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Long non-coding RNAs (lncRNAs) play an important regulatory role in gene
transcription and post-transcriptional modification, and lncRNA regulatory
dysfunction leads to a variety of complex human diseases. Hence, it might be
beneficial to detect the underlying biological pathways and functional categories
of genes that encode lncRNA. This can be carried out by using gene set
enrichment analysis, which is a pervasive bioinformatic technique that has
been widely used. However, accurately performing gene set enrichment
analysis of lncRNAs remains a challenge. Most conventional enrichment
analysis methods have not exhaustively included the rich association
information among genes, which usually affects the regulatory functions of
genes. Here, we developed a novel tool for lncRNA set enrichment analysis
(TLSEA) to improve the accuracy of the gene functional enrichment analysis,
which extracted the low-dimensional vectors of lncRNAs in two functional
annotation networks with the graph representation learning method. A novel
lncRNA–lncRNA association network was constructed by merging lncRNA-
related heterogeneous information obtained from multiple sources with the
different lncRNA-related similarity networks. In addition, the random walk with
restart method was adopted to effectively expand the lncRNAs submitted by users
according to the lncRNA–lncRNA association network of TLSEA. In addition, a
case study of breast cancer was performed, which demonstrated that TLSEA could
detect breast cancer more accurately than conventional tools. The TLSEA can be
accessed freely at http://www.lirmed.com:5003/tlsea.
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1 Introduction

The central principle of molecular biology has proposed that RNA is an intermediary
between protein-coding genes and proteins. However, genes encoding proteins only account
for 1.5% of the human genome, and more than 98% of the human genome does not encode
proteins. Most of these non-protein-coding genes were transcribed into non-coding RNAs
(ncRNAs) (Guttman et al., 2009; Xue et al., 2017; DiStefano, 2018). These ncRNAs were
often considered as “noise” of genome transcription and were not associated with any
biological functions for decades. According to the length of the nucleotide sequence, ncRNAs
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can be further divided into small ncRNAs (<200 nucleotides) and
long non-coding RNAs (>200 nucleotides, lncRNAs) (Chen et al.,
2016; McDonel and Guttman, 2019). Although lncRNAs are not
directly translated into proteins, their complex and diverse functions
have helped gain insights into several biological processes in
humans. As a novel class of ncRNAs, their functional studies
received great interest, and considerable progress has been made
in exploring lncRNA biology. Since the discovery of the lncRNAs
H19 and XIST in the early 1990s (Tsang and Kwok, 2007; Li et al.,
2013), substantial evidence has suggested that lncRNAs play an
important role in the regulation of several processes, including
epigenetic process, cell cycle, cell differentiation, and
transcription mode (Gloss and Dinger, 2016; Kashi et al., 2016;
Kopp and Mendell, 2018). With the rapid development of scientific
methodology and experimental technology, researchers have
identified thousands of lncRNAs that play important roles in
many basic and key biological processes in eukaryotes, from
nematodes to humans (Munos, 2009; Lalevée and Feil, 2015).
Moreover, lncRNAs also play a key regulatory role in the
occurrence and development of complex human diseases
(Engreitz et al., 2016; Fang and Fullwood, 2016), such as breast
cancer (Niknafs et al., 2016), non-small-cell lung cancer (Hua et al.,
2019), gastric cancer (Liu et al., 2015), and cardiovascular diseases
(Uchida and Dimmeler, 2015). Mutations or disorders of lncRNAs
are closely related to many human diseases. For example, MALAT1
(or NEAT2) is upregulated in non-small-cell lung cancer and can be
used as a biomarker for early cancer prognosis (Gutschner et al.,
2013), and the use of lncRNA HOTAIR has been explored as a
potential biomarker for detecting recurrence of hepatocellular
carcinoma (Topel et al., 2020). With the advancement of high-
throughput sequencing technology, more lncRNA gene sets have
been produced as a result of data analysis using high-throughput
experiments. However, it is still challenging to find how the
associations between lncRNAs in one set can be used to develop
a comprehensive understanding of the biological regulatory
functions of lncRNA gene sets. Moreover, it is important to
assess how the regulatory function of lncRNA lists of interest
submitted by users on a large scale can be more accurately
analyzed in the face of a large amount of omics data (Wang and
Krishnan, 2014; Fillinger et al., 2019). We believe that the two
aforementioned issues can be solved using the lncRNA set function
enrichment analysis method, which identifies the importance of
biological functions that are overrepresented in a long list with
respect to their role in the whole human genome. The lncRNA set
function enrichment analysis method has become an important
research area in the field of lncRNA regulatory function research.

Gene set enrichment analysis was used to determine whether a
group of genes with common characteristics (such as differential
expression) were enriched on a certain functional pathway based on
a gene set rather than a single gene, which would increase the reliability
of gene function prediction (Del Giacco and Cattaneo, 2012). During the
calculation, the gene set functional enrichment analysis method
integrated data from different levels and sources and provided
important insights for constructing characteristic gene modules and
molecular regulatory networks in different physiological and
pathological states. To date, dozens of gene set functional enrichment
analysis methods have been developed that can be divided into four
categories based on their data sources and execution algorithms.

The first category is over-representation analysis (ORA)
methods, which are early and conventional enrichment analysis
methods. Such methods intersect a group of genes of the user’s
interest (called a gene list) with the background gene sets, count
common genes as hit numbers, and evaluate whether the
background gene set is significantly enriched in the gene list
using statistical methods (Khatri et al., 2012). At present, there
are many online tools and software that provide overexpression
analysis, such as DAVID (Jiao et al., 2012), GOstats (Beissbarth and
Speed, 2004), and GenMAPP (Doniger et al., 2003). In addition,
LncSEA is an online tool that can enrich and analyze lncRNA lists
using over-representation analysis methods. ORA methods are
robust, reliable, and widely used. However, their limitations are
also obvious, which hamper their application. The second category is
functional class scoring (FCS) methods. Many FCS methods have
been proposed, of which GSEA (Mootha et al., 2003; Subramanian
et al., 2005) is the most commonly used one. FCS methods treat each
lncRNA equally and in isolation, and the feature information of each
gene within the background gene set and the associations with other
genes are both neglected, which could be an obstacle to seeking more
insightful biological processes for researchers. The third category is
path topology (PT) methods. In the biological pathways, genes
usually affect the biological processes of cells through complex
relationships. Pathway-Express (Draghici et al., 2007) was the
first PT method. SPIA (Tarca et al., 2009) introduced the concept
of regulation intensity of each regulation relationship in a pathway
based on retaining influencing factors. TopoGSA (Glaab et al., 2010)
adopted the centripetality parameters of pathways while comparing
differences between pathways. Currently, only the KEGG database
(Kanehisa and Goto, 2000; Kanehisa et al., 2014) provides a
comprehensive path topology. The fourth category is network
topology (NT) methods. The key idea of NT methods is to
convert the functional enrichment analysis problem of the gene
list of interest into the functional enrichment analysis problem of
gene pairs based on functional annotation networks. The most
comprehensive and typical example of this category is the
network ontology analysis (NOA) method (Wang et al., 2011).
NT methods adopt gene importance and association information
at the system level, overcome the defect that core genes are ignored
due to small differential expression, and can make more accurate
and reliable predictions. Therefore, NT methods are recommended
when there are suitable gene function annotation networks, and they
have become one of the mainstream methods associated with
functional enrichment analysis at present.

Owing to the construction and integration of lncRNA-
associated networks, NT methods based on gene network
topology cannot be directly applied to lncRNA functional
enrichment analysis. Inspired by the miRNA similarity network
based on disease association, we constructed two lncRNA similarity
networks based on miRNA–lncRNA associations and
lncRNA–disease associations. These multi-source functional
annotation networks provide an important basis for lncRNA
functional enrichment analysis.

In this study, we aimed to develop a novel tool for lncRNA set
enrichment analysis (TLSEA) to improve the accuracy of lncRNA
set enrichment analysis. A flowchart of the TLSEA model is shown
in Figure 1. First, two lncRNA functional similarity networks were
constructed; the first network was based on lncRNA–miRNA
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associations by integrating the miRNA functional similarity
network, and the second network was based on the
lncRNA–miRNA association network and based on
lncRNA–disease associations by integrating the disease semantic
similarity network and lncRNA–disease association network,
respectively. Second, to fuse a variety of heterogeneous lncRNA
functional annotation networks and extract more feature
information of lncRNA nodes, two sets of 64-dimensional vectors
were created with the graph embedding algorithm structural deep
network embedding (SDNE) based on the two lncRNA functional
similarity networks and were merged into a new set of 64-
dimensional vectors. If an lncRNA appeared in only one of the
two functional annotation networks, its vector was retained as the
merged vector. If one lncRNA appeared in both functional

annotation networks, the average value of the two corresponding
vectors was taken as the merged vector value. After merging, a
feature matrix was obtained, in which each lncRNA node
corresponded to a row vector. Third, the lncRNA–lncRNA
association network was constructed by calculating the similarity
of each corresponding lncRNA vector pair. Fourth, based on the
lncRNA–lncRNA association network, a novel lncRNA functional
enrichment analysis model could perform a more comprehensive
and accurate enrichment analysis on the lncRNA list submitted by
users from the two aspects of regulation function and disease
association. It employed a network random walk with the restart
method to enrich the lncRNA list prior to functional enrichment
analysis. Our model mapped the nodes in the lncRNA list to the
lncRNA–lncRNA association network as random walk seed nodes,

FIGURE 1
Flowchart of the TLSEA model. (A) Two lncRNA similarity networks were constructed based on lncRNA–miRNA associations and lncRNA–disease
associations, respectively. (B) The SNDE method was used to extract 64-dimensional vectors from two networks, respectively. If an lncRNA appeared in
two similar networks, its average value was taken as the final low-dimensional vector value. (C) The Pearson correlation coefficient was adopted to obtain
the lncRNA similarity network that integrated multi-source heterogeneous information, and the differential expression list was used as the seed
node of the network. (D) The expanded lncRNA list was obtained with network random walk with the restart method and was merged with the original
lncRNA list; functional enrichment analysis was performed on it.
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and the lncRNA nodes closely associated with the subnet in the
lncRNA–lncRNA association network were identified. Finally, both
the lncRNA list submitted by the user and the expanded list were
merged into a new lncRNA list, and functional enrichment analysis
was performed.

2 Materials and methods

2.1 Datasets

Our study mainly included lncRNA–miRNA association data,
lncRNA–disease association data, and lncRNA expression profile
data. The lncRNA–miRNA association data, which were previously
confirmed experimentally, were downloaded from the NPInter v4.0
(Teng et al., 2020) (see Supplementary Table S1) and ENCORI (Li
et al., 2014) (see Supplementary Table S2) databases, and lncRNA
symbols were obtained from the HGNC database (Seal et al., 2022).
Thereafter, the lncRNA–miRNA association data obtained from the
two databases were merged, and duplicate pairs were removed.
LncRNA–miRNA pairs with non-standard naming formats were
deleted, and the naming formats of both miRNA precursors and
mature bodies were standardized. Finally, 18,033 validated
lncRNA–miRNA associations were obtained between
1,002 lncRNAs and 437 miRNAs. The miRNA similarity data
that were previously confirmed by experiments were downloaded
from MISIM v2.0 (Li et al., 2019) and included 1,044 miRNAs (see
Supplementary Table S3). The lncRNA–disease association data
were downloaded from the LncRNADisease v2.0 (Bao et al.,
2019) (see Supplementary Table S4) and Lnc2Cancer v3.0 (Gao
et al., 2019) (Supplementary Table S5) databases. Thereafter,
lncRNA functional similarity was calculated using disease
semantic similarity; for this, all disease names were standardized
according to the MeSH vocabulary (Baumann, 2016). The
lncRNA–disease associations that did not conform to HGNC
were removed. Finally, 2,230 validated lncRNA–disease
associations were obtained, involving 777 lncRNAs and
257 diseases. LncRNA expression profile data were downloaded
from the NONCODE database (Fang et al., 2018). After converting
NONCODE ID to HGNC and removing lncRNAs with no
expression, we obtained 303 lncRNAs from 24 tissues or organs.

2.2 Disease semantic similarity network

Using a previous method that was based on improved disease
semantic similarity (Fan et al., 2020), we adopted IDSSIM, a model
to calculate the functional similarity of lncRNAs in TLSEA.
Primarily, IDSSIM introduced the IC contribution factor into the
semantic value calculation, which considered both the hierarchical
structure of the directed acyclic graph (DAG) and the specificities of
diseases. IDSSIM was superior to conventional models, such as
LNCSIM1, LNCSIM2 and ILNCSIM. No consideration of the
hierarchical structure of the directed acyclic graph was included
in LNCSIM1. ILNCSIM and LNCSIM2 considered only the
specificities of diseases.

The semantic similarity between two diseases could be
calculated using their DAG, which was constructed by mapping

the names of the two diseases to MeSH names. For a disease A, its
DAG is expressed as DAGA = {TA, EA}, where TA is a collection of
ancestor nodes of diseaseA and EA is the set of all edges in the DAG.
The disease term t ∈ TA in DAGA had a semantic contribution to
disease A, which was defined as the semantic value SV1

A(t) of t to
disease A, calculated in LNCSIM1 (Chen et al., 2015) using the
following formula:

SV1
A t( ) � 1

max Δ× SV1
A t′( )∣∣∣∣t′ ∈ C t( )( ){ t � A

t ≠ A
, (1)

where C(t) is a subset of t and Δ represents the semantic
contribution factor of the edge connecting the linking disease
term t with its child disease term t′ in EA, which is usually set to
0.5 (Wang et al., 2010). In natural language processing, inverse
document frequency is used to evaluate the importance of words in a
document. From formula (1), we conclude that the higher the
frequency of a disease, the lower its speech contribution.

In addition, LNCSIM2 adopts another common formula to
calculate the contribution of the disease term t ∈ TA in DAGA to
the semantic value SV2

A(t) of disease A:

SV2
A t( ) � −logDAGs t( )

D
, (2)

where D is the number of diseases in MeSH and DAGs (t) is the
number of DAGs that contain disease term t.

Using Equations 1, 2, the advantages of LNCSIM1 and
LNCSIM2 methods were combined to calculate the semantic
similarity of diseases. The contribution of the disease term t∈ TA

inDAGA to the semantic value of disease A was calculated using the
following equation:

SV3
A t( ) � 1

max Δ + Pt( ) × SV3
A t′( )∣∣∣∣t′ ∈ C t( )( ){ t � A

t ≠ A
. (3)

Here, Pt is the IC contribution factor, which was calculated as
follows:

Pt �
max
k∈K

DAGs k( )( ) −DAGs t( )
D

, (4)

whereK is the set of all the diseases in the MeSH. It should be noted
that for disease term t, the Pt value changed with the continuously
updated versions of the MeSH.

The semantic value of disease A, SV(A), was then calculated as
the sum of the contributions of all disease terms in DAGA to
disease A:

SV A( ) � ∑
t∈TA

SV3
A t( ). (5)

Based on the intersection of the disease term set of diseases A
and B, the semantic similarity of diseases A and B, DSS(A, B), was
defined as follows:

DSS A, B( ) � ∑t∈TA∩TB
SV3

A t( ) + SV3
B t( )( )

SV A( ) + SV B( ) , (6)

where TA is a collection of ancestor nodes of disease A. SV(A) is the
sum of the contributions of all disease terms for disease A in DAGA.
DSS(A,B) is the disease semantic similarity between diseases A and B.
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2.3 LncRNA functional similarity network
based on lncRNA–miRNA associations

Previous studies have confirmed that lncRNAs with more
common target miRNAs may have a higher similarity. Based on
this assumption, an lncRNA functional similarity network was
constructed by integrating lncRNA–miRNA association data
with miRNA similarity data in the present study.
LncRNA–miRNA association data were downloaded from the
NPInter v4.0 and ENCORI databases, and miRNA similarity data
were obtained fromMISIM v2.0. We constructed lncRNA feature
vectors based on lncRNA–miRNA associations and calculated
the association scores of the two lncRNAs using cosine
correlation.

As shown in Figure 2, we calculated the functional similarity
between ln cRNA1 and lncRNA2 by utilizing the data collected
from the databases to generate the characteristics of the two
lncRNAs based on the shared target miRNAs and the functional
similarity between the target miRNAs. As associations between
lncRNAs and miRNAs include multiple relationships, one
lncRNA can target more than one miRNA, and conversely,
multiple lncRNAs may target the same miRNA. Moreover,
lncRNAs with the same target genes have generally similar
functions (Tay et al., 2014). Based on this evidence, the

miRNAs associated with lncRNA1 and lncRNA2 were first
sorted into lists miRNA list1 and miRNA list2, respectively.
After removing duplicate elements, miRNA list1 and
miRNA list2 were merged to create a new list miRNAlist,
which contained all miRNAs interacting with lncRNA1 and
lncRNA2. The number of miRNA list was n. Then, two
vectors, Vector1 1 and Vector2 1, were utilized as the first
parts of the feature vectors of lncRNA1 and lncRNA2 to
describe the common target miRNAs of lncRNA1 and
lncRNA2. For each miRNA in the miRNA list, if it existed in
the miRNA list1, T was 1, and otherwise, 0. The values of T were
added to Vector1 1 and Vector2 1. Thus, Vector1 1 and Vector2 1

are vectors composed of 1 and 0. The more the two lncRNAs that
had common target miRNAs, the more the elements with the
same position in Vector1 1 and Vector2 1 had the same value of 1.
The higher the similarity between two vectors, the higher their
functional similarity. Subsequently, miRNAs inmiRNA list1 and
miRNA list2 were extracted to form miRNA set A and miRNA
set B, and the similarity values of Sam(ai,B) and Sam(bj,A) were
calculated to form Vector1 2 and Vector2 2, respectively.
Vector1 2 and Vector2 2 denote the functional similarity of the
miRNAs that were targeted by lncRNA1 and lncRNA2. The
higher the functional similarity of the associated miRNAs, the
higher the similarity between Vector1 2 and Vector2 2. Finally,

FIGURE 2
Flowchart of lncRNA similarity calculation based on lncRNA–miRNA associations.
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Vector1 1 and Vector1 2 are merged into Vector1. Following this
approach, Vector2 was created. Ultimately, Vector1 and Vector2
represented lncRNA1 and lncRNA2, respectively. The cosine
similarity formula was adopted to calculate the functional
similarity scores of the lncRNA1 and lncRNA2 as follows:

Sim lncRNA1, lncRNA2( ) � Vector1 · Vector2
Vector1‖ ‖ Vector2‖ ‖. (7)

2.4 LncRNA functional similarity network
based on lncRNA–disease associations

The calculation of lncRNA functional similarity is that
lncRNAs related to similar diseases may have similar
functions. LncRNA functional similarity can be calculated by
integrating the semantic similarity of diseases and known
lncRNA–disease association data. The flowchart of lncRNA
functional similarity based on lncRNA–disease associations is
shown in Figure 3, where DG(u) and DG(v) were defined as all
disease sets related to lncRNA u and lncRNA v, respectively. The
semantic similarity of each disease in DG(u) and DG(v) was used
to calculate the lncRNA functional similarity between lncRNA u
and lncRNA v.

Specifically, the similarity coefficient between one disease in the
disease set corresponding to lncRNA u and all disease sets of
lncRNA v was first calculated as follows:

S du,DG v( )( ) � max
d∈DG v( )

DSS du, d( )( ), (8)
S dv, DG u( )( ) � max

d∈DG u( )
DSS dv, d( )( ), (9)

where du and dv represent disease in DG(u) and DG(v), DSS is the
disease semantic similarity, and S(du,DG(v)) is the similarity
between disease du and disease group DG(v).

Thereafter, the coefficients of the disease set of lncRNA u and
the disease set of lncRNA v were accumulated as

Su→v � ∑
dϵDG u( )

S d,DG v( )( ), (10)

Sv→u � ∑
dϵDG v( )

S d,DG u( )( ). (11)

Finally, the functional similarity between lncRNA u and lncRNA
v was defined as

FS u, v( ) � Su→v + Sv→u

DG u( )| | + DG v( )| |, (12)

where the operator |.| represents the total number of diseases
corresponding to the disease sets.

FIGURE 3
Flowchart of lncRNA function similarity calculation.
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2.5 LncRNA functional similarity network
based on expression profiles

Functionally interacting genes tend to exhibit similar expression
profiles, thereby providing a theoretical basis for the calculation of
lncRNA similarity with lncRNA expression profile data. Therefore,
lncRNA functional similarity imputation methods based on
expression profiles have been used in lncRNA function research.
Analysis of lncRNA characteristics indicated that lncRNAs have
significant tissue specificity and are conserved in mammals. The
expression profiles of lncRNAs vary between different tissues and
change at different growth stages in the same tissue or organ (Zhu
et al., 2014). In the present study, the lncRNA expression profiles of
24 tissues and organs were downloaded from the NONCODE
database. Each item had 24 dimensions, representing the
expression profiles of this lncRNA in 24 tissues or organs. In the
present study, some items missing the expression profile were
deleted, and the naming format of the lncRNA was standardized.
Finally, 303 lncRNA expression profiles were obtained. The
correlation between these lncRNAs was analyzed using the
Spearman correlation analysis method, and the Spearman
correlation coefficient between two lncRNAs was adopted to
determine their similarity.

2.6 Graph embedding methods

Currently, many graph embedding methods have been proposed
to discover novel proper mapping functions to convert graph data
that are usually high-dimensional sparse matrices to low-
dimensional dense vectors. They maintained the proximity of
these low-dimensional vector representations to solve the
conundrum, which was difficult to consider using machine
learning algorithms. Hence, graph embedding methods, such as
node classification, link prediction, and association mining, have
been used for mining biological information.

Existing graph embedding models are generally divided into five
categories according to their algorithm principles: graph embedding
based onmatrix decomposition, graph embedding based on random
walk, graph embedding based on self-encoder, graph embedding
based on graph neural networks (GNNs) (Scarselli et al., 2009), and
graph embedding based on other methods. In our study, we adopted
four types of prevailing graph embedding algorithms to obtain low-
dimensional dense vectors of graph data: DeepWalk and Struc2Vec
(based on random walk), SDNE (based on self-encoder), and LINE
(based on other methods).

DeepWalk is a graph embedding method based onWord2vec. It
is an extension of the language model and unsupervised learning
from word sequences to graphs. First, the neighbor nodes of the
nodes in the network were randomly generated to form a fixed-
length random walk sequence, and then, the generated fixed-length
node sequence was mapped into a low-dimensional embedded
vector using the skip-gram model. The generated vector encoded
the relationship between nodes in the low-dimensional vector space,
which was used to capture neighborhood similarity and community
structure and extracted the potential characteristics of the nodes.
This method can learn the relationship information of node pairs
and realize incremental learning of dynamic graphs; its time

complexity is O(log|V|). However, the performance of this
method in a weighted graph was poor, as it could only maintain
the second-order similarity of the graph, and the explicit objective
function was not used in the optimization process, which limited the
ability of the model to maintain the network structure, which would
affect the integrity of the context information.

SDNE utilized the depth self-encoder and the first-order and
second-order similarities of the graph to obtain the final embedded
vectors through the highly non-linear function and the optimization
objective function, which can effectively capture the highly non-
linear network structure. SDNE includes supervised and
unsupervised components that maintain the first-order and
second-order similarities of the nodes. The supervised
component introduced Laplacian feature mapping as the
objective function of first-order similarity so that the generated
embedding can capture local structure information. The
unsupervised component modifies the L2 reconstruction loss
function as the objective function of the second-order similarity
so that the generated embedding can obtain the global structural
features. The joint optimization of the first- and second-order
similarities enhanced the robustness of the model on the sparse
graph, and the generated embedding preserved the global and local
structure information simultaneously. However, SDNE was
inefficient in realizing the embedding of network nodes with
higher orders of magnitude and could not realize the incremental
update of graphs.

LINE also defined and optimized first-order and second-
order similarity functions. First-order similarity was used to
keep the point product of the adjacency matrix close to the
embedded representation, and second-order similarity was
adopted to maintain the similarity of the context nodes. LINE
optimized the objective functions of the first-order and second-
order similarities to minimize the distance between the node pair
probability distribution generated by the adjacency matrix and
the probability distribution generated by the embedded inner
product through KL divergence, realized the optimization of
graph embedding, and spliced the generated embedding
vectors. The edge sampling strategy of LINE overcomes the
limitations of random gradient descent and makes it
applicable to large-scale graph embedding. However, the single
optimization of the first-order and second-order representations
and the simple splicing operation also limit the representation
ability of LINE.

Unlike conventional graph embedding models, Struc2Vec
focuses on the roles of different nodes in the network. The
features of the nodes represent their locations and relationships
with other nodes. However, many existing algorithms only express
the nodes as vectors according to the distance relationships and do
not consider the other structural features of the nodes. Most graph
embedding models believe that the more common the neighbors of
two nodes, the more similar the two nodes are, and it is natural to
reduce their distance in the embedding space. However, this method
cannot be used to identify node pairs with similar structures. In fact,
some nodes have similar topological structures, but are too far away
to have common neighbors. Struc2Vec ignores the attributes of
nodes and edges and their positions in the network to evaluate the
structural similarity between nodes; however, the limitations were
still present.
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2.7 Server construction

In this study, we developed a web server named TLSEA for
lncRNA functional enrichment analysis, which was based on the
fusion of heterogeneous information obtained from multiple
sources. The flask framework was adopted for data processing
and calculation. At the front end of the TLSEA, the framework
of “HTML + CSS + Bootstrap” was employed, and Ploty.js and
JQuery were used for graphical visualization and application logic,
respectively. All computational algorithms were implemented in
Python using the NumPy and Pandas packages. In total, lncRNA
pathways of 385 diseases were identified (see Supplementary Table
S6). TLSEA is unrestricted (without a login procedure), compatible
with most web browsers, and accessible at http://www.lirmed.com:
5003/tlsea.

3 Results

3.1 LncRNA feature vector selection

Three lncRNA networks were constructed using different
similarity networks, as shown in Figure 4. The first lncRNA
functional similarity network was constructed by integrating
lncRNA–miRNA association data and miRNA similarity data,
which included 1,002 lncRNAs (named LncRNAset1). The
second lncRNA functional similarity network was constructed
by integrating lncRNA–disease association data and disease
semantic similarity network and included 777 lncRNAs
(named LncRNAset2) and the third lncRNA functional

similarity network by lncRNA expression profile data, which
included 303 lncRNAs (named LncRNAset3).

To gain better low-dimensional feature vectors of lncRNAs, we
extracted 16-, 32-, 64-, and 128-dimensional feature vectors with four
types of prevailing graph embedding algorithms (DeepWalk,
Struc2Vec, SDNE, and LINE). In this study, a random forest
classifier was selected to evaluate the performance of the four
algorithms. LncRNAset1, LncRNAset2, and LncRNAset3 were fed
into the classifier to train it. Four types of random forest classifiers,
namely, R1(X), R2(X), R3(X), and R4(X), were employed based on the
16-, 32-, 64-, and 128-dimensional lncRNA feature vectors extracted by
the DeepWalk, Struc2Vec, SDNE, and LINE methods in turn. Finally,
the effectiveness of each type of lncRNA feature vector was validated
using 10-fold cross validation. Accuracy (ACC) values are listed in
Table 1. The numbers in the vector names represent feature vector
dimensions. For example, DeepWalk16 represents the DeepWalk
algorithm with 16-dimensional feature vectors.

As shown in Table 1, the feature vectors extracted by
SDNE64 yielded the best classification results for the two lncRNA
functional similarity networks of lncRNA feature vectors, which are
marked in bold. Therefore, we believe that the 64-dimensional vector
extracted by SDNE could retain more information and be selected in
this study.

3.2 Construction of an lncRNA–lncRNA
association network

First, two sets of 64-dimensional lncRNA feature vectors based on
the lncRNA–miRNA association network and lncRNA–disease

FIGURE 4
Venn diagram of three lncRNA sets in lncRNA feature vector selection.
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association network were merged into a new set. If one lncRNA
appeared in only one of the two association networks, its vector was
retained as the merged vector. If it appeared in both functional
annotation networks, the average value of the two corresponding
vectors was considered as the merged vector value. After merging, a
novel lncRNA feature matrix was obtained in which each lncRNA node
of the two association networks corresponded to a row vector. The
Pearson correlation coefficient ρ was used to evaluate the closeness of
the relationship between two lncRNA feature vectors, which was
calculated using the following formula:

ρ � ∑N
i�1 xi − �x( ) yi − �y( )

∑N
i�1 xi − �x( )2∑N

i�1 yi − �y( )2[ ] 1
2

, (13)

where �x is the average values for all x and �y is the average values for
all y.

Integrating the lncRNA functional similarity based on
lncRNA–disease association and lncRNA functional similarity based
on lncRNA–miRNA association network, an lncRNA–lncRNA
association network (see Supplementary Table S7) was constructed
by merging lncRNA-related heterogeneous information obtained from
multiple sources and various lncRNA-related similarity networks,
which included 1,409 lncRNAs.

3.3 Overview of the TLSEA web server

In the TLSEA, users only need to submit a list of lncRNAs of
interest. Users can utilize the TLSEA to calculate the p-values of the
original lncRNA list and the lncRNA list after random walk
expansion. As shown in Figures 5, 6, the web interface of the

TLSEA was designed according to the following workflow. First,
the user inputs an lncRNA list of interest and then selects the
similarity coefficient for expansion. The larger the similarity
coefficient, the more similar the expanded lncRNA list is to the
original lncRNA list. The unified lncRNA naming format used in the
TLSEA enrichment analysis is the HGNC symbol. If the lncRNA
names did not match the HGNC symbols, users needed to convert
them to this format using the LncBook 2.0 database (Li et al., 2022)
or other conversion tools before analyzing the data with the TLSEA.
If the user chooses the similarity coefficient as “None,” it implies that
only the original lncRNA list was used for enrichment analysis.
Finally, the user clicked the “Run” button to complete the task. If the
similarity coefficient was not “None,” the TLSEA would additionally
display the expanded lncRNA list and provide a button to export it.
The enrichment analysis results are shown in Figure 6. TLSEA could
also visualize the results with one bubble chart by clicking the
“Results Visualization” button.

3.4 Case studies

To further evaluate the application of the TLSEA model in
practical situations, we used the TLSEA to analyze the functions of
differentially expressed genes in breast cancer. For the case study, we
first downloaded a list of differentially expressed lncRNAs
(log2 FC> 1; Padj < 0.05) of breast cancer from the TCGA project
and CircRNAnet database as the input list of the TLSEA. Then, the
similarity coefficient was set to “None,” which meant that the
enrichment analysis was performed based on the original
differential expression lncRNA list, and the “Run” button was
clicked to implement the enrichment analysis. The TLSEA would

TABLE 1 ACC results of different lncRNA feature vectors.

Types of lncRNA feature vectors ACC based on lncRNA–disease association ACC based on lncRNA–miRNA association

DeepWalk16 0.8638 0.8066

LINE16 0.8869 0.8184

SDNE16 0.9815 0.9078

Struc2Vec16 0.8588 0.8246

DeepWalk32 0.8467 0.8101

LINE32 0.9351 0.8220

SDNE32 0.9812 0.9061

Struc2Vec32 0.8693 0.8186

DeepWalk64 0.8854 0.8000

LINE64 0.9509 0.8063

SDNE64 0.9824 0.9131

Struc2Vec64 0.8840 0.7996

DeepWalk128 0.8907 0.7324

LINE128 0.9559 0.7888

SDNE128 0.9822 0.9045

Struc2Vec128 0.8931 0.7380
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output all disease pathways with a p-value <0.01 and provide the
results of visual enrichment analysis. The top 15 significances of the
enrichment analysis results are displayed on the results page.
Subsequently, the similarity coefficient was set to 0.9, which
meant that the TLSEA would screen the lncRNA–lncRNA
association network based on multi-source heterogeneous
information fusion in advance, retaining only the edges whose
similarity values exceeded 0.9. Subsequently, the differentially
expressed lncRNAs were used as seed nodes, and the random
walk with restart method was performed on the
lncRNA–lncRNA association network. After all nodes converged,
the nodes whose random walk probabilities were not 0 were
identified as expanded lncRNAs and used to obtain the expanded
lncRNA list. Finally, the TLSEA performed an enrichment analysis
of these expanded lncRNAs.

The breast cancer disease lncRNA set included 185 lncRNAs
and only 30 lncRNAs from the original differentially expressed
lncRNA list, with a hit rate of 16.22%. The case study results
showed that 73 lncRNAs from the expanded lncRNA list were hit
after performing the random walk with the restart method, and
the hit rate increased to 39.46%, as shown in Figure 7. The p-value
of breast cancer with the original differentially expressed lncRNA
list was 1.34e−13, and the p-value of breast cancer with the
expanded list after performing random walk with the restart
method was 1.37e−20. The expanded list was significantly
enriched in breast cancer compared with the original list. In
addition, the p-values of the top 10 diseases in the enrichment
analysis results of the original list were significantly improved, as
shown in Table 2. Experimental findings proved that TLSEA

could effectively improve the accuracy of enrichment analysis of
the lncRNA list.

After statistical analysis, 43 additional lncRNAs were
calculated based on the expanded list, which were not found
based on the original lncRNA list. All of them were validated in
the literature; their names and corresponding PMIDs are listed in
Table 3.

The enrichment results calculated by the TLSEA not only
significantly improved the p-values of the diseases in the
enrichment results but also mined new diseases that were not
enriched by the original lncRNA list. In this study, the expanded
lncRNA list of breast cancer was significantly enriched in head
and neck squamous cell carcinoma, with a p-value of 1.38e−6.
According to the lncSEA database (Chen et al., 2021), there were
a total of 12 lncRNAs related to head and neck squamous cell
carcinoma, and nine of them were hit in our case study. In
contrast, only two lncRNAs were hit based on the original
lncRNA list, as shown in Table 4. The experimental results of
this case have previously shown that there is a certain
relationship between breast cancer and head and neck
squamous cell carcinoma (Croce, 2022), which also indicates
that the TLSEA can detect some new diseases ignored by
conventional enrichment analysis methods.

4 Discussion

Gene set enrichment analysis is a pervasive bioinformatic
technique used to detect the underlying biological pathways and

FIGURE 5
Enrichment analysis page of TLSEA.
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FIGURE 6
Enrichment analysis result page of TLSEA.

TABLE 2 Comparison of p-values of the origin list and expanded list of the top 10 diseases in TLSEA.

Disease p-values of the origin list p-values of the expanded list

Non-small-cell lung cancer 5.48e−14 1.15e−25

Breast cancer 1.34e−13 1.38e−20

Gastric cancer 6.27e−13 1.13e−22

Colorectal carcinoma 5.26e−11 1.59e−24

Nasopharyngeal carcinoma 2.00e−8 4.85e−10

Prostate cancer 2.49e−8 2.60e−12

Esophageal squamous cancer 3.64e−8 2.33e−11

Thyroid cancer 6.52e−8 3.00e−8

Esophageal cancer 1.49e−7 3.15e−8

Squamous cell carcinoma 1.87e−7 1.19e−7
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functional categories of a given gene list. In this study, we
developed an lncRNA set enrichment analysis tool, the
TLSEA, based on a multi-source heterogeneous information
fusion. Conventional algorithms, such as hypergeometric and
binomial tests, do not explicitly consider the rich association
information among input lncRNAs in the lncRNA list, which is a
hindrance in obtaining more insightful biological processes. We
introduced the interaction information between miRNAs and
lncRNAs and that between diseases and lncRNAs to construct a
novel lncRNA–lncRNA association network and expanded the
lncRNA list using random walk with restart. Using a case study,
TLSEA demonstrated that the expanded lncRNA list can detect
more insightful pathways than the original lncRNA list.
Additionally, TLSEA provides a simple and user-friendly
interface for analyzing, browsing, and downloading detailed
information from lncRNA set enrichment analysis, which can
help researchers understand the mechanisms of disease and
develop effective diagnosis and treatment.

Generally, the expanded lncRNA list is more significantly
enriched in the corresponding disease pathway than the original
lncRNA. However, sometimes, selecting a small threshold for the
similarity coefficient may lead to the introduction of some
unrelated lncRNAs, which would cause poor enrichment
analysis results. Therefore, how to provide a more suitable
expansion strategy for users will be the future subject of a
follow-up article on TLSEA. In addition, the insufficient
disease pathway data will limit the comprehensiveness of
enrichment analysis and calculation results. As the size of
disease pathway data grows, TLSEA will supplement and

FIGURE 7
Percentage of lncRNA hit terms after performing random walk
with the restart method.

TABLE 3 List of 43 additional lncRNAs and corresponding PMIDs of breast
cancer based on the expanded lncRNA list.

lncRNA PMID lncRNA PMID

HOXA-AS2 28545023 LINC02099 27597120

LINC00472 33668040 CERNA2 32248842

NORAD 34190442 SNHG15 32141559

SNHG7 33099915 MIR31HG 34076993

RMST 29215701 HIF1A-AS2 30635931

CYTOR 33842324 LINC00636 26929647

RASSF1-AS1 31062660 LINP1 27111890

FGF14-AS2 31486497 EGOT 26159853

NNT-AS1 32691576 PTPRG-AS1 34326372

LINC00598 28339037 LINC00901 25435812

NBAT1 26378045 CASC2 29523222

DIRC3 25122612 MALAT1 30349115

LINC01089 31417284 MAGI2-AS3 32730644

STXBP5-AS1 34764730 LINC-ROR 29041978

SNHG16 32122142 MEG3 33845141

TUG1 33380806 SPRY4-IT1 31736268

IRAIN 25465188 H19 33324070

FOXC2-AS1 29562954 JADRR 24097061

LINC02130 28003470 CASC22 24879036

LINC00339 31781497 PDCD4-AS1 33248413

KLF3-AS1 29453409 LINC01671 28003470

LINC00993 31921620

TABLE 4 Enrichment analysis results of the original lncRNA list and the
expanded lncRNA list on head and neck squamous cell carcinoma.

lncRNA PMID Original list Expanded list

C5orf66-AS1 30280186 Hitting Hitting

CYTOR 35963855 Not hitting Hitting

SPRY4-IT1 29575229 Not hitting Hitting

FAM3D-AS1 Unconfirmed Not hitting Hitting

HAND2-AS1 29575229 Not hitting Hitting

H19 27994496 Not hitting Hitting

LUCAT1 29575229 Not hitting Hitting

HEIH 29575229 Not hitting Hitting

HOTAIR 31297902 Hitting Hitting

EPB41L4A-AS2 29490660 Not hitting Not hitting

LNC-JPH1-7 27323410 Not hitting Not hitting

LNC-LCE5A-1 25904139 Not hitting Not hitting
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include more multi-source heterogeneous information on
lncRNAs. The future version of TLSEA will include more
categories of lncRNAs and integrate additional functional
information into the knowledge base, annotate more species,
and develop a more efficient expanding method for lncRNA lists
of interest.
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