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Background: Colon adenocarcinoma (COAD) is a common malignancy with high
morbidity and mortality rates. The immune system plays a crucial role in CRC
development and progression, making it a potential therapeutic target. In this
study, we analyzed transcriptomic data from CRC patients to investigate immune
infiltration and identify potential therapeutic targets.

Method and results: we used CIBERSORT to analyze the immune infiltration in
COAD samples and found that the high infiltration of M2 macrophages and
neutrophils was associated with poor prognosis. Next, we identified NR4A1 as a
potential therapeutic target based on its protective effect in two predict models.
Using cancer therapeutics response analysis, we found that high expression levels of
NR4A1were sensitive toOSI-930, a tyrosine kinase inhibitor with anti-tumor effects.

Conclusion: Our findings suggest that targeting NR4A1 with OSI-930 may be a
promising therapeutic strategy for COAD patients with high levels of immune
infiltration. However, further studies are needed to investigate the clinical efficacy
of this approach.
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1 Introduction

Colon adenocarcinoma (COAD) is a malignant tumor that arises from the glandular
epithelium lining the colon, which is a part of the large intestine. It is the third most common
cancer and the second leading cause of cancer-related deaths worldwide. The 5-year survival
rate for colon adenocarcinoma patients remains relatively low, ranging from 90% for
localized disease to 14% for distant metastases, despite treatment advancements such as
surgery, chemotherapy, and radiation therapy. Early detection and treatment, particularly
with surgery, are critical for improving survival rates (Galon et al., 2006; Siegel et al., 2020).

Research is ongoing to identify biomarkers and risk factors that may improve early
detection and treatment options for colon adenocarcinoma patients, as well as to develop
new targeted therapies and immunotherapies for advanced disease. Recent research has
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suggested that the immune system plays a crucial role in the
development and progression of colon adenocarcinoma, and the
infiltration of immune cells, such as dendritic cells, into the tumor
microenvironment may influence patient outcomes (Galon et al.,
2006; Fridman et al., 2012). Studies have shown that the density and
function of immune cells in the tumor microenvironment can affect
the efficacy of cancer treatments and predict patient outcomes
(Pages et al., 2005; Galon et al., 2006; Fridman et al., 2012).
Therefore, understanding the immune infiltration in the tumor
microenvironment could provide insights into the development
of effective cancer treatments for colon adenocarcinoma patients.

However, Studying the role of immune infiltration in colon
adenocarcinoma can be challenging due to the complexity of the
tumor microenvironment, which involves various interacting
immune and stromal cells. While immune infiltrates may predict
clinical outcomes in some studies, it remains unclear how this
information can guide clinical decision-making, including
treatment selection. Further research is necessary to translate
immune infiltration into actionable clinical information.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool to
study the complexity of the tumor microenvironment in colon
adenocarcinoma. scRNA-seq allows profiling of gene expression
in individual cells providing new insights into the role of the
immune system in tumor development and biomarkers for early
detection and targeted therapies (Hanzelmann et al., 2013; Zhang
et al., 2019; Korber et al., 2020).

The present study seeks to address the challenges by utilizing
scRNA-seq in combination with bulk RNA sequencing data.
Specifically, the integration of scRNA-seq data with bulk RNA
sequencing data enables the identification of cell specific gene
expression profiles, thereby providing a more comprehensive
understanding of the heterogeneous tumor microenvironment.
Additionally, this study aims to identify potential biomarkers for
survival prediction and to develop new targeted therapies for
COAD, with the ultimate goal of providing clinically relevant
information that can inform treatment decisions.

2 Materials and methods

2.1 Data collection

Data for this study were obtained from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases.
The GEO dataset (GSE166555) contains scRNA-seq data from colon
adenocarcinoma tumor tissue samples and normal colon tissue
samples. The TCGA dataset contains genomic and clinical data
from colon adenocarcinoma patients.

Two GEO dataset (GSE39582 and GSE87211) contains genomic
and clinical data from colon adenocarcinoma patients were obtained
for external validation.

Protein staining results were obtained from human protein atlas.

2.2 Bulk RNA data processing

The gene length was obtained from the GFF3 file using the
Bioconductor package “GenomicFeatures” in R (Zhu et al., 2010;

Lawrence et al., 2013). The gene count was obtained from the raw
RNA sequencing data using the featureCounts function in the
Subread package. The counts were then normalized to transcripts
per million (TPM) using the formula:

TPM � gene count / gene length( ) * 1, 000, 000 / total counts( )

Bulk RNA data processing and analysis were performed using R
software. The limma package was used for normalization and
differential gene expression analysis (Ritchie et al., 2015). Fold
change >2 or < −2 (|log2FC > 1|), adjusted p-value <0.05 were set.

These genes were subjected to pathway enrichment analysis
using the Gene Ontology database (Mi et al., 2019) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa
and Goto, 2000). The significantly enriched pathways were
identified based on a p-value threshold of 0.05.

2.3 Prognostic significance analysis of clinic
features

We used the rms R package to integrate data on survival time,
survival status, and five clinic features (Age, Gender, Stage, Relapse,
Histological type). We used the Cox proportional hazards regression
method to build a nomogram and evaluated the prognostic
significance of these features in 427 samples.

2.4 Immune analysis of bulk RNA

CIBERSORT analysis was then performed using the
CIBERSORT package in R (Hao et al., 2021). The LM22 gene
signature matrix was used as a reference to identify the relative
proportions of 22 different immune cell types in each sample
(Newman et al., 2015). To ensure the reliability of the
CIBERSORT results, only samples with a CIBERSORT
p-value <0.05 were considered in the subsequent analysis. The
resulting immune cell proportions were then used for
downstream analysis, including survival analysis and correlation
analysis with clinical variables.

2.5 ScRNA data processing

To analyze the single cell sequencing data of colon
adenocarcinoma, we used the Seurat package in R (Stuart et al.,
2019). Seurat is a widely used computational tool for single cell RNA
sequencing analysis, which provides functions for quality control,
data normalization, dimensionality reduction, clustering, marker
gene finding, and visualization.

After obtaining the single cell RNA sequencing data, quality control
was performed using the Seurat functions “CreateSeuratObject” and
“FilterCells”. Cells with a low number of genes expressed (<200) and
high percentage of mitochondrial genes (>5%) were removed. The
remaining cells were then normalized and scaled using the
“NormalizeData” and “ScaleData” functions, respectively.

Dimensionality reduction was performed using the “RunPCA”,
RunTSNE”, and “RunUMAP” functions to reduce the high-
dimensional data into a two-dimensional space for visualization.
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Clustering analysis was performed using the “FindClusters”
function, and cell types were identified using the
“FindAllMarkers” function to find the marker genes for each cluster.

Visualization of the clustering results was performed using the
“DimPlot” and “FeaturePlot” functions, which generate scatter plots
of the cells and expression levels of marker genes for each cluster,
respectively.

To annotate the clusters obtained from Seurat analysis of single
cell RNA sequencing data, we used the singleR package in R (Aran
et al., 2019). singleR is a computational tool that provides a
reference-based approach to annotate the cell types in scRNA-
seq data.

2.6 Survival analysis of immune types

To analyze the effect of different immune cell proportions on the
survival rate of colon adenocarcinoma patients, we used the Kaplan-
Meier (KM) curve analysis. KM curve analysis is a statistical method
used to estimate the probability of survival over time for different
groups of patients based on their clinical or molecular
characteristics.

We obtained the patient data from TCGA database and divided
them into two groups based on each immune cell proportions: high
proportion group and low proportion group. The cutoff value for
defining high and low proportion was determined using the median
proportion.

The KM curve analysis was performed using the “survival”
package in R. The “Surv” function was used to create a survival
object, which includes the survival time and censoring status for
each patient. The “survfit” function was used to estimate the
survival probability over time for each group, and the “logrank”
test was used to compare the survival curves between the two
groups.

To assess the significance of the difference in survival between
the two groups, we calculated the hazard ratio (HR) and 95%
confidence interval (CI) using the “coxph” function in the
“survival” package.

Genes associated with the target immune cell type were obtained
from scRNA-seq for further analysis.

2.7 Predict model based on neutrophils cells
and macrophages M2

Genes with the annotation as neutrophils cells and macrophages
M2, were abstracted from scRNA-seq clusters. To identify the genes
that have a significant impact on survival in colon adenocarcinoma
patients, we performed a univariate Cox regression analysis using
the “survival” package in R (Simon et al., 2011). In this analysis, we
tested the association between the expression levels of each gene and
the survival time of patients.

To select the genes with the most significant impact on survival,
we used a p-value cutoff of 0.05. Genes with a p-value lower than
0.05 were considered significant and selected for the least absolute
shrinkage and selection operator (lasso) Cox regression.

Lasso Cox regression is a type of regularized regression that can
handle high-dimensional data and select the most important

predictors while shrinking the coefficients of less important
predictors to zero.

The “glmnet” package in R was used to perform the lasso Cox
regression analysis. The optimal value of the penalty parameter
lambda was chosen using the 10-fold cross-validation method.

The performance of the predictive model was evaluated using
the concordance index (C-index), which measures the accuracy of
the model in predicting the survival outcome. The C-index ranges
from 0.5 (random prediction) to 1 (perfect prediction).

2.8 Chemical compounds sensitivities

To analyze the correlation between gene expression and
chemical compound sensitivities, we used the Cancer
Therapeutics Response Portal (CTRP) v2 database (Rees et al.,
2016). CTRPV2 is a web-based platform that integrates gene
expression and drug sensitivity data from the GDSC database to
identify potential biomarkers for drug sensitivity.

We accessed the CTRP v2 online tool (https://portals.
broadinstitute.org/ctrp/), which provides a user-friendly interface
for exploring and analyzing the CTRP v2 data. We input the TPM
values of the genes of interest and the IC50 values of the chemical
compounds of interest into CTRPV2 and obtained the correlation
coefficient (r) for each gene-compound pair.

The tool provides a Z-score for each gene-compound pair, which
represents the number of standard deviations from the mean
expression level for that gene in response to that compound. We
set a Z-score of 1.5 as the cutoff for statistically significant correlation
between gene expression and chemical compound sensitivity.

3 Result

3.1 Data collection

In this study, a total of 428 COAD samples from the TCGA
database were included. The clinicopathological characteristics of the
patients are summarized in Table 1; Supplementary Figure S1. The
patients had a median age of 68 years (range: 31–90 years), with a
slight predominance of males (53.86%). The majority of patients had
stage II (38.87%) or stage III (28.8%) disease at diagnosis. Patients
with missing clinical information or survival status were excluded
from the analysis. The exclusion criteria for TCGA data were as
follows: 1) Patients with missing clinical information, 2) patients with
a history of other malignancies, 3) patients with an unmentioned
histological type and 4) patients who had a survival time of 0 days.

Additionally, 12 tumor samples and 12 adjacent normal samples
scRNA data from GSE166555 were included, the clinicopathological
characteristics of the patients are summarized (Supplementary
Table S1).

3.2 Prognostic significance analysis of clinic
features

We evaluated the prognostic significance of these five features in
the 427 samples using the nomogram (Figure 1). The nomogram
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TABLE 1 The clinicopathological characteristics of the 427 enrolled patients.

Characteristics Deceased (N = 336) Living (N = 91) Total (N = 427)

Age

Mean ± SD 65.68 ± 12.64 68.67 ± 13.23 66.31 ± 12.81

Median [min-max] 67.00 [31.00,90.00] 71.00 [34.00,90.00] 68.00 [31.00,90.00]

Gender

Female 158 (37.00%) 39 (9.13%) 197 (46.14%)

Male 178 (41.69%) 52 (12.18%) 230 (53.86%)

Stage

Stage I 55 (12.88%) 17 (3.98%) 72 (16.86%)

Stage IA 1 (0.23%) 0 (0.0e + 0%) 1 (0.23%)

Stage II 24 (5.62%) 5 (1.17%) 29 (6.79%)

Stage IIA 98 (22.95%) 28 (6.56%) 126 (29.51%)

Stage IIB 7 (1.64%) 3 (0.70%) 10 (2.34%)

Stage IIC 1 (0.23%) 0 (0.0e+0%) 1 (0.23%)

Stage III 13 (3.04%) 4 (0.94%) 17 (3.98%)

Stage IIIA 5 (1.17%) 3 (0.70%) 8 (1.87%)

Stage IIIB 50 (11.71%) 8 (1.87%) 58 (13.58%)

Stage IIIC 30 (7.03%) 10 (2.34%) 40 (9.37%)

Stage IV 37 (8.67%) 9 (2.11%) 46 (10.77%)

Stage IVA 14 (3.28%) 3 (0.70%) 17 (3.98%)

Stage IVB 1 (0.23%) 1 (0.23%) 2 (0.47%)

Histological type

Colon Adenocarcinoma 291 (68.15%) 78 (18.27%) 369 (86.42%)

Colon Mucinous Adenocarcinoma 45 (10.54%) 13 (3.04%) 58 (13.58%)

FIGURE 1
Nomogram predicting patient survival based on clinic features levels in COAD. The nomogram incorporates clinical variables such as age, gender,
relapse information, histological type, and stage. Points are assigned to each variable based on their relative contribution to patient survival. The total
score obtained from adding up the points for each variable can be used to estimate patient survival probability. The calibration curve shows the
agreement between the predicted and observed survival probability.
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allowed us to visualize the contributions of the individual features to
the overall survival outcome, and to identify which features were
most strongly associated with survival.

The Cox proportional hazards regression model demonstrated a
C-index of 0.687892331642646, with a 95% confidence interval of
0.62702802141112–0.748756641874171 and a statistically significant

FIGURE 2
Identification and annotation of DEGs. (A) Volcano plot showing differential gene expression analysis between COAD and normal samples. The
x-axis represents the log2 fold change between the two groups, and the y-axis represents the negative log10 of the p-value. The red points represent
upregulated genes in COAD compared to normal samples, while the blue points represent downregulated genes. The horizontal dashed line represents
the significance threshold (p-value <0.05), and the vertical dashed lines represent the fold change threshold (|log2FC| > 1). Genes with a significant
differential expression and a fold change above the threshold are labeled. (B)Heatmap depicting the expression levels of DEGs between the groups. The
rows represent individual genes, while the columns represent different samples. The color key shows the level of expression of the genes, with red
indicating upregulation and blue indicating downregulation relative to the median expression level. The hierarchical clustering of the samples and genes
is shown on the left and top of the heatmap, respectively. (C) GO enrichment analysis of DEGs identified in COAD samples. The color intensity of each
square represents the enrichment significance, with red indicating high significance and blue indicating low significance. The size of the square reflects
the number of genes associated with the GO term. (D) KEGG pathway analysis of DEGs identified in COAD samples. The color intensity of each square
represents the enrichment significance, with red indicating high significance and blue indicating low significance. The size of the square reflects the
number of genes associated with the KEGG term. (E) Box plot showing the relative abundance of immune cell types estimated by CIBERSORT for DEGs.
The y-axis represents the proportion of immune cells, while the x-axis represents different sample groups.
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p-value of 1.44357293340874e-09. These findings indicate that the
model has a level of predictive power above that of random prediction.

However, caution must be exercised in interpreting the clinical
utility of the model. Notably, patients with higher cancer stage or
relapse status may exhibit lower risk scores, indicating a potentially
counterintuitive relationship between the model’s predictions and the
expected clinical outcomes. Therefore, further validation studies and
clinical testing are needed to assess the predictive performance of the
model and determine its usefulness in clinical decision-making.

3.3 Differential gene expression analysis and
differential immune infiltration

To identify differentially expressed genes (DEGs) between TCGA-
COAD and normal samples, we performed differential gene expression

analysis using the limma package. A total of 11,583 genes were found to
be differentially expressed, with 8,191 genes upregulated and 3,392 genes
downregulated in TCGA-COAD samples compared to normal samples
(adjusted p-value <0.05 and |log2 fold change| > 1). The volcano plot
and heatmap of DEGs is shown in Figures 2A, B.

To investigate the biological functions and pathways associated
with these differentially expressed genes, we performed gene ontology
(GO) and KEGG pathway analysis (Figures 2C, D). Although these
functions may not be directly implicated in immune infiltration, they
are strongly linked to this process. Consequently, we employed
CIBERSORT to conduct further investigation of the differential
immune infiltration (Figure 2E).

In view of the significant differences observed in immune
infiltration associated with the differentially expressed genes, we
performed CIBERSORT again across all expression profiles to
further elucidate this relationship. The bar plot and box plot

FIGURE 3
Immune infiltration of tumor samples. (A) Bar plot showing the expression levels of all the genes in COAD patients. Each bar represents the mean
expression level of a gene in tumor samples. (B) Box plot showing the distribution of expression levels of all the genes in COAD patients. The box
represents the interquartile range (IQR), with the median (horizontal line), and the whiskers indicate the range of values within 1.5 times the IQR from the
upper and lower quartiles. Outliers are shown as individual points. (C) Box plot showing the distribution of expression levels of all the genes in COAD
patients and normal samples, each box represents the proportions of an immune cell type in tumor samples (red) and normal samples (blue).
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revealed substantial immune heterogeneity in the tumor samples
(Figures 3A, B). The immune infiltration analysis revealed a
significant difference in the composition of immune cells between
tumor and normal tissues. In tumor samples, there was a decrease in
the abundance of DC resting, eosinophils, macrophages M1,
macrophages M2, mast cells resting, monocytes, NK cells
activated, plasma cells, CD8+ T cells, and Tregs (p < 0.05)
compared to normal samples. On the other hand, macrophages
M0, NK cells resting, and CD4+ memory activated were found to be
significantly more abundant in tumor samples (p < 0.05). These
findings suggest a potential role for these immune cell subsets in the
development and progression of the tumor (Figure 3C).

3.4 The impact of distinct immune
infiltration on survival

To assess the impact of different immune cell infiltration on COAD
patients’ survival, we divided the COAD samples into two groups based
on the median proportion of different abundance immune cell type.
Our analysis revealed that the survival of patients was significantly
impacted by the proportion ofmacrophagesM2 (HR= 1.75, Figure 4A)
and neutrophils (HR = 1.76, Figure 4B). Higher proportions of
macrophages M2 or neutrophils were associated with a worse
prognosis, the proportions of other immune cells did not have a
significant impact on patient survival (Figure 4C).

FIGURE 4
Survival analysis of COAD patients base on the different immune infiltration. (A) KM curve for the association of macrophage M2 infiltration and
overall survival in COAD patients. The high macrophage M2 infiltration group is indicated in blue, while the low macrophage M2 infiltration group is
indicated in red. The X-axis represents the survival time in days, and the Y-axis represents the survival probability. The p-value was calculated using the
log-rank test. The KM curve suggests that COAD patients with high macrophage M2 infiltration have a significantly worse prognosis than those with
lowmacrophageM2 infiltration. (B) KM curve for the association of neutrophils infiltration and overall survival in COAD patients. (C) KM curves of immune
cells with significant differences but no significant impact on survival.
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Next, we further investigated the genes related to neutrophils
and macrophages. Due to the limitations in the annotation of single-
cell RNA sequencing data, we could not specifically focus on
macrophages M2 as the subtype could not be precisely divided.

To obtain the genes representative of these immune cells, we
analyzed the single-cell RNA sequencing data of COAD samples
using the Seurat package. The differentially expressed genes in CD8+

T cells and dendritic cells were identified using the FindAllMarkers

FIGURE 5
Cell clusters, markers and annotation of scRNA sequencing data. (A) UMAP plot of single-cell gene expression data colored by cell type. Cell types
were identified using the Seurat package based on DEGs. (B) Heatmap showing the expression of top 3 marker genes in single cells of COAD. Rows
represent individual cell clusters, and columns represent the expression levels of marker genes. The heatmap is color-coded, with yellow indicating high
expression and purple indicating low expression. The top 3 marker genes are labeled on the left side of the heatmap. (C) Annotation of clusters by
marker genes highly expressed in certain cell types.
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function of Seurat package. The gene expression profiles of these
cells were compared to that of other cell types to ensure their
specificity. A total of 26 cell clusters were identified and
annotated based on known cell type markers and functional
annotations (Figures 5A, B). Cluster 14 was identified as
neutrophils (markers: S100A9, S100A8, IL1B), cluster 16 as
macrophages (markers:C1QB, C1QA, and SPP1) (Figure 5C).
The distribution of cell types varied between tumor and normal
samples, indicating a significant change in the cellular composition
of the tumor microenvironment. After filtering the differentially
expressed genes, a total of 898 genes representing neutrophils and
1,088 genes representing macrophages were selected for subsequent
analysis.

3.5 Predict model base on genes related to
neutrophils and macrophages

A new matrix containing 898 genes representing neutrophils
and 1,088 genes representing macrophages was created for
subsequent univariate cox regression analysis.

Univariate Cox regression analysis was performed to evaluate
the association between each gene representing neutrophils or
macrophages and patient survival. 365 genes that were found to
be significantly associated with survival in univariate analysis were
then included in the lasso Cox regression analysis.

To further refine the prognostic factors, the lasso Cox regression
analysis was used to identify the most important genes that are

FIGURE 6
Predict model based on genes related to neutrophils and macrophages. (A) The lasso cox model was used to identify the optimal prognostic gene
signature among a large number of genes. The y-axis represents the coefficients of the selected factors, and the x-axis represents the -log10 (lambda) of
the factors. (B) The selection of the optimal lambda value in a lasso cox model was performed using 10-fold cross-validation. The lambda value that
produced the minimum partial likelihood deviance was chosen as the optimal lambda value. (C) ROC analysis was performed to evaluate the
predictive ability of the lasso cox model. The AUC value and 95% confidence interval (CI) are shown in the figure. (D) The lasso cox model of the optimal
prognostic gene signature relates to COAD relapse. (E) The selection of the optimal lambda value in relapse lasso cox model. (F) ROC analysis was
performed to evaluate the predictive ability of the relapse lasso cox model.
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associated with patient survival. The final model was determined
based on the optimal tuning parameter and cross-validation error.
The resulting model incorporated 16 genes, with a Lambda value of
0.0180964575552417 (Figures 6A, B).

RiskScore � − 9.27892150816884e − 05*HSBP1

− 7.39529848766097e − 05*SIL1

+ 0.000232190435630512*CD36
− 3.30705339703081e − 05*EIF4A3

− 9.62564217960586e − 06*PSTPIP2

− 6.68757505192394e − 06*NR4A1

− 2.21789565393933e − 05*HIF1A

− 2.79680024122654e − 05*AP2S1

− 4.45418222479386e − 05*CXCL2

− 1.6363573605246e − 05*ZYX

− 0.000128852882734705*PRDM1

+ 0.0005791148853528*FUOM

+ 1.74412406364351e − 05*APOE

− 4.42195522736364e − 05*PLAU

+ 1.2356458827137e − 05*WARS

− 3.44575724547677e − 06*CST3

To evaluate the predictive performance of the model, receiver
operating characteristic (ROC) analyses were conducted for three
different time points: 365 days, 1,095 days, and 1,825 days. The
resulting AUC values were 0.79, 0.66, and 0.83, respectively (Figure 6C).

These findings suggest that the 16-gene model derived from
lasso Cox regression, based on genes selected using univariate Cox
regression analysis, exhibits potential as a prognostic tool for
predicting patient outcomes.

We repeated the aforementioned analysis using relapse
information from COAD patients. After conducting a univariate
Cox regression analysis with a logrank threshold of less than 0.05,
26 genes were selected for further analysis with lasso Cox regression.
The model obtained from the analysis consisted of 12 genes, with a
corresponding Lambda value of 0.0308784474015521 (Figures 6D, E).

RiskScore � 2.79395070106422e − 05*IFI6 + 7.5275421600356e

− 05*LPCAT2 + 1.97276329697907e − 05*TACC1

+ 5.81813600394489e − 05*EGR3

+ 7.06009460176273e − 06*NR4A1

+ 1.41114162602005e − 05*DDAH2

+ 3.91852689977715e − 06*VEGFA

+ 1.32167767127812e − 06*TGFBI

+ 1.21367456488834e − 06*GRN

− 0.000600466175445024*RASGEF1B

+ 2.82592973016063e − 06*RARA

+ 4.73122291984313e − 05*DOCK11

ROC analysis of the data yielded the following results: AUC of
0.74 for 365 days, 0.73 for 1,095 days, and 0.66 for 1,825 days
(Figure 6F).

Our analysis demonstrated that patients with higher RiskScore
had a poorer prognosis, indicating the potential utility of this metric
as a prognostic tool. The calculation of RiskScore was based on the
expression levels of genes, with those exhibiting a positive coefficient
indicating an unfavorable prognosis and those with a negative
coefficient indicating a protective effect (Figures 7A, B). The
identification of NR4A1 that was present in both models suggests
that it may be a key factor in determining prognosis.

In order to validate the performance of our model, we performed
an external validation using two independent data sets. We
calculated the risk scores using the same formula as the training
dataset, and generated ROC curves to evaluate the predictive
performance of the model. The resulting AUC values for both
data sets were greater than 0.5, indicating that the model had
some predictive ability (Supplementary Figure S2). However, we
observed that the performance of the model was not as strong as the
training dataset. This could be due to the fact that some genes
included in the training signature may not have been detected or
measured in the external validation datasets due to differences in the
sequencing chips used or other technical variations.

3.6 Chemical compounds sensitivities

To further evaluate the involvement of NR4A1 as a pivotal
factor, we conducted a single-cell RNA sequencing analysis to assess
its expression levels and distribution. Our findings revealed that the
distribution of NR4A1 was more extensive, and the expression levels
were higher in tumor samples as compared to normal colon samples
(Figures 8A, B). We obtained protein staining results for
NR4A1 from the Human Protein Atlas for analysis. The results
showed that the staining intensity of NR4A1 was stronger in COAD
samples compared to normal colon samples (Supplementary Figure
S3). These finding suggests that NR4A1 may play a role in the
development and progression of colon cancer.

To analyze the correlation between NR4A1 expression and
chemical compound sensitivities, we used the Cancer
Therapeutics Response Portal (CTRP) v2 database. This database
contains gene expression data from various cancer cell lines and
their responses to chemical compounds.

To focus on the large intestine, a site-specific filter was applied,
and an interquartile multiplier cutoff of 1.5 was used to identify
differentially expressed genes. Subsequently, the correlation between
the expression levels of NR4A1 and two compounds, OSI-930 and
BRD-K50799972, was examined. The analysis revealed a positive
correlation between OSI-930 and NR4A1 expression (Correlation:
0459, z-score: 3.02, Figure 8C), while BRD-K50799972 showed a
negative correlation with NR4A1 expression (Correlation: −0.582,
z-score: −4.31, Figure 8D).

The analysis suggests that OSI-930 and BRD-K50799972 have
different sensitivities for the NR4A1 expression. This information
could be useful in the development of targeted therapies for diseases
that involve dysregulation of the NR4A1. For example, OSI-930 may
be a potential candidate for patients who have higher sensitivity to
the compound, while BRD-K50799972 may be useful for patients
who have lower sensitivity to the compound. However, further
studies are needed to confirm the efficacy and safety of these
compounds in treating colon adenocarcinoma.
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4 Discussion

COAD is a common malignant tumor that has a high morbidity
and mortality rate worldwide (Siegel et al., 2021). The complexity
and heterogeneity of CRC have made it challenging to identify
specific therapeutic targets, and there is an urgent need to develop
new approaches to combat this disease. Recently, single-cell
sequencing has emerged as a powerful tool for investigating the
genetic and molecular mechanisms underlying cancer pathogenesis
(Wei et al., 2023). In this study, we used single cell sequencing to
identify key genes and pathways associated with COAD. Our
approach allowed us to analyze the transcriptional profiles of
individual cells, enabling us to identify cell type-specific changes
in gene expression that would have been masked in bulk sequencing

analysis. By doing so, we aimed to improve our understanding of the
disease and identify potential therapeutic targets that could help to
improve patient outcomes.

In this study, we investigated various clinic features (Age,
Gender, Stage, Relapse, and Histological type) and their
association with patient outcomes. Surprisingly, our analysis did
not reveal any significant direct link between clinic features and
patient prognosis. These findings suggest that other factors, such as
molecular alterations or immune cell infiltration, may have a more
significant impact on patient outcomes in this particular cancer type.

The differential expression analysis identified a total of
11,583 genes that were significantly dysregulated between COAD
and normal samples. These differentially expressed genes are likely
to contribute to the differences in immune infiltration observed

FIGURE 7
The relationship between different risk scores and patients’ follow-up time, events, and expression changes of various genes. (A) The relationship
between different risk scores and overall survival time, living events, and expression changes of model genes. (B) The relationship between different risk
scores and relapse time, relapse events, and expression changes of model genes.
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between the two groups (As Figure 3 shown). Functional analysis of
differentially expressed genes (DEGs) revealed multiple immune-
associated pathways that can impact various aspects of immune
function and contribute to immune infiltration in different cancers.
The Neuroactive ligand-receptor interaction, cytokine-cytokine
receptor interaction, Calcium signaling pathway, Viral protein
interaction with cytokine and cytokine receptor, Protein digestion
and absorption, Hematopoietic cell lineage, DNA replication,
Complement and coagulation cascades, cAMP signaling pathway,
and Cell adhesion molecules (CAMs) pathways were found to be
associated with immune infiltration. These pathways are involved in
immune cell migration, modulation of the inflammatory response,
immune cell proliferation, differentiation, activation, T-cell
activation, cytokine production, chemotaxis, immune response to

viral infection, macrophage infiltration, development and
differentiation of immune cells, recruitment of immune cells to
the site of inflammation, and regulation of leukocyte trafficking and
recruitment to the site of inflammation (Su et al., 2003; Ota et al.,
2007).

Hence, we focused on the immune heterogeneity between
COAD samples. We found that different immune infiltrates in
COAD can have varying impacts on patient prognosis.
Specifically, patients with a higher proportion of macrophages
M2 or neutrophils are associated with worse outcomes. To better
understand the molecular mechanisms underlying this association,
we focused on genes from clusters related to macrophages M2 or
neutrophils. Using these genes, we created two predictive models
that can help identify patients who are at a higher risk of poor

FIGURE 8
Expression, distribution and drug sensitivities analysis of NR4A1. (A) The gene expression levels of NR4A1 in different cell clusters. (B) The total
expression of NR4A1 in COAD and normal samples scRNA data. (C) The positive correlation of NR4A1 expression and OSI-930. (D) The negative
correlation of NR4A1 expression and BRD-K50799972.
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outcomes based on their immune infiltration patterns. These models
have the potential to be used clinically to guide treatment decisions
and improve patient outcomes. The findings of our study highlight
the potential of NR4A1 as a therapeutic target in COAD. The
observed protective effect of NR4A1 in both models suggests its
role in regulating tumor survival and relapse. Cancer therapeutics
response analysis revealed that the expression level of NR4A1 can
influence the response to specific drugs. High expression levels of
NR4A1 may benefit from treatment with OSI-930, while those with
low expression levels may respond better to BRD-K50799972. These
results suggest that targeting NR4A1 expression may be a promising
approach to improve cancer treatment outcomes.

NR4A1, also known as Nur77, is a transcription factor that has
been implicated in the development and progression of various types
of cancer, including COAD. Studies have shown that NR4A1 plays a
crucial role in the development and progression of various diseases,
such as cancer, cardiovascular disease, metabolic disorders, and
neurodegenerative diseases. NR4A1 is also involved in the
modulation of cellular signaling pathways, such as the PI3K/
AKT/mTOR, MAPK/ERK, and Wnt/β-catenin pathways, through
its transcriptional activity or protein-protein interactions (Li et al.,
2018; Zeng et al., 2018). Furthermore, the absence or loss of
NR4A1 expression may result in an impaired ability to
differentiate into M2 macrophages (Murphy et al., 2014).

OSI-930 is a potent and selective inhibitor of c-Kit, a receptor
tyrosine kinase that is overexpressed in a variety of cancers,
including gastrointestinal stromal tumors (GISTs) and acute
myeloid leukemia (AML). OSI-930 has shown promising results
in preclinical studies and has entered clinical trials as a potential
anticancer agent (Malaise et al., 2009). In vitro and in vivo studies
have demonstrated that OSI-930 can inhibit c-Kit activity and
downstream signaling pathways, leading to inhibition of cancer
cell proliferation and induction of apoptosis (Garton et al., 2006).
Additionally, OSI-930 has been shown to have synergistic effects
with other anticancer agents, such as imatinib, in the treatment of
c-Kit-positive tumors (Malaise et al., 2009). Therefore, targeting
NR4A1 may be a potential therapeutic strategy for COAD
treatment. Although some studies have investigated the
therapeutic potential of BRD-K50799972, there is currently
limited research available on its efficacy and safety, and it has
not yet progressed to the preclinical stage. Therefore, further
investigation is needed to determine its potential as a therapeutic
agent. For the purpose of this study, we have not included BRD-
K50799972 in our analysis or discussion.

In conclusion, our study analyzed the differential gene
expression profiles and immune infiltration in COAD samples.
We identified several differentially expressed genes and pathways
associated with immune processes in COAD, which may contribute
to immune infiltration and cancer progression. Specifically, we
found that high expression levels of NR4A1 were associated with
a better prognosis in COAD patients. We also identified OSI-930 as

a potential therapeutic agent for COAD patients with high
NR4A1 expression levels. Our study provides insights into the
molecular mechanisms underlying COAD and identifies potential
therapeutic targets for this disease. However, further experimental
validation is required to confirm our findings.
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