarities were calculated using the protein
amino acid sequences, GO annotations, proximity of the PPI
network.

2.3 Construction of the drug-target
heterogeneous network

A novel weighted heterogeneous network G(V, E) with
association networks between four biomolecules (drugs, target
genes, lncRNAs, and miRNAs) was constructed and extended
with drug-drug and target-target similarities from the FDA_
DrugBank. G(V, E) consisted of the lncRNA node list
L � l1, l2, ..., li{ }, drug node list D � d1, d2, ..., dn{ }, miRNA node
list M � m1, m2, ..., mj{ } and target node list T � t1, t2, ..., tm{ }.
There were two types of edges in G(V, E). One class
represented the interactions between four types of nodes, which
included drug-target, drug-lncRNA, drug-miRNA, lncRNA-target,
miRNA-target, and lncRNA-miRNA interactions. The weights of
the edges were 1. The other class represented drug-drug and target-
target similarities, and the values of these similarities were
introduced as edge weights which were between 0 and 1. Based
on the weighted heterogeneous network, we solved the DTI
prediction problem by predicting the unknown links in the
heterogeneous network (Figure 1), which could improve the
accuracy of the DTI prediction.

2.4 Construction of negative samples

All possible drug-target pairs were constructed, and we
randomly selected a set of drug-target pairs as negative samples
because there were not enough experiments to verify all drug-target
pairs. According to the existing prediction methods, known DTIs
are generally regarded as positive samples. The drug-target pairs
corresponding to the positive samples were subsequently removed
from the negative samples. Next, we employed different methods for
extracting the characteristics of each drug-target pair. The feature
vectors of the drug-target pairs are represented by X �

TABLE 1 Benchmark Yamanishi_08 datasets and FDA_DrugaBank dataset
statistics.

Statistics Benchmark datasets FDA_DrugBank

NR GPCR IC Enzyme

Number of
drugs

54 223 210 445 1,525

Number of
targets

26 95 204 664 1,408

Known DTIs 90 635 1,476 2,926 9,874

Unknown DTIs 1,314 20,550 41,364 292,554 2,137,326
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x1, x2, . . . , xn*m{ } and their labels are indicated by
Y � y1, y2, . . . , yn*m{ }, where n is the number of drugs and m is
the number of targets. If the drug interacted with the target, the
corresponding label value in Y was 1; otherwise, the label value was
0. In doing so, the issue addressed in our study was changed from
predicting the potential drug-target associations to a binary
classification problem based on the network path score, graph
embedding algorithm, and ML methods.

2.5 Workflow of LM-DTI model

The main steps in implementing the LM-DTI are shown in
Figure 2. First, the drug and target gene similarity data were pre-
processed. Second, the heterogeneous network G(V, E) was
constructed using the drug-drug similarities, the target-target
similarities and the interactions among drugs, target genes,
lncRNAs and miRNAs. Third, the feature vectors were
extracted using the graph embedding algorithm (node2vec)
for drug and target nodes. Fourth, the network path score of
each drug-target pair was calculated as feature vectors. Finally,
the feature vectors and the calculated network path score
vectors were fed into the ensemble learning classifier,
XGBoost, and the prediction result was calculated as the
class label of each drug-target pair.

2.6 Integration of similarities

The drug-drug or target-target similarity data were represented
by similarity matrix S � (si,j), where si,j is the similarity value
between drugi and drugj or between targeti and targetj to
indicate their similarity levels. The average (AVG), geometric
average (GeoM), maximum (MAX), and latest similarity fusion
algorithm SNF (Wang et al., 2014) were utilised to integrate the
drug-drug and target-target similarity data. A similarity network
was constructed using the SNF algorithm for each drug or each
target, and the k-nearest neighbour (KNN) was used to integrate
each similarity network with the information gained from other
related networks. These networks were integrated iteratively. Finally,
all similarity networks were integrated into a single network, at
which time the SNF stopped operating.

2.7 Graph embedding methods for feature
vector extraction

Several conventional protocols used the random walk method to
improve the quality of feature extraction in heterogeneous networks
(Su et al., 2018; Yue et al., 2020). The random walk method traverses
a graph from one node or a series of nodes. At any node in a graph,
the traverser walks to the neighbour node with probability 1-a and

FIGURE 1
Schematic representation of the drug-target heterogeneous network.
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jumps to any node in the graph with probability awhich is called the
jump occurrence probability. After each walk, each node in the
graph was accessed, and a probability distribution was obtained,
which was used as the input for the next walk step, and the process
was repeated. When certain pre-conditions were satisfied, the
probability distribution tended to converge. Finally, a stable
probability distribution was obtained.

In our model, node2vec (Grover and Leskovec, 2016), which
further extended the DeepWalk (Perozzi et al., 2014) algorithm
by changing the generation of random walk sequences, was
utilised in network analysis and graph mining tasks. The
DeepWalk algorithm selects the next node in a random walk
sequence with uniform random distribution. Node2vec
introduced width first search (BFS) and depth first search
(DFS) into the generation process of a random walk
sequence by adjusting two parameters, p and q. The
parameter p controls the likelihood of a node being revisited
immediately during the traversal. Instead, the parameter q
controls the probability of revisiting a node or moving
outward to a deeper node. BFS focused on adjacent nodes
and characterised a relatively local network representation.
The nodes in the BFS generally appear several times, thus
reducing the variance of neighbouring nodes characterising
the central node.

After constructing a weighted heterogeneous network graph
G(V, E) which contains four types of nodes (drugs, target genes,
lncRNAs, and miRNAs), node2vec was used to transform all nodes
from G(V, E) into a vector space Rd with the following mapping
function:

f: V → Rd, where d< v| | (1)
Simultaneously, the structure and node similarities of the graph

were retained based on the network topology. Multiple noce2vec
hyperparameters were designed to improve the quality of feature
extraction. The grid search method was introduced to adjust
multiple parameters and obtain the best results in the cross-
validation of each dataset. We tested the hyperparameter values
as follows: return parameter, p � 0.25, 0.5, 1, 2, 4{ }; in-out
parameter, q � 0.25, 0.5, 1, 2, 4{ }; the final output eigenvector
dimension, d � 16, 32, 64, 128{ }; and the number of random
walks at each node, num walk � 5, 10, 15, 20{ }. The step length
of the random walk is closely related to the size of the graph. In
the FDA_DrugBank, the random walk steps from 60 to 120 were
tested, increasing by 20 each time (i.e., 60, 80, 100, and 120). In the
Yamanishi_08 NR, the random walk steps ranged from 10 to 40,
increasing by 10 each time (i.e., 10, 20, 30, and 40). Supplementary
Table S2 gives the optimised hyperparametric values for Yamanishi_
08 and FDA_DrugBank dataset.

FIGURE 2
Flow chart of the LM-DTI model. (A) Filter the target-target and drug-drug similarity graphs to construct a full DTI network and generate the drug-
target interaction matrix. (B) Apply the graph embedding algorithm on the full DTI network and calculate the network path score of each drug-target pair
to generate the network path score vectors. (C) Input the feature vectors and the network path score vectors into the XGBoost classifier to obtain the
class labels.
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2.8 Path score method

Typically, the feature vectors of drug-target pairs are not
sufficient to acquire the best prediction performance. LM-DTI
uses network path scores to obtain extra feature vectors of drug-
target pairs as supplemental feature information. Based on the
heterogeneous graph G(V, E), some of the nodes included drug-
drug similarities, target-target similarities, and drug-target
interactions to reduce runtime and improve efficiency. The path
score of each drug-target pair in the sub-graph was calculated as
another form of the eigenvector (Ba-Alawi et al., 2016). The path
scores were calculated as follows:

score di, tj( ) � ∑n

p�1∏ Pweights( )
ij

(2)

where P � p1, p2, ..., pn{ } is the path set of all drug-target pairs, di
denotes drugi and tj denotes targetj. We restricted the path from
one drug node to one gene node and path categories with lengths of
2 and 3 were utilised to reduce the cost of the calculation. Each drug
node or target node would appear only once in a path. Therefore, we
obtained six potential path structures: P � P1, P2, P3, P4, P5, P6{ }.
The two path types had a length of two, namely, P1: (D −D − T)
and P2: (D − T − T), and the remaining four path types had lengths
of three, namely, P3: (D −D −D − T), P4: (D −D − T − T),
P5: (D − T −D − T), and P6: (D − T − T − T). The meta path
score, score(di, tj, h, q) was calculated as follows:

score di, tj, h, q( ) � ∏
∀ex∈Pq

wx( ) (3)

where h indicates the category of the path structure, q indicates the
number of P,w indicates the edge weight of Pq.

The sum of the meta-path scores of each path structure,
SumScore(di, tj, h), was calculated as follows:

SumScore di, tj, h( ) � ∑
∀Pq∈Rijh

score di, tj, h, q( ) (4)

where Rijh represents a set of paths between drugi and targetj.
The maximum score of the meta-path of each path structure,

MaxScore(di, tj, h) was calculated as follows:

MaxScore di, tj, h( ) � MAX∀Pq∈Rijh
score di, tj, h, q( )( ) (5)

The SumScore(di, tj, h) and the MaxScore(di, tj, h) were
calculated as the two characteristic vectors of each path structure.
To reduce the runtime, we used 3D matrix multiplications to obtain
the path scores. Therefore, drug-drug similarity, target-target
similarity, and drug-target interaction data were converted into a
graph adjacency matrix. The path scores were computed by the
matrix multiplication method introduced in DASPfind.
Conventional matrix multiplication can be performed for the
total score features, where the resulting matrix represents
includesthe total score features. For the maximum score features,
3D matrix multiplication obtained the score of each path, and the
maximum value was selected instead of the summation.
Supplementary Table S3 gives the matrix multiplications
corresponding to each path structure and the semantics of all
path structures.

2.9 Selection of classifier

Three popular classifiers with supervised ML models were
introduced: the random forest (RF) classifier, Adaptive Boosting
(AdaBoost) classifier, and extreme gradient boosting (XGBoost)
classifier. The RF classifier is a bagging method which integrates
multiple decision trees as a strong classifier. The Adaboost and
XGBoost classifiers are generally used to enhance classifier
performances. AdaBoost increased the flexibility of the classifier
by using weighted majority voting and was implemented using
scikit-learn. XGBoost utilises parallel tree boosting which
improves the calculation speed. We also performed
hyperparametric optimisation of the training data using 10-fold
cross-validation for each classifier. XGBoost adjusted more
hyperparameters than AdaBoost, including weighted
regularisation parameters (such as lambda and alpha), tree
construction algorithm, and sub-sample ratio. The graph
embedding algorithm was used on the entire graph G, and the
feature vectors were generated for each drug-target pair which was
combined with the path score feature vector of each drug-target pair.
The known DTIs were treated as positive samples whose labels were
all set to 1, while the corresponding negative sample labels were set
to −1. The feature vectors and labels of all drug-target pairs were
input into these classifiers, and the outputs were regarded as the
prediction results of the LM-DTI.

TABLE 2 The AUC and AUPR values of prediction results with different graph
embedding methods.

Model Metric Yamanishi_08 datasets FDA_DrugBank

NR GPCR IC E

LINE AUC 0.89 0.99 0.99 0.98 0.91

AUPR 0.87 0.99 0.98 0.96 0.87

Struc2vec AUC 0.82 0.99 0.99 0.99 0.92

AUPR 0.80 0.97 0.98 0.96 0.88

node2vec AUC 0.90 0.99 0.99 0.99 0.99

AUPR 0.90 0.98 0.98 0.97 0.96

TABLE 3 The AUC and AUPR values of LM-DTI under different classifiers.

Classifier Metric Yamanishi_08 datasets FDA_DrugBank

NR GPCR IC E

RF AUC 0.87 0.98 0.99 0.98 0.97

AUPR 0.85 0.96 0.97 0.97 0.93

AdaBoost AUC 0.87 0.98 0.99 0.96 0.90

AUPR 0.87 0.97 0.97 0.93 0.86

XGBoost AUC 0.90 0.99 0.99 0.99 0.99

AUPR 0.90 0.98 0.98 0.97 0.96
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TABLE 4 The AUC values of LM-DTI and the contrast models on different datasets.

Dataset Names of contrast models

NRLMF DNILMF DDR TriModel DTiGEMS+ DTi2Vec LM-DTI

NR 0.85 0.86 0.88 0.89 0.89 0.89 0.90

GPCR 0.93 0.93 0.93 0.88 0.99 0.99 0.99

IC 0.96 0.97 0.97 0.90 0.99 0.99 0.99

Enzyme 0.96 0.97 0.92 0.95 0.99 0.99 0.99

DrugBank 0.93 0.95 0.97 0.99 0.99 0.99 0.99

TABLE 5 The AUPR values of LM-DTI and the contrast models on different datasets.

Dataset Names of contrast models

NRLMF DNILMF DDR TriModel DTiGEMS+ DTi2Vec LM-DTI

NR 0.72 0.66 0.83 0.84 0.89 0.89 0.90

GPCR 0.71 0.70 0.79 0.80 0.86 0.90 0.98

IC 0.88 0.87 0.92 0.93 0.96 0.98 0.98

Enzyme 0.87 0.89 0.92 0.95 0.96 0.98 0.98

DrugBank 0.41 0.31 0.61 0.67 0.61 0.88 0.96

FIGURE 3
The AUPR values of LM-DTI and other advanced methods.
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2.10 Evaluation metrics

In this study, the AUC and AUPR were used to evaluate the
performance of the LM-DTI. For classifiers, precision refers to the
ability to not mark negative samples as positive, and recall refers to
the ability to identify all positive samples, as shown in Equations (6–8).

FPR � FP

TN + FP
(6)

Recall � TPR � TP

TP + FN
(7)

Precision � TP

TP + FP
(8)

Where TP denotes true positive, FP denotes false positive, TN
denotes true negative, FN denotes false negative, FPR denotes
the false positive rate and TPR (or Recall) denotes true
positive rate.

We constructed receiver operating characteristic (ROC)
curves according to different TPR and FPR of various
thresholds and then calculated the AUC values (i.e., the area
under the ROC curve). Moreover, we constructed the PR curve
based on different precision and recall values at different
thresholds and calculated the AUPR values (i.e., area under
the PR curve). For highly unbalanced data, AUC was generally
considered to be an overly optimistic evaluation index, while
AUPR could provide a better evaluation in this case of
unbalanced data, which separated the prediction scores of
real interactions from those of unknown interactions.
Therefore, AUPR was adopted as the most important
evaluation index. The error rate (ER) of the prediction
structure and the relative error rate reduction (ΔER) were
also introduced in our model, which are defined in Equations
(9, 10)

ER � 1 − AUPR (9)
ΔER � ER2 − ER1( )

ER2
(10)

A 10-fold cross-validation was adopted to evaluate the
prediction performance of the LM-DTI. The AUC and AUPR
values from the experimental tests were calculated, and the
AUC as well as the AUPR average values were considered the
final results.

3 Results

3.1 DTI prediction performance of LM-DTI

Unless otherwise specified, all experimental results presented
in this section were obtained with a 10-fold cross validation. We
divided the dataset into 11 parts, randomly selected 10/
11 positive and negative samples to train and test the model
with 10-fold cross validation, and used the remaining 1/
11 samples as an independent validation dataset to prevent
the model from overfitting. In 10-fold cross validation
experiment, the training dataset was randomly divided into
10 subsets. One subset was selected from the 10 subsets as the
test set in each fold, and the rest were used as the training set to
train the model. Supplementary Table S4 gives the prediction

TABLE 6 The ER and ΔER values of LM-DTI and DTiGEMS + models on different datasets.

Dataset ER values of LM-DTI (%) ER values of DTiGEMS+ (%) ΔER values (%)

NR 10.00 11.00 9.09

GPCR 2.00 14.00 85.71

IC 2.00 4.00 50.00

E 3.00 4.00 25.00

FDA_DrugBank 4.00 39.00 89.74

TABLE 7 The AUC and AUPR values of four group ablation experimental results.

Network setting Feature extraction method AUC AUPR

integrating network node2vec + PSM 0.99 0.96

integrating network node2vec 0.98 0.94

original network node2vec 0.99 0.82

original network PSM 0.97 0.63

FIGURE 4
DTI predictions of LM-DTI.
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results for the independent validation dataset. In our study, three
graph embedding algorithms (LINE, node2vec, and Struc2vec)
were introduced into LM-DTI and evaluated using the average
AUPR and AUC values of 10-fold cross validations (unless
otherwise specified). The AUPR and AUC values of the
experimental results under the node representation vectors of
different graph embedding algorithms and databases are shown
in Table 2. The best evaluation results of the metrics on the
different databases were in bold. Node2vec achieved the best
performance in terms of DTIs prediction. Although LINE had the
highest AUPR in the GPCR dataset, it did not perform well in the
large-scale DrugBank dataset. For a comprehensive comparison,
node2vec was chosen to generate representation vectors for drugs
and targets.

3.2 Comparison among different classifiers

For each of the five datasets, RF, AdaBoost, and XGBoost classifiers
were utilised to predict the DTIs, and the average AUPR and AUC values
of 10-fold cross validations were used as the evaluation metric. The
experimental results are displayed in Table 3. The XGBoost classifier
achieved optimal prediction outcomes and its AUPR and AUC values are
bolded in Table 3. Further, statistical and comparative analyses were
performed. Compared with the XGBoost classifier, the AdaBoost classifier
did not performwell when it contained unrelated features with a high level
of noise. The XGBoost classifier was more robust because it had
regularisation parameters and could reduce variance. In addition, one
of the main advantages of the XGBoost classifier is its high computational
efficiency associated with its parallel processing method. The XGBoost

FIGURE 5
DTIs prediction results of LM-DTI.
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classifier was advantageous in the present study because of its rapid
computational speed, low data requirements, and accurate training results;
thus, making it superior to the RF and AdaBoost classifiers.

3.3 Model contrast

After the model construction, we compared the proposed LM-
DTI model with six state-of-the-art DTImodels: DDR (Olayan et al.,

2018), DNLMF (Hao et al., 2017), NRLMF (Liu et al., 2016),
DTiGEMS+ (Thafar et al., 2020), TriModel (Mohamed et al.,
2020), and DTi2Vec (Thafar et al., 2021) on the NR, GPCR, IC,
E, and DrugBank datasets.

The AUPR and AUC values for the different models are shown
in Table 4 and Table 5. LM-DTI achieved the highest AUPR and
AUC values on five datasets and its performing was better than that
of the other models. The best evaluation results of the metrics on the
different databases were in bold. The AUPR values of LM-DTI for

TABLE 8 Case studies for LM-DTI.

Drug name Target name Validation evidence Target name Validation evidence

Dyphylline PDE1C KEGG: D00691 PDE4B KEGG: D00691

Dyphylline PDE8A KEGG: D00691 PDE5A unconfirmed

Dyphylline PDE7A KEGG: D00691 PDE8B KEGG: D00691

Dyphylline PDE7B KEGG: D00691 PDE4A KEGG: D00691

Dyphylline PDE1A KEGG: D00691 PDE11A KEGG: D00691

Clozapine DRD3 PMID: 31896438 CHRM1 PMID: 32593951

Clozapine ADRA2A KEGG: D00283 DRD2 PMID: 31496784

Clozapine ADRA1B PMID: 15695070 ADRA1D unconfirmed·

Clozapine HTR2A KEGG: D00283 ADRA1A unconfirmed·

Clozapine ADRA2B KEGG: D00283 HRH1 PMID: 27855565

Verapamil CACNA1G DrugBank: DB00661 CACNA1H PMID: 18974361

Verapamil KCNA7 PMID: 29743411 KCNA5 PMID: 30816676

Verapamil CACNA1C PMID: 20031608 KCNK5 PMID: 29743411

Verapamil KCNA3 PMID: 19371328 KCNB2 PMID: 29743411

Verapamil KCNA2 PMID: 7589202 KCNN4 PMID: 29743411

Tretinoin RXRA DrugBank: DB00755 RARB KEGG: D00094

Tretinoin RXRB DrugBank: DB00755 RORB unconfirmed

Tretinoin RARA KEGG: D00094 RORC unconfirmed

Tretinoin RARG KEGG: D00094 NR0B1 unconfirmed

Tretinoin RXRG DrugBank: DB00755 RORA unconfirmed

Tamoxifen CYP3A4 PMID: 30909366 CYP2C19 PMID: 33432065

Tamoxifen CYP2C9 PMID: 19935798 CYP2B6 PMID: 25940823

Tamoxifen ABCB1 PMID: 29135105 CYP1A1 PMID: 23842721

Tamoxifen ABCG2 PMID: 32087276 CYP1A2 PMID: 23412805

Tamoxifen CYP3A5 PMID: 12419016 CYP2D6 PMID: 30909366

Sorafenib CYP3A4 PMID: 30627802 CYP2C19 PMID: 21350850

Sorafenib ABCG2 PMID: 28289864 CYP3A5 PMID: 21266595

Sorafenib CYP2D6 PMID: 21350850 CYP2C8 PMID: 34765572

Sorafenib ABCB1 PMID: 28289864 CYP2C9 PMID: 32700644

Sorafenib CYP1A2 PMID: 33184472 CYP1A1 PMID: 24819355
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four datasets were 4% higher than those of the other models. In
particular, LM-DTI significantly outperformed any of the six state-
of-the-art DTI models on the large-scale DrugBank dataset.

Figure 3 illustrates the prediction performance of the LM-DTI
more intuitively. Supplementary Table S5 displays the results of each
fold in the 10-fold cross-validation for each dataset. Compared to
other models, the LM-DTI improved the accuracy of the DTI
predictions. Moreover, the standard deviations of the LM-DTI on
the four Yamanishi_08 and FDA_DrugBank datasets were 0.0447,
0.002, 0.0022, 0.0023, and 0.0012, respectively. These results indicate
that LM-DTI exhibited high robustness. In addition, the evaluation
metrics (ER; ΔER) also reflected the improved performance
associated with LM-DTI. Table 6 displays the ER and ΔER
values of the LM-DTI and DTiGEMS + models on different
datasets. LM-DTI was associated with a reduced relative error
rate and also outperformed the DTiGEMS + model.

3.4 Ablation experiments

To verify the hypothesis that adding information related to lncRNAs
and miRNAs could increase the feature information of network nodes
and improve the accuracy of predicting drug-target associations, we
obtained the feature vectors of drugs and target genes using the
integrating network, and compared the prediction performances based
on node2vec and PSM, respectively, or simultaneously. The AUC and
AUPR values of the four groups of ablation experiments on the
DrugBank dataset are listed in Table 7. The best evaluation results of
the metrics of the four group ablation experimental results were in bold.

When node2vec and PSM were used simultaneously in the
integrated network, the LM-DTI achieved a superior
performance. For the original network, where lncRNA and
miRNA nodes in heterogeneous networks were removed, the
AUPR values of the predicted results were reduced, although the
AUC values did not change significantly. If the node2vec or PSM
method was used only for the integrating network or original
network to extract feature vectors, the AUPR values were greatly
reduced. Together, node2vec and PSM achieved optimal
performance which indicates that the strategy of the model
algorithm selection was reasonable.

3.5 Overview of LM-DTI server construction

A web server based on the LM-DTI model for lncRNA DTIs
prediction was developed. The flask framework was used, with a
back-end for data processing and calculation. At the front-end of
the LM-DTI, the “HTML + CSS + Bootstrap” framework was
used, whereas Ploty. js was used for graphical visualisation and
JQuery was used for application logic. All computational
algorithms were implemented in Python using the packages
Numpy and Pandas. A total of 1,525 drugs and 1,408 targets
were identified. LM-DTI is unrestricted (without a login
procedure), compatible with most web browsers, and
accessible at http://www.lirmed.com:5038/lm_dti.

In LM-DTI, users first submit a group of drugs and the targets of
interest. Subsequently, users can choose to use LM-DTI to calculate the
possibility of interaction between these drugs and targets. Users can only
choose to submit one drug, and LM-DTI will calculate the possibility of
interaction between the drug and all targets. As shown in Figure 4, the
user first inputs a group of DrugBank IDs and gene names for the drugs
and targets. If the drug names are not within the DrugBank IDs, the user
must convert them to the DrugBank website or using other conversion
tools. A simple example is provided for LM-DTI. As shown in Figure 5,
LM-DTI can also visualise the results with one histogram chart, and users
can select the top 10, 20, or 50 possible DTIs.

3.6 Case studies

To further demonstrate and analyse the effectiveness of LM-
DTI, we selected drugs from five databases as case studies:
Dyphylline from Enzyme, Clozapine from GPCR, Verapamil
from IC, Tretinoin from NR, and Tamoxifen as well as Sorafenib
from FDA_DrugBank. The DTIs related to these drugs were not
included in the training set. Subsequently, LM-DTI calculated the
possibilities of these drugs related to all targets and determined the
prediction results. The top 10 targets for each drug are displayed in
Table 8, and were most likely related to the drug according to the
prediction scores. With the help of scientific literature and biomedical
databases, such as KEGG and DrugBank, we manually confirmed these
drug-target interactions. As shown in Table 8, there were a few predictive
drug-target interactions which had not been established in the literature
and biomedical databases. However, we believe that these interactions will
be verified in the future.

The results of these case studies highlight the practical
application value of LM-DTI, which could provide valuable
candidates for subsequent experiments on drug-target interactions.

4 Conclusion and discussion

In this study we describe a novel prediction tool which solves the
DTI prediction problem by predicting the unknown links based on
heterogeneous networks. Our tool, LM-DTI, underutilises
heterogeneous networks to predict potential DTIs instead of
using isomorphic graphs. It integrates the drug similarity map,
target gene similarity map, and the known interaction between
drug, target gene, lncRNA, and miRNA to obtain a fully
weighted heterogeneous network, G(V, E), the latter of which is
an information-rich network that allows for improve predictive
performance. We applied the node2vec algorithm to the
heterogeneous network G(V, E) for extracting an effective feature
representation for each drug and target node, and the path score of
each drug-target edge was subsequently calculated to expand the
extracted features. We showed through a variety of experiments that
this tool is highly efficient and practical and can be used to obtain the
information necessary for DTI prediction. Compared with the six
most advanced DTI prediction models by calculating multiple
evaluation metrics, LM-DTI exhibited improved prediction
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performance. In addition, LM-DTI has proven its efficiency and
reliability (based on AUPR) in predicting new DTI, which has been
verified using multiple official databases and scientific literature.

One leading limitation of our tool is that the data of drugs and
the corresponding targets are insufficient that restricted the number
of target-drug interactions predicted by LM-DTI. It can be resolved
in future work by expanding the number of drugs and targets
contained in the LM-DTI. As future work, the prediction
accuracy of LM-DTI should be improved by utilising different
graph embedding algorithms and employing various types of
drug-drug and target-target similarity data that may provide
more useful information. One important extension of our
research is that the heterogeneous network constructed in LM-
DTI can also be extended to solve any biomedical problem based on
heterogeneous networks, such as drug-miRNA association
prediction, drug-lncRNA association prediction and protein-
protein interaction prediction.
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